首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mouse splenic dendritic cells (DCs) produce IFN-gamma in response to IL-12. In the present study, we analyzed effects of Th1 and Th2 cytokines on IFN-gamma production by DCs. IL-18 produced by DCs and macrophages acts in an autocrine manner and augments IL-12-induced IFN-gamma production by DCs as also observed in T and NK cells. Surprisingly, IL-4, a Th2 cytokine, also acts synergistically with IL-12 on IFN-gamma production by DCs. In addition, IL-4 markedly enhances IFN-gamma production when DCs are stimulated through CD40 or MHC class II. These results indicate that both Th1 and Th2 cytokines act on DCs during T cell-DC interaction upon Ag presentation. p38 mitogen-activated protein kinase is constitutively activated in mature DCs and is required for IFN-gamma production by DCs. IL-18 but not IL-4 or IL-12 further activates the p38 mitogen-activated protein kinase activity, suggesting that IL-4 and IL-18 enhance IFN-gamma production through distinct intracellular signal transduction pathways in DCs.  相似文献   

2.
IL-12p35-deficient (IL-12p35(-/-)) mice were highly susceptible to Trypanosoma cruzi infection and succumbed during acute infection, demonstrating the crucial importance of endogenous IL-12 in resistance to experimental Chagas' disease. Delayed immune responses were observed in mutant mice, although comparable IFN-gamma and TNF-alpha blood levels as in wild-type mice were detected 2 wk postinfection. In vivo and in vitro analysis demonstrated that T cells, but not NK cells, were recruited to infected organs. Analysis of mice double deficient in the recombinase-activating gene 2 (RAG2) and IL-12p35, as well as studies involving T cell depletion, identified CD4(+) T cells as the cellular source for IL-12-independent IFN-gamma production. IL-18 was induced in IL-12p35(-/-) mice and was responsible for IFN-gamma production, as demonstrated by in vivo IL-18 neutralization studies. In conclusion, evidence is presented for an IL-12-independent IFN-gamma production in experimental Chagas' disease that is T cell and IL-18 dependent.  相似文献   

3.
4.
IFN-alphabeta is a potent immunoregulatory cytokine involved in the defense against viral and bacterial infections. In this study, we describe an as yet undefined IFN-alphabeta-dependent pathway of IFN-gamma induction in mice. This pathway is based on a synergism of IFN-alphabeta and IL-18, and is independent of IL-12 signaling yet dependent on STAT4. In contradiction to current dogma, we show further that IFN-alphabeta alone induces tyrosine phosphorylation of STAT4 in murine splenocytes of different mouse strains. This pathway participates in the induction of IFN-gamma by Gram-negative bacteria and is therefore expected to play a role whenever IFN-alpha or IFN-beta and IL-18 are produced concomitantly during bacterial, viral, or other infections.  相似文献   

5.
IL-12/IL-18-dependent IFN-gamma release by murine dendritic cells.   总被引:12,自引:0,他引:12  
Dendritic cells (DC) develop in GM-CSF-stimulated cultures from murine bone marrow progenitors in serum-free (or low serum) medium. CD11c(+) myeloid DC from 7-day cultures stimulated with TNF-alpha, IFN-alpha, IFN-gamma, or LPS up-regulated surface expression of CD40 and CD86 costimulator and MHC class II molecules, did not up-regulate the low "spontaneous" release of IL-18, and did not release IFN-gamma. Stimulation of in vitro-generated DC with exogenous IL-12 and IL-18 (but not with IL-4 or LPS plus IL-18) induced IFN-gamma expression and release in 15-20% of the DC (detectable by FACS analyses or ELISA). Endogenous IL-12 p70 produced by DC in response to ligation of CD40 stimulated IFN-gamma release when exogenous IL-18 was supplied. In vivo-generated, splenic CD8alpha(+) and CD8alpha(-) DC (from immunocompetent and immunodeficient H-2(d) and H-2(b) mice) cultured with IL-12 and IL-18 released IFN-gamma. The presence of LPS during the stimulation of DC with IL-18 plus endogenous (CD40 ligation) or exogenous IL-12 did not affect their IFN-gamma release. In contrast, splenic DC pretreated in vitro or in vivo by LPS strikingly down-regulated IFN-gamma release in response to stimulation by IL-18 and (endogenous or exogenous) IL-12. Hence, DC are a source of early IFN-gamma generated in response to a cascade of cytokine- and/or cell-derived signals that can be positively and negatively regulated.  相似文献   

6.
Sarcoidosis is a systemic chronic granulomatous disease of unknown cause. Recent investigations revealed that the cytokine profile in inflamed lesions of sarcoidosis is Th1 dominant. To obtain better immunopathologic understanding of sarcoidosis, we examined the expression of IL-12 and IL-18 and their roles in IFN-gamma production in pulmonary sarcoidosis. Sarcoid cases had significantly elevated levels of IL-12 (p40 and p70) and IL-18 in bronchoalveolar lavage (BAL) fluids compared with healthy subjects. IL-12 p70 and IL-18 were immunohistochemically expressed in the epithelioid cells and giant cells of sarcoid granulomas. Significant induction of IFN-gamma, IL-12 p70, and IL-18 was observed from sarcoid BAL fluid cells with LPS stimulation, whereas LPS tended to induce only IL-12 p70 in BAL fluid cells from healthy subjects. Sarcoid cases had significantly greater IFN-gamma induction with LPS stimulation than healthy subjects did. IL-18 mRNA expression was observed in freshly isolated sarcoid BAL fluid cells as well as in LPS-stimulated sarcoid BAL fluid cells, but IFN-gamma and IL-12 mRNA expression was observed only in LPS-stimulated BAL fluid cells. Treatment with anti-IL-12- and anti-IL-18-neutralizing Abs significantly inhibited IFN-gamma production from LPS-stimulated BAL fluid cells of sarcoid cases. Coadministration of rIL-12 or rIL-18 induced greater IFN-gamma production in sarcoid BAL fluid cells than in normal BAL fluid cells. We concluded that bioactive IL-12 and IL-18 were produced in sarcoid BAL fluid cells and synergistically induced IFN-gamma production, indicating important cytokines in the Th1 response of sarcoidosis.  相似文献   

7.
Tissue injury as a consequence of ischemia followed by reperfusion is characterized by early as well as late signs of inflammation. The latter, among others, involves IFN-gamma-dependent up-regulation of MHC class I and II Ag expression. Employing a murine model of renal ischemia, we show that renal IL-18 mRNA up-regulation coincides with caspase-1 activation at day 1 following ischemia. IFN-gamma and IL-12 mRNA are subsequently up-regulated at day 6 following ischemia. Combined, but not separate, in vivo neutralization of the IFN-gamma inducing cytokines IL-12 and IL-18 reduces IFN-gamma-dependent MHC class I and II up-regulation to a similar extent as IFN-gamma neutralization, suggesting the involvement of functional IL-12, IL-18, and IFN-gamma protein. These results reveal a novel relationship between tissue injury of nonmicrobial origin and the induction of IL-12 as well as IL-18. The collaboration observed between endogenous IL-12 and IL-18 in the induction of IFN-gamma after renal ischemia/reperfusion, resembles the immune response to bacterial infections.  相似文献   

8.
Mitochondrial activation and the production of mitochondrial reactive oxygen species (mROS) are crucial for CD4+ T cell responses and have a role in naïve cell signaling after TCR activation. However, little is known about mROS role in TCR-independent signaling and in recall responses. Here, we found that mROS are required for IL-12 plus IL-18-driven production of IFN-γ, an essential cytokine for inflammatory and autoimmune disease development. Compared to TCR stimulation, which induced similar levels of mROS in naïve and memory-like cells, IL-12/IL-18 showed faster and augmented mROS production in memory-like cells. mROS inhibition significantly downregulated IFN-γ and CD44 expression, suggesting a direct mROS effect on memory-like T cell function. The mechanism that promotes IFN-γ production after IL-12/IL-18 challenge depended on the effect of mROS on optimal activation of downstream signaling pathways, leading to STAT4 and NF-κB activation. To relate our findings to IFN-γ-driven lupus-like disease, we used Fas-deficient memory-like CD4+ T cells from lpr mice. Importantly, we found significantly increased IFN-γ and mROS production in lpr compared with parental cells. Treatment of WT cells with FasL significantly reduced mROS production and the activation of signaling events leading to IFN-γ. Moreover, Fas deficiency was associated with increased mitochondrial levels of cytochrome C and caspase-3 compared with WT memory-like cells. mROS inhibition significantly reduced the population of disease-associated lpr CD44hiCD62LloCD4+ T cells and their IFN-γ production. Overall, these findings uncovered a previously unidentified role of Fas/FasL interaction in regulating mROS production by memory-like T cells. This apoptosis-independent Fas activity might contribute to the accumulation of CD44hiCD62LloCD4+ T cells that produce increased IFN-γ levels in lpr mice. Overall, our findings pinpoint mROS as central regulators of TCR-independent signaling, and support mROS pharmacological targeting to control aberrant immune responses in autoimmune-like disease.Subject terms: Autoimmunity, Cytokines  相似文献   

9.
CD86 expression is up-regulated in activated monocytes and macrophages by a mechanism that is not clearly defined. Here, we report that IL-4-dependent CD86 expression requires activation of ERK1/2 and JAK/STAT6 but is negatively regulated by PKCdelta. PMA differentiated U937 monocytic cells when stimulated with IL-4 increased CD11b and CD86 expression by 52- and 98-fold, respectively. PMA+IL-4 treatment also induced a synergistic enhancement of ERK1/2 activation when compared to the effects of PMA and IL-4 alone. Use of the mitogen or extracellular kinase (MEK) inhibitor, PD98059, completely blocked up-regulation of CD11b and CD86 demonstrating the importance of MEK-activated ERK1/2. JAK inhibition with WHI-P154-abrogated IL-4-dependent CD11b and CD86 up-regulation and inhibited STAT6 tyrosine phosphorylation. Importantly, CD11b and CD86 expression were not reliant on IL-4-dependent activation of phosphatidylinositol 3'-kinase (PI 3-kinase). Blockade of PKCdelta activation with rottlerin prevented CD11b expression but lead to a 75- and 213-fold increase in PMA and PMA+IL-4-dependent CD86 expression, respectively. As anticipated, increasing PKCdelta activity with anti-sense reduction of CD45 increased CD11b expression and reduced CD86 expression. Likewise, rottlerin prevented nuclear localization of activated PKCdelta. We conclude from these data that IL-4-dependent CD11b expression relies predominantly on enhanced activation of ERK1/2, while IL-4-dependent CD86 expression utilizes the JAK/STAT6 pathway.  相似文献   

10.
11.
Similar to myeloid dendritic cells, murine macrophages and macrophage cell lines were found to express a surface receptor for IL-12. As a result, peritoneal macrophages could be primed by IL-12 to present an otherwise poorly immunogenic tumor peptide in vivo. Using binding analysis and RNase protection assay, we detected a single class of high affinity IL-12 binding sites (K(d) of approximately 35 pM) whose number per cell was increased by IFN-gamma via up-regulation of receptor subunit expression. Autocrine production of IL-12 was suggested to be a major effect of IL-12 on macrophages when the cytokine was tested alone or after priming with IFN-gamma in vitro. In vivo, combined treatment of macrophages with IFN-gamma and IL-12 resulted in synergistic effects on tumor peptide presentation. Therefore, our findings suggest a general and critical role of IL-12 in potentiating the accessory function of myeloid APC.  相似文献   

12.
BALB/c mice have been shown to easily induce Th2 type responses in several infection models. In this study, to examine the mechanisms of Th2 dominant responses in BALB/c mice, we assessed several macrophage functions using C3H/HeN, C57BL/6, and BALB/c mouse strains. Peritoneal macrophages from three strains of mice equally produced IL-12 by stimulation with LPS plus IFN-gamma. However, IFN-gamma production in response to IL-12 or IL-12 plus IL-18 was much lower in macrophages from BALB/c mice than other strains. IFN-gamma produced by activated macrophages induced IL-12R mRNA expression in T cells and macrophages themselves depending on their amount of IFN-gamma; namely, macrophages from BALB/c mice induced lower expression of IL-12R. Intracellular levels of STAT4 were much lower in macrophages from BALB/c mice. However, other STATs, such as STAT1 or STAT6, were expressed similarly in the three mouse strains. STAT4 and IFN-gamma production by other cell types such as T cells and B cells were equal in C3H/HeN and BALB/c mice. These results indicate that macrophages from Th2-dominant BALB/c mice have different functional characters compared with other mouse strains; that is, STAT4 expression and IFN-gamma production are reduced, which is one of the causes to shift to Th2-type responses.  相似文献   

13.
Early target genes of IL-12 and STAT4 signaling in th cells   总被引:5,自引:0,他引:5  
IL-12 signaling through STAT4 is essential for induction of optimal levels of IFN-gamma production and commitment of Th1 cells. The molecular mechanism that controls how IL-12 and STAT4 signaling induces Th1 differentiation is poorly described. To identify the early target genes of IL-12 and STAT4 signaling, oligonucleotide arrays were used to compare the gene expression profiles of wild-type and STAT4-knockout murine Th cells during the early Th1 differentiation. According to the results, 20 genes were regulated in an IL-12- and STAT4-dependent manner. Importantly, Ifngamma was clearly the first gene induced by IL-12 in a STAT4-dependent manner. Most of the other defects in gene expression in STAT4-knockout cells were seen after 48 h of Th1 polarization. In addition to IL-12 signaling mediated by STAT4, STAT4-independent induction of a number of genes was observed immediately in response to Th1 induction. This induction was at least in part driven by IFN-gamma independently of STAT4. Importantly, addition of exogenous IFN-gamma into Th1 cell cultures of STAT4-knockout cells restored the defect in IFN-gamma production further demonstrating the critical role of IFN-gamma in early Th1 differentiation.  相似文献   

14.
IL-12 and IL-18 are both proinflammatory cytokines that contribute to promoting Th1 development and IFN-gamma expression. However, neither IL-12R nor IL-18R is expressed as a functional complex on most resting T cells. This study investigated the molecular mechanisms underlying the induction of an IL-18R complex in T cells. Resting T cells expressed IL-18Ralpha chains but did not exhibit IL-18 binding sites as detected by incubation with rIL-18 followed by anti-IL-18 Ab, suggesting a lack of IL-18Rbeta expression in resting T cells. Although they also failed to express IL-12R, stimulation with anti-CD3 plus anti-CD28 generated IL-12R. Exposure of these cells to IL-12 led not only to up-regulation of IL-18Ralpha expression but also to induction of IL-18R binding sites on both CD4(+) and CD8(+) T cells concomitant with IL-18Rbeta mRNA expression. The IL-18 binding site represented a functional IL-18R complex capable of exhibiting IL-18 responsiveness. IL-12 induction of an IL-18R complex and IL-18Rbeta mRNA expression was not observed in STAT4-deficient (STAT4(-/-)) T cells and was substantially decreased in IFN-gamma(-/-) T cells. However, the failure of STAT4(-/-) T cells to induce an IL-18R complex was not corrected by IFN-gamma. These results indicate that STAT4 and IFN-gamma play an indispensable role and a role as an amplifying factor, respectively, in IL-12 induction of the functional IL-18R complex.  相似文献   

15.
Two key events occur during the differentiation of IFN-gamma-secreting Th1 cells: up-regulation of IL-12Rbeta2 and IL-12-driven up-regulation of IL-18Ralpha. We previously demonstrated that IL-12-driven up-regulation of IL-18Ralpha expression is severely impaired in IFN-gamma(-/-) mice. However, it was unclear from these studies how IFN-gamma influenced IL-18Ralpha since IFN-gamma alone had no direct effect on IL-18Ralpha expression. In the absence of IL-4, IL-12-dependent up-regulation of IL-18Ralpha/IL-12Rbeta2 was independent of IFN-gamma. However, in the presence of IL-4, IFN-gamma functions to limit the negative effects of IL-4 on both IL-18Ralpha and IL-12Rbeta2. Neutralization of IL-4 restored IL-12-driven up-regulation of IL-18Ralpha/IL-12Rbeta2 in an IFN-gamma-independent fashion. In the absence of both IL-12 and IL-4, IFN-gamma up-regulates IL-12beta2 expression and primes IFN-gamma-producing Th1 cells. When T cells were primed in the presence of IL-4, no correlation was found between the levels of expression of the IL-18Ralpha or the IL-12Rbeta2 and the capacity of these cells to produce IFN-gamma, suggesting that IL-4 may also negatively affect IL-12-mediated signal transduction and thus Th1 differentiation. These data clarify the role of IFN-gamma in regulation of IL-18Ralpha/IL-12Rbeta2 during both IL-12-dependent and IL-12-independent Th1 differentiation.  相似文献   

16.
17.
18.
19.
20.
Initiation of an immune response depends upon expression of class II MHC determinants on plasma membranes of APC. Murine peritoneal macrophages treated with either rIFN-gamma or rIL-4 display significantly more class II MHC determinants than untreated control cells. Analysis of the induction of macrophage Ia Ag by these cytokines showed considerable quantitative and qualitative differences. Maximal levels of Ia Ag induced in macrophages and detected by ELISA after IL-4 treatment at 48 h was about 80% of that induced by IFN-gamma. However, the frequency of Ia+ cells in replicate macrophage populations cultured for 48 h in excess concentrations of cytokine was 60 to 80% with IFN-gamma, 30 to 40% with IL-4, and 5% with medium alone. Thus, the subpopulation of macrophages able to respond to IL-4 for induction of Ia Ag expression was less than that able to respond to IFN-gamma. Expression of Ia Ag on macrophages continuously exposed to IFN-gamma was maximal at 48 h and remained at this high level through 6 days. Maximal Ia Ag expression for IL-4-treated cells was also detected at 48 h, but was not sustained with time in culture, and returned to base line by 4 days. A similar time course for levels of Ia-specific message in macrophages at various times after IFN-gamma and IL-4 treatment was detected by Northern dot blot analysis. Loss of Ia mRNA and Ag with time in culture in the IL-4 treated cells was not due to macrophage cell death, depletion of active cytokine, or presence of fluid-phase inhibitors. IL-4 unresponsive cells were fully capable of maximal response to IFN-gamma for Ia Ag induction. These findings suggest that IL-4 and IFN-gamma induce class II MHC determinants through different mechanisms which may provide discrete regulatory control of APC function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号