首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four German isolates (FS1, SR2, SAW1 and DEG2) of Bremia lactucae originating from lettuce cultivars with R‐factors R18 and Dm6 + R36 were used for detailed characterization of virulence factors (v‐factors) and for the study of the resistance efficiency in wild Lactuca spp. germplasm. The highest complexity of v‐phenotype was recognized in isolate DEG2, which overcomes resistance in cv. Mariska (R18) and line CS‐RL (L. serriola × L. sativa, R18 + ?), until now known as resistant to all known races of B. lactucae in Europe. However, some sparse sporulation also occurred on cv. Titan (Dm6 + R36). The isolates SR2 and SAW1 overcome the resistance based on the gene R36, but are avirulent to R18. The v‐phenotype of SR2 is highly complex with the most important v‐factors being present except for v14 and v18. The isolate FS1 is the first in Germany originating from a cultivar with R18 (cv. Samourai). The search for efficient sources of resistance in 64 accessions of 11 wild Lactuca spp. and primitive forms of L. sativa showed broad variation in accession–isolate interactions. Expression of race‐specific resistance in wild Lactuca spp. (L. serriola, L. viminea, L. virosa) was recorded frequently. Lactuca indica and L. saligna could be considered as the most efficient sources of resistance against isolates FS1, SR2 and SAW1. The isolate DEG2 showed the highest level of virulence. On seedlings of L. saligna, which is considered as a most important source of resistance against B. lactucae, there was frequently recorded limited sporulation, however this response cannot be considered as a susceptible. Except for some L. saligna accessions (CGN 05310 and CGN 05315), the resistance to all studied isolates was only observed in one accession of L. serriola (PI 253467).  相似文献   

2.
Chromosome banding patterns obtained with C- and N- banding, and AgNO3 staining were studied in somatic metaphase complements of fourLactuca species.L. sativa andL. serriola have almost identical chromosome morphology, andL. saligna differs only slightly from them, butL. virosa is quite distinct from the other species. A gross comparison of the banded karyotypes suggests a closer relationship ofL. saligna toL. sativa/serriola than toL. virosa. Our data agree with the results of previous crossing experiments in these species but conflict partly with recent RFLP data which indicate a closer phenetic relationship ofL. saligna toL. virosa than toL. sativa/serriola. Such a discrepancy may be explained assuming that domestication ofL. sativa/serriola resulted in an increased selection pressure on unique DNA sequences as demonstrated by the RFLP data. Differential evolution of specific heterochromatin classes (and presumably of highly repetitive DNA classes), as revealed by chromosome banding techniques was not linked to domestication. Thus the disparity in conclusions about relationship (in terms of genetic similarity) as based on the different experimental approaches reflects a non-parallel evolution of highly repetitive vs. unique DNA classes.  相似文献   

3.
The degree of relationships withinLactuca sativa and three wild relativesL. serriola, L. saligna, andL. virosa was studied by observing the performance, vigour and fertility of the F 1 hybrids obtained from crosses made in and between the four species. The crosses ofL. saligna ×L. virosa and the reciprocal crosses produced no hybrids.L. saligna andL. virosa are the least related of the four species.L. sativa ×L. serriola and the reciprocal crosses were successful and produced fertile hybrids These two species are genetically very closely related.L. saligna is known to produce, as a female parent, hybrids withL. sativa andL. serriola. Now the reciprocal cross was successful for the first time, so the unability to obtain hybrids in the past was based on the choice of accessions and not caused by unilateral incompatibility.L. virosa ×L. sativa and the reciprocal combination produced hybrids. The combinationL. serriola ×L. virosa produced hybrids with very limited fertility. In contrast to earlier reports (sterile hybrids) one combination of the reciprocal cross too produced hybrids with very limited fertility.—Some of theL. saligna ×L. sativa (and reciprocal) hybrids were found to look strikingly likeL. serriola. This adds evidence for the descent ofL. serriola andL. sativa:L. saligna also made part of the ancestral complex of the cultivated lettuce.  相似文献   

4.
Specificity of interactions between eight Lactuca species and 8 Bremia lactucae isolates was studied in seedlings and adult plants of 36 Lactuca accessions plus one L. serriola × L. sativa hybrid. Pathogenicity of the isolates and/or plant susceptibility was expressed by sporulation intensity. A highly compatible relationship was observed in all of L. serriola accession/isolate interactions tested. A differential reaction was found in numerous cases testifying to physiological specialization of the pathogen in a wild pathosystem. Nonspecific nondifferential compatibility (quantitative resistance) can be expected in L. serriola PI 281876. Age dependent resistance (seedlings versus adult plants, and vice versa) and heterogeneity of reactions were also recorded. The comparisonof B. lactucae isolates from L. sativa and L. serriola has shown a significant shift of pathogenicity in favour of L. serriola accessions. A high level of resistance was found in the L. serriola × L. sativa hybrid. The existence of basic incompatibility can be expected in L. saligna and L. virosa as well as in such taxonomically remote species as L. viminea, L. squarrosa and L. biennis. Other taxonomically remote species, i.e. L. dentata and L. alpina, exhibited a compatible reaction, although the reaction of the former was differential. A high level of sporulation was recorded in all accession/isolate interactions of L. alpina.  相似文献   

5.
Diversity was analyzed in wild and cultivated Lactuca germplasm using molecular markers derived from resistance genes of the NBS-LRR type. Three molecular markers, one microsatellite marker and two SCAR markers that amplified LRR-encoding regions, were developed from sequences of resistance gene homologs at the main resistance gene cluster in lettuce. Variation for these markers were assessed in germplasm including accessions of cultivated lettuce, Lactuca sativa L. and three wild Lactuca spp., L. serriola L., L. saligna and L. virosa L. Diversity was also studied within and between natural populations of L. serriola from Israel and California; the former is close to the center of diversity for Lactuca spp. while the latter is an area of more recent colonization. Large numbers of haplotypes were detected indicating the presence of numerous resistance genes in wild species. The diversity in haplotypes provided evidence for gene duplication and unequal crossing-over during the evolution of this cluster of resistance genes. However, there was no evidence for duplications and deletions within the LRR-encoding regions studied. The three markers were highly correlated with resistance phenotypes in L. sativa. They were able to discriminate between accessions that had previously been shown to be resistant to all known isolates of Bremia lactucae. Therefore, these markers will be highly informative for the establishment of core collections and marker-aided selection. A hierarchical analysis of the population structure of L. serriola showed that countries, as well as locations, were significantly differentiated. These differences may reflect local founder effects and/or divergent selection. Received: 7 March 1999 / Accepted: 25 March 1999  相似文献   

6.
7.
Southern hybridisation with a single microsatellite probe, (TCT)10, sufficed to discriminate between a representative set of cultivars/accessions of lettuce, Lactuca sativa L., and its wild relatives L. serriola, L. saligna and L. virosa. Variability within cultivars was tested in a relatively modern cultivar (Hector), where no variation was found, and in an older and morphologically more variable cultivar (Madrilene), where heterogeneity was observed in the TCT fingerprint. (TCT)10 fingerprinting should be useful for variety identification and homogeneity testing in lettuce. Received: 25 July 1997 / Revision received: 5 August 1997 / Accepted: 30 August 1997  相似文献   

8.
L. sativa L. cultivars were compared morphologically with accessions ofL. saligna L.,L. serriola L., andL. virosa L. in order to define the infra- and interspecific variation. Multivariate analysis (principal component analysis) distinguished four groups corresponding with the four species. Infraspecific variation (e.g., colour, leaf shape) withinL. sativa is the largest, because breeding has caused a large variation in vegetative features; infraspecific variation withinL. serriola is also large. Three plants of one accession were placed betweenL. sativa andL. serriola because they showed morphological characteristics of both species. They are still classified asL. sativa. The morphological differences betweenL. sativa andL. serriola are too large to consider these two as one species. The descent of the cultivar groups and the four species is described.  相似文献   

9.
The results of the first detailed screening of a resistance to Bremia lactucae in naturally growing populations of Lactuca saligna are presented here. In total, 146 accessions from 25 populations of L. saligna originating in Israel (N = 136), France (N = 8), Jordan (N = 1) and Turkey (N = 1) were tested at seedling stage for their resistance to 10 highly virulent isolates (races) of B. lactucae from Lactuca sativa (DEG2, Bl:5, Bl:15, Bl:16, Bl:17, Bl:18, Bl:21, Bl:22, Bl:24 and Bl:25). Our study strongly supports the suggestion that L. saligna is indeed generally highly resistant to B. lactucae. However, our results provide evidence that at least at a seedling stage L. saligna may not be a non‐host plant for B. lactucae, as was hypothesised for approximately the last 30 years. Some accessions expressed a differential (i.e. race‐specific) response, which accords with other recently published data for this Lactuca species. Furthermore, some geographical differences in race‐specific resistance were observed, too. Tests performed at an adult‐plant stage, however, did not prove race‐specificity of the respective accessions. To summarise, what is behind the race‐specific character of the responses observed at a seedling stage is still uncertain, as is its comparability with the race‐specific resistance of some other Lactuca species such as L. sativa or L. serriola. The presence of plant stage‐dependent resistance, governed by a combined effect of different quantitative trait loci in young and adult plants of L. saligna, is discussed.  相似文献   

10.
The use of resistant cultivars is one of the best ways to protect lettuce from aphid pests. At present, there are cultivars available with nearly complete resistance to Nasonovia ribisnigri biotype Nr:0 (based on the Nr gene) and partial resistance to Macrosiphum euphorbiae. Nevertheless, a new biotype of N. ribisnigri (Nr:1) able to overcome the resistance based on the Nr gene is expanding around Europe and has become a major threat of lettuce. In the present work, we report the presence of this new biotype in southeastern Spain, a major lettuce-producing region. Furthermore, a pool of 264 germplasm accessions belonging to Lactuca genus was tested in a greenhouse assay to search for new resistance sources to N. ribisnigri. The most promising accessions were retested in the laboratory to characterize the resistance by means of free-choice and antibiosis assays against biotypes Nr:0 and Nr:1 of N. ribisnigri and against a clone of M. euphorbiae. Three accessions of L. virosa showed resistance against the target aphid species and could be of interest for ongoing breeding programs. The accessions CGN16272 and CGN13361 were both partially resistant to the Nr:1 biotype of N. ribisnigri and to M. euphorbiae, and CGN13355, in spite of not being resistant to N. ribisnigri, showed a near complete resistance to M. euphorbiae. The study of the feeding behavior of N. ribisnigri biotypes showed that the Nr:1 biotype is able to maintain a similar phloem feeding ingestion pattern on genotypes bearing the Nr gene and on N. ribisnigri-susceptible lettuce genotypes. Moreover, as aphids rejected L. virosa as a feeding source due to superficial factors (high level of antixenosis), no differences in the level of antibiosis between such genotypes were detected. A second set of screening assays were conducted on 40 accessions of L. virosa in order to select for resistance against the Nr:1 biotype. The results showed three accessions with high levels of resistance (CGN05148, CGN21399 and CGN16274) against Nr:1 that could be of interest in lettuce breeding programs.  相似文献   

11.
Virulence surveys of Swedish Bremia lactucae populations confirmed that the virulence factors vl to v12 were present in high or very high frequencies. Virulence associated with recently defined new resistance genes was also present. Laboratory tests of lettuce cultivars and Lactuca accessions using different Bremia isolates and field tests with natural inoculum showed that previously undetected virulence factors were present. Due to a lack of highly effective genes for specific resistance and the frequent sexual recombination of virulence genes it is suggested that any future breeding programmes concentrate on non-specific resistance.  相似文献   

12.
Isozymes were used to investigate the genetic variability, population structure, and relationships of Lactuca germplasm. The isozyme systems revealed 16 putative loci of a total of 31 alleles. Out of these 16 loci, 11 were polymorphic. The average values of expected heterozygosity (He), observed heterozygosity (Ho), mean number of alleles per locus (A) and effective number of alleles per locus (Ae) were 0.2227, 0.266, 1.3005 and 1.369, respectively. The average fixation indices were lower than zero for most of the accessions studied, indicating an excess of heterozygotes. Genetic differentiation among accessions (FST) exhibited that 51.3% of the isozyme variation was recorded among accessions, and 48.7% of the genetic variation resided within accessions. The average values of total heterozygosity (HT) and intra-accessional genetic diversity (HS) were 0.352 and 0.171, respectively. Moreover, the inter-accessional genetic diversity (DST) ranged from 0 to 0.424 with an average of 0.18. Cluster analysis revealed that L. sativa cultivars were distributed throughout different Lactuca species. Thereby, isozymes results confirms the hypothesis of the polyphyletic origin of L. sativa. This high level of genetic variation proved that isozymes are efficient for polymorphism analysis of Lactuca germplasm.  相似文献   

13.

Key message

In a stacking study of eight resistance QTLs in lettuce against downy mildew, only three out of ten double combinations showed an increased resistance effect under field conditions.

Abstract

Complete race nonspecific resistance to lettuce downy mildew, as observed for the nonhost wild lettuce species Lactuca saligna, is desired in lettuce cultivation. Genetic dissection of L. saligna’s complete resistance has revealed several quantitative loci (QTL) for resistance with field infection reductions of 30–50 %. To test the effect of stacking these QTL, we analyzed interactions between homozygous L. saligna CGN05271 chromosome segments introgressed into the genetic background of L. sativa cv. Olof. Eight different backcross inbred lines (BILs) with single introgressions of 30–70 cM and selected predominately for quantitative resistance in field situations were intercrossed. Ten developed homozygous lines with stacked introgression segments (double combinations) were evaluated for resistance in the field. Seven double combinations showed a similar infection as the individual most resistant parental BIL, revealing epistatic interactions with ‘less-than-additive’ effects. Three double combinations showed an increased resistance level compared to their parental BILs and their interactions were additive, ‘less-than-additive’ epistatic and ‘more-than-additive’ epistatic, respectively. The additive interaction reduced field infection by 73 %. The double combination with a ‘more-than-additive’ epistatic effect, derived from a combination between a susceptible and a resistant BIL with 0 and 30 % infection reduction, respectively, showed an average field infection reduction of 52 %. For the latter line, an attempt to genetically dissect its underlying epistatic loci by substitution mapping did not result in smaller mapping intervals as none of the 22 substitution lines reached a similar high resistance level. Implications for breeding and the inheritance of L. saligna’s complete resistance are discussed.  相似文献   

14.

Key message

The nonhost resistance of wild lettuce to lettuce downy mildew seems explained by four components of a putative set of epistatic genes.

Abstract

The commonplace observation that plants are immune to most potential pathogens is known as nonhost resistance (NHR). The genetic basis of NHR is poorly understood. Inheritance studies of NHR require crosses of nonhost species with a host, but these crosses are usually unsuccessful. The plant-pathosystem of lettuce and downy mildew, Bremia lactucae, provides a rare opportunity to study the inheritance of NHR, because the nonhost wild lettuce species Lactuca saligna is sufficiently cross-compatible with the cultivated host Lactuca sativa. Our previous studies on NHR in one L. saligna accession led to the hypothesis that multi-locus epistatic interactions might explain NHR. Here, we studied NHR at the species level in nine accessions. Besides the commonly used approach of studying a target trait from a wild donor species in a cultivar genetic background, we also explored the opposite, complementary approach of cultivar introgression in a wild species background. This bidirectional approach encompassed (1) nonhost into host introgression: identification of L. saligna derived chromosome regions that were overrepresented in highly resistant BC1 plants (F1?×?L. sativa), (2) host into nonhost introgression: identification of L. sativa derived chromosome regions that were overrepresented in BC1 inbred lines (F1?×?L. saligna) with relatively high infection levels. We demonstrated that NHR is based on resistance factors from L. saligna and the genetic dose for NHR differs between accessions. NHR seemed explained by combinations of epistatic genes on three or four chromosome segments, of which one chromosome segment was validated by the host into nonhost approach.
  相似文献   

15.
Plant species generate specific soil communities that feedback on plant growth and competition. These feedbacks have been implicated in plant community composition and dispersion. We used Lactuca sativa and its wild progenitor Lactuca serriola to test the hypotheses that separate Lactuca species generate unique soil communities and that these soil communities differentially influence host, and neighboring, plant growth and competition. We grew each Lactuca in competition with the other, in sterile and non-sterile soils. We then examined the growth of each Lactuca species in sterile, non-sterile, and preconditioned soil. Finally, we used TRFLP techniques to explore whether the two Lactuca species generate significantly different bacterial communities in their rhizosphere soils. L. sativa proved to be the stronger competitor of the two species. However, sterilization increased the competitive effect of L. serriola background competitors. The growth experiment showed a significant effect on plant species, soil treatment, and the interaction of the two. Preconditioning soil caused reduced growth in both Lactuca species. Only L. serriola showed significantly increased growth in sterile soils. Our TRFLP analysis showed that the L. sativa soil community was significantly less diverse and that soil preconditioning had the largest impact on the community composition. These results show that Lactuca serriola’s rhizosphere communities generate a stronger negative feedback for plant growth than do the communities associated with L. sativa. Our study suggests that selection for plants that are able to grow in dense monoculture may have released Lactuca from species-specific negative soil feedbacks. This has important implications for both agriculture and the evolution of invasive plant species.  相似文献   

16.
Prickly lettuce (Lactuca serriola) is world-wide distributed and very variable species generally considered as a progenitor of the cultivated lettuce (Lactuca sativa). Altogether, 50 populations of L. serriola were characterized by means of amplified fragment length polymorphism (AFLP) and by isozyme analysis. Relationships among individuals and populations were examined by applying the unweighted pair-group method with the arithmetic averages (UPGMA) clustering algorithm, principal coordinate analysis (PCA) and the Nei's gene diversity index. The studied set of populations split into three main groups based on the AFLP polymorphism analysis. The first group contained L. sativa (control). The second group comprised two L. serriola accessions; one of them was identified as L. serriola f. integrifolia and the other as a mixture of two L. serriola forms. The largest and the most diverse third group contained the remaining L. serriola accessions. The population clustering corresponded approximately to their geographical distribution in Europe. At least five distinct geographic groups were recognised: 1) Northern European; 2) Slovenian; 3) very heterogeneous Central and Western European (mostly north of the Alps); 4) Mediterranean; 5) prevalence of L. serriola f. integrifolia, mostly comprising accessions from the United Kingdom and the Netherlands. This study showed that accessions originating in various eco-geographical conditions of Europe differ significantly in their genetic and protein polymorphism, as well as in morphology. Some European L. serriola populations (e.g. from Scandinavia and United Kingdom/British Isles/) seems to be isolated and homogeneous; in contrast, populations occurring in Central Europe are very diverse and genetically overlapping.  相似文献   

17.
We report the distribution and disease level of downy mildew on lettuce (Lactuca sativa) and virulence variation in populations of its causal agent (Bremia lactucae) in the Czech Republic during the period 1999–2011. Disease incidence was not high; among a total of 92 different localities surveyed, 43.4% of them were infected by lettuce downy mildew at least once during the whole period. However, among individual years, differences were found in disease incidence that ranged from 4.8% (2009) to 66.7% (2004). A total of 128 isolates of B. lactucae collected from infected leaf samples in 35 different localities during the surveying period were included in the virulence analysis. Virulence was examined on a set of 19 differential genotypes of Lactuca sativa and Lactuca serriola (EU‐A test set). Isolates exhibited quite a broad variation in virulence to individual Lactuca differential genotypes. Eighteen of 19 virulence factors (v‐factors) tested were present in the samples. The most frequently detected factors were v1–4, v5/8, v6, v7, v10–14, v16, v36 and v38; factor v17 was not found. The most pronounced temporal shift was recorded for factors v36 and v38 whose frequency increased during the studied period. V‐factors 15, 17, 18 and 37 were present in low frequencies in a pathogen population, and their corresponding gene (Dm15) or resistance factors (R17, R18 and R37) may have the best potential for resistance breeding in the Czech Republic. Broad diversity of v‐phenotypes (63 different ones) was identified during the study period. The numbers of v‐factors per v‐phenotype (resp. isolate) varied within a range of 5–15. Within the 128 analysed isolates, only 9 v‐phenotypes were recorded repeatedly (three or more times). Possible reasons of recorded virulence variation are discussed.  相似文献   

18.
This study focuses on the morphological variability of Lactuca serriola achenes in relation to eco-geographic features. Fifty L. serriola populations from four European countries, Czech Republic, Germany, the Netherlands and United Kingdom, were studied. Five morphological characters of the achenes - length and width of achene, length/width index, length of beak, and number of ribs - were evaluated. Significant differences exist in achene morphology of two leaf forms of L. serriola, forma serriola and forma integrifolia. Achenes of f. serriola are shorter, thinner, shorter beaked, lower length/width index, and higher number of ribs compared to f. integrifolia. There was significant variation in the measured characters. Statistical analysis indicated that achene length and width increased along an east-west transect from 2.95 to 3.35 mm and 0.93 to 1.00 mm, respectively. Mean beak length had a similar trend with the exception of German achenes. They had shorter beaks than achenes originating from the Czech Republic with 4.38 and Germany with 4.33 mm. The same trend was evident for L/W index from Czech with a ratio of 3.21 and Germany with 3.14. The number of ribs increased from east to the west in continental Europe, whereas the lowest number of ribs was recorded in achenes collected in Czech with 10.89 and the UK with 10.59. Achene morphology was significantly correlated with three eco-geographic features; longitude, latitude, soil texture of the habitats. The other eco-geographic factors, altitude and population size, did not significantly correlate with the studied characters of L. serriola achenes.  相似文献   

19.
In total, seventy two Lactuca aculeata and three Lactuca serriola samples originating from natural populations of these species in Turkey, Jordan, and Israel were analysed by eight microsatellite and 287 amplified fragment length polymorphism (AFLP) markers. Neighbor–Network and Bayesian clustering were used for visualisation of the differences among the analysed L. aculeata and L. serriola samples, and to confirm hybrid origin (L. aculeata × L. serriola) of three samples (343-8A, 343-8B, 54/07) previously indicated by their morphological traits. Molecular data reflect the geographical origin, i.e., the clustering of samples according to their country of origin. Samples from neighbouring parts of Jordan and Israel expressed similar genetic characteristics, indicating the possibility of migration or artificial introduction of plant material. Forty-one L. aculeata samples were screened for their response to five Bremia lactucae races (Bl: 17, Bl: 18, Bl: 24, Bl: 27, and Bl: 28). Susceptible reactions of L. aculeata prevailed. L. aculeata samples were most frequently susceptible to races Bl: 18, Bl: 24, Bl: 27, Bl: 28; and least susceptible to Bl: 17. No highly efficient source of resistance was detected; however, race-specific reaction patterns were frequently recorded, indicating the possible presence of some race-specific resistance factors/genes in the studied samples of L. aculeata. Conservation and exploitation of this material in lettuce breeding is discussed.  相似文献   

20.
Perithecia of Erysiphe cichoracearum (powdery mildew) were found on several, but not all, accessions of Lactuca serriola, L. saligna, L. aculeata and L. serriola × L. sativa hybrid. Their occurrence varied between Lactuca species and different accessions of the same species. Perithecia were globular, had a mean diameter of 125.5 μm and contained an average 13–14 asci. Asci had mean dimensions of 55.0 × 26.1 μm and each contained two ascospores which measured an average 17.4 × 10.6 μm. There were however significant differences in the dimensions of spores and other structures obtained from different Lactuca accessions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号