首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fecal water is a complex mixture of various metabolites with a wide range of physicochemical properties and boiling points. The analytical method developed here provides a qualitative and quantitative gas chromatography/mass spectrometry (GC/MS) analysis, with high sensitivity and efficiency, coupled with derivatization of ethyl chloroformate in aqueous medium. The water/ethanol/pyridine ratio was optimized to 12:6:1, and a two-step derivatization with an initial pH regulation of 0.1 M sodium bicarbonate was developed. The deionized water exhibited better extraction efficiency for fecal water compounds than did acidified and alkalized water. Furthermore, more amino acids were extracted from frozen fecal samples than from fresh samples based on multivariate statistical analysis and univariate statistical validation on GC/MS data. Method validation by 34 reference standards and fecal water samples showed a correlation coefficient higher than 0.99 for each of the standards, and the limit of detection (LOD) was from 10 to 500 pg on-column for most of the standards. The analytical equipment exhibited excellent repeatability, with the relative standard deviation (RSD) lower than 4% for standards and lower than 7% for fecal water. The derivatization method also demonstrated good repeatability, with the RSD lower than 6.4% for standards (except 3,4-dihydroxyphenylacetic acid) and lower than 10% for fecal water (except dicarboxylic acids). The qualitative means by searching the electron impact (EI) mass spectral database, chemical ionization (CI) mass spectra validation, and reference standards comparison totally identified and structurally confirmed 73 compounds, and the fecal water compounds of healthy humans were also quantified. This protocol shows a promising application in metabolome analysis based on human fecal water samples.  相似文献   

2.
A new molecularly imprinted polymer (MIP) material was synthesized selective for verapamil and utilized for on-line metabolic screening of this common calcium antagonist in biological samples. Since some metabolites of verapamil have also shown pharmacological properties, a selective and sensitive sample preparation approach that provides a metabolic profile in biologically relevant samples is important. The MIP material was coupled on-line to a restricted access material (RAM) precolumn. The multidimensional nature of this set-up removed large matrix interferents such as proteins from the sample, while the selectivity of the MIP enabled further cleanup of the smaller analytes. The selectivity and extraction efficiency of the MIP for verapamil and its metabolites was evaluated in various biological matrices, such as cell cultures and urine. The experimental set-up with the developed method enabled the direct injection of biological samples for the selective isolation, preconcentration, identification and analysis of verapamil and its phase I metabolites by LC-MS(n). This multidimensional approach provided much qualitative information about the metabolic profile of verapamil in various biological matrices. An analytical method was developed for the quantification of verapamil and gallopamil in urine, plasma and cell culture. Acceptable linearity (R(2)=0.9996, 0.9982 and 0.9762) with an average injection repeatability (n=3) of 10, 25 and 15% R.S.D. was determined for urine, plasma and cell culture, respectively. This is the first application of the procedure for the selective metabolic screening of verapamil in biological samples.  相似文献   

3.
A gas chromatographic method for the simultaneous quantitation of ephedrine, pseudoephedrine, norephedrine (phenylpropanolamine), norpseudoephedrine (cathine) and methylephedrine in urine is described. The method consists of a liquid–liquid extraction with tert.-butyl methyl ether at pH 14. The extracts are analysed on a GC system equipped with an Rtx-5 Amine column and a nitrogen–phosphorus detector. Method validation shows excellent separation, linearity, specificity, accuracy, precision, intra-laboratory repeatability and reproducibility, making the method especially suitable for quantitation of ephedrines in urine samples for doping control purposes. A statistical analysis on the abuse of the different ephedrines in urine from athletes controlled in the Flemish doping control laboratory during the period 1993–2000 is included.  相似文献   

4.
Microwave-assisted extraction, a MAPTM technology, has been the subject of enhanced interest from the environmental sector in the last few years as a result of the need for methodologies that improve sample preparation without compromising the quality of the data while being environmentally sustainable. Liquid-phase microwave-assisted extraction offers such advantages: it is a very fast extraction technique, it consumes less solvent and energy, and it is cost effective. A preliminary validation study involving closed-vessel apparatus and contaminants such as PAHs, PCDDs/PCDFs, chlorinated pesticides, and PCBs was performed (Li et al., 1996). Excellent performance and precision were achieved for these analytes (Li et al., 1996). In order to fully evaluate the method for a wider range of analytes an interlaboratory study was performed. A round-robin study was performed with five laboratories carrying out the extraction portion. This study also involved thermally labile and potentially reactive RCRA target analytes such as phenols, phenoxyacid herbicides, and organophospho-rus pesticides. Three split samples were used by each laboratory using methodologies stipulated in a single standard operational procedure (SOP). The extractions from the five laboratories were sent to a single laboratory who performed all the analyses in order to minimize the variability of the results due to the determinative procedure. Clean up was performed using standard procedures and analyses were done according to the appropriate US EPA SW-846 methods. The broad range of applicability, the reduced sample preparation time, and the reduced amount of solvent used all contribute to achieving sustainable environmental protection goals. Furthermore, the reduced operational costs associated with the protocol — compared to conventional Soxhlet, for example — are significant and prove valuable in these times where the “greening” of the laboratory usually gives rise to higher operating costs. Further work involving open-vessel apparatus is under way.  相似文献   

5.
Immler D  Greven S  Reinemer P 《Proteomics》2006,6(10):2947-2958
Authentic biomarkers, distilling the essence of a complex, functionally significant process in a mammalian system into a precise, physicochemical measurement have been implicated as a tool of increasing importance for drug discovery and development. However, even in spite of recent technological advances, validating a new biomarker candidate, where generation of suitable antibodies is required, is still a long-lasting task. Methods to accelerate initial validation by MS approaches have been suggested, but all methods described so far are associated with serious drawbacks, finally leading to non-generic methods of detection and quantification. Moreover, when complex body fluids are used as samples, efficient debulking strategies are crucial to open a window of analytical sensitivity in the ng/mL range, where many diagnostically relevant analytes are present. Here we report the proof-of-principle of a multi-dimensional strategy for accelerated initial validation of biomarker candidates by MS, which promises to be generally applicable, sensitive and quantitative. The method presented employs a combination of electrophoretic and chromatographic steps on the peptide level, followed by MS quantification using isotopically labeled synthetic peptides as internal standards. Our proposed workflow includes up to four dimensions, finally resulting in a desired LOD sufficient to detect and quantify diagnostically relevant analytes from complex samples. Although the current state of the method only represents a starting point for further validation and development, it reveals great potential in biomarker validation.  相似文献   

6.
A hydrophilic interaction liquid chromatography-time-of-flight mass spectrometry (HILIC-TOFMS) method for the quantification and confirmation of morphine (M), codeine (C), morphine-3-glucuronide (M3G), morphine-6-glucuronide (M6G) and codeine-6-glucuronide (C6G) is presented. The method was validated in terms of specificity, selectivity, extraction recovery, accuracy, repeatability, linearity and matrix effect. After a straightforward sample preparation by solid phase extraction (SPE) the compounds were analyzed directly without the need for hydrolysis, solvent transfer, evaporation or reconstitution. The HILIC technique provided good chromatographic separation which was critical for isomers M3G and M6G. The analytes were detected after electrospray ionization (ESI) in positive mode with mass accuracies below 2 mDa using a 5-mDa window. A measurement range of 50-5000 ng/ml was applied for calibration using deuterated analogs as internal standards. The precision of the method was 5.7% and 10.2% (RSD) within and between days, respectively. The applicability of the method was demonstrated with authentic urine samples known to contain codeine and/or morphine and their intact glucuronide conjugates. Identification of the analytes was based on in-source collision induced dissociation (ISCID), applying three diagnostic ions with accurate mass.  相似文献   

7.
A method is described for the qualiitative and quantitative determination of phenylbutazone and oxyphenbutazone in horse urine and plasma samples viewing antidoping control. A horse was administered intravenously with 3 g of phenylbutazone. For the qualitative determination, a screening by HPLC was performed after acidic extraction of the urine samples and the confirmation process was realized by GC-MS. Using the proposed method it was possible to detect phenylbutazone and oxyphenbutazone in urine for up to 48 and 120 h, respectively. For the quantitation of these drugs the plasma was deproteinized with acetonitrile and 20 gml were injected directly into the HPLC system equipped with a UV detector and LiChrospher RP-18 column. The mobile phase used was 0.01 M acetic acid in methanol (45:55, v/v). The limit of detection was 0.5 μg/ml for phenylbutazone and oxyphenbutazone and the limit of quantitation was 1.0 μg/ml for both drugs. Using the proposed method it was possible to quantify phenylbutazone up to 30 h and oxyphenbutazone up to 39 h after administration.  相似文献   

8.
Bacteria are not only ubiquitous on earth but can also be incredibly diverse within clean laboratories and reagents. The presence of both living and dead bacteria in laboratory environments and reagents is especially problematic when examining samples with low endogenous content (e.g., skin swabs, tissue biopsies, ice, water, degraded forensic samples or ancient material), where contaminants can outnumber endogenous microorganisms within samples. The contribution of contaminants within high‐throughput studies remains poorly understood because of the relatively low number of contaminant surveys. Here, we examined 144 negative control samples (extraction blank and no‐template amplification controls) collected in both typical molecular laboratories and an ultraclean ancient DNA laboratory over 5 years to characterize long‐term contaminant diversity. We additionally compared the contaminant content within a home‐made silica‐based extraction method, commonly used to analyse low endogenous content samples, with a widely used commercial DNA extraction kit. The contaminant taxonomic profile of the ultraclean ancient DNA laboratory was unique compared to modern molecular biology laboratories, and changed over time according to researcher, month and season. The commercial kit also contained higher microbial diversity and several human‐associated taxa in comparison to the home‐made silica extraction protocol. We recommend a minimum of two strategies to reduce the impacts of laboratory contaminants within low‐biomass metagenomic studies: (a) extraction blank controls should be included and sequenced with every batch of extractions and (b) the contributions of laboratory contamination should be assessed and reported in each high‐throughput metagenomic study.  相似文献   

9.
10.
The simultaneous assay of cocaine, opiates and metabolites in small biological samples continues to be a difficult task. This report focuses upon tabulation of important techniques (extraction, derivatization, chromatographic conditions, detection mode, data acquisition) reported over the last decade that were used in the development of assays for these analytes. The most prevalent procedures for extraction of cocaine, opiates and metabolites were liquid—liquid and solid-phase extraction isolation methods. Following extraction analytes were derivatized and analyzed by gas chromatography—mass spectrometry. The technique most often used for chromatographic separation was fused-silica capillary column gas chromatography. Detection generally was performed by selected ion monitoring in the positive-ion electron-impact ionization mode, although full-scan acquisition and positive- and negative-ion chemical ionization methods have been used. It was apparent from the review that there is a continuing need for greater sensitivity and selectivity in the assay of highly potent opiates and for cocaine and metabolites.  相似文献   

11.
Current research targeting filtered macrobial environmental DNA (eDNA) often relies upon cold ambient temperatures at various stages, including the transport of water samples from the field to the laboratory and the storage of water and/or filtered samples in the laboratory. This poses practical limitations for field collections in locations where refrigeration and frozen storage is difficult or where samples must be transported long distances for further processing and screening. This study demonstrates the successful preservation of eDNA at room temperature (20 °C) in two lysis buffers, CTAB and Longmire's, over a 2‐week period of time. Moreover, the preserved eDNA samples were seamlessly integrated into a phenol–chloroform–isoamyl alcohol (PCI) DNA extraction protocol. The successful application of the eDNA extraction to multiple filter membrane types suggests the methods evaluated here may be broadly applied in future eDNA research. Our results also suggest that for many kinds of studies recently reported on macrobial eDNA, detection probabilities could have been increased, and at a lower cost, by utilizing the Longmire's preservation buffer with a PCI DNA extraction.  相似文献   

12.
The present work explains the development and validation of a simple and reliable isomer specific liquid chromatographic method for the quantitative determination of cefpodoxime proxetil (CP) in rat in situ intestinal perfusate samples. Chromatography was carried out by reversed-phase technique on a C-18 column with a mobile phase composed of 20 mM ammonium acetate buffer (pH 5.0) and acetonitrile in the ratio of 62:38 pumped at a flow-rate of 1 ml/min. The detection was carried out at 235 nm and a column temperature of 30 degrees C. The method was evaluated for the various validation parameters, such as linearity, accuracy, precision, LOD, LOQ, specificity, selectivity, and sample stability. The results of intra- and inter-day validation (n = 3) showed the method to be efficient and the same was applied in an in situ permeability study conducted for CP in rats.  相似文献   

13.
A multi-method extraction protocol based on mechanical, ionic and hydrophobic methods was investigated on two types of activated sludge samples. Extraction methods were chosen with regards to optimal protein yield without cell disruption. Sonication, EDTA and Tween extraction methods were selected and combined. The total amount of protein released by the multi-method protocol sums up to 191 and 264 mg equiv. BSA/g VSS for the two different sludge samples. Protocol repetition on the same sample showed that protein yield after each successive protocol fitted an exponential curve model. The total amount of extractable proteins was evaluated by model predictions, 423 and 516 mg equiv. BSA/g VSS for the two sludge samples. The multi-method extraction protocol appears relevant for harvesting a representative quantity of proteins from the original sample (45-49%), moreover the multi-method criterion of the protocol also offers a heterogeneous pool of proteins. Thus, further qualitative studies may not be biased by the extraction protocol.  相似文献   

14.
In the present study, hydroxypropyl‐β‐cyclodextrin and an ionic liquid (1‐ethyl‐3‐methylimidazolium‐l ‐lactate) were used as additives in capillary electrophoresis for the enantioseparation of 10 analytes, including ofloxacin, propranolol hydrochloride, dioxopromethazine hydrochloride, isoprenaline hydrochloride, chlorpheniramine maleate, liarozole, tropicamide, amlodipine benzenesulfonate, brompheniramine maleate, and homatropine methylbromide. The effects of ionic liquid concentrations, salt effect, cations, and anions of ionic liquids on enantioseparation were investigated and the results proved that there was a synergistic effect between hydroxypropyl‐β‐cyclodextrin and the ionic liquid, and the cationic part of the ionic liquid played an important role in the increased resolution. With the developed dual system, all the enantiomers of 10 analytes were well separated in resolutions of 5.35, 1.76, 1.85, 2.48, 2.88, 1.43, 5.45, 4.35, 2.76, and 2.98, respectively. In addition, the proposed method was applied to the determination of the enantiomeric purity of S‐ofloxacin after validation of the method in terms of selectivity, repeatability, linearity range, accuracy, precision, limit of detection (LOD), and limit of quality (LOQ). Chirality 25:409–414, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
A review of chromatographic methods for the determination of 2,3-benzodiazepines (2,3-BZs) is presented. The determinations are performed to investigate the presence of potential impurities in drug substances and to study their pharmacokinetic profile in biological samples, either in animals or in humans. Several methods dealt with a pretreatment of samples, i.e., liquid–liquid extraction by using a variety of solvents, solid-phase extraction, direct injection of specimens into the chromatographic apparatus. Different chromatographic techniques have been used. High-performance liquid chromatography allows optimal sensitivity and specificity by using ultraviolet or diode array detection methods. Gas chromatography-mass spectrometry and gas chromatography with nitrogen-phosphorous or electron-capture detectors have been also reported. Suitable methods for the separation of enantiomers of 2,3-BZs have been described. Thin-layer chromatography has been shown to be capable to isolate analytes from biological samples as urine or faeces. The reported chromatographic techniques are currently applied to define the metabolic pathways of 2,3-BZs in experimental and clinical studies.  相似文献   

16.
A sensitive and very fast analytical method has been developed for the simultaneous quantification of sixteen sulfonylurea herbicides in surface water. An ultra-high-pressure liquid chromatography coupled with tandem mass spectrometry method with solid phase extraction for sample cleanup has been developed for screening sixteen sulfonylurea herbicides (oxasulfuron, thifensulfuron-methyl, cinosulfuron, metsulfuron methyl, sulfometuron methyl, triasulfuron, rimsulfuron, ethametsulfuron methyl, sulfosulfuron, tribenuron methyl, bensulfuron methyl, iodosulfuron methyl, pyrazosulfuron ethyl, prosulfuron, chlorimuron ethyl, ethoxysulfuron) in water samples simultaneously within 12 min. Water samples were acidified, and the target herbicides were extracted by passing through ProElut C18 extraction cartridges. After drying by nitrogen flow, the cartridges were eluted with elution solvents, and the eluate was then evaporated to dryness, redissolved and analyzed. The mobile phase composed of 0.02% formic acid and acetonitrile using gradient elution. A triple quadrupole mass spectrometer equipped with an electrospray ionization source operated in the positive ion with selective reaction monitoring mode. Each of the analytes in all the samples was monitored using protonated molecule and its two characteristic fragment ions for confirmation. The limits of detection for all analytes were below 1.0 ng/mL, except for sulfosulfuron and prosulfuron, and limits of quantitation were between 1 and 8 ng/mL for this method. Three water types were used for the validation of the method.  相似文献   

17.
A liquid chromatography-tandem mass spectrometry (LC-MS-MS) method is presented for the qualitative screening for 238 drugs in blood samples, which is considerably more than in previous methods. After a two-step liquid-liquid extraction and C(18) chromatography, the compounds were introduced into a triple quadrupole mass spectrometer equipped with a turbo ion spray ion source operating in the positive ionization mode. Identification was based on the compound's absolute retention time, protonated molecular ion, and one representative fragment ion obtained by multiple reaction monitoring (MRM) at an individually selected collision energy of 20, 35, or 50 eV. The limit of detection (LOD) for the majority of the compounds (80%) was < or = 0.05 mg/l, ranging from 0.002 mg/l (e.g., antihistamines) to 5 mg/l (acidic compounds), and for malathion it was 10 mg/l. The LOD values were sufficiently low to allow the majority of compounds to be detected at therapeutic concentrations in the blood.  相似文献   

18.
Two complementary methods for identifying and measuring sulfonamide residues in eggs were developed for use in surveying eggs for potential drug residues. The first method uses liquid chromatography-tandem mass spectrometry (LC-MS-MS) to confirm the presence of sulfonamide residues in eggs. During its validation the limit of confirmation was estimated to be 5-10 ng/g (ppb) depending on the drug. Also, a method for measuring residue level by liquid chromatography with ultraviolet detection (LC-UV) was validated using the same extraction procedure as the confirmatory method. The determinative method was validated over the 50-200 ppb range. Samples were prepared by homogenizing whole egg, extracting with acetonitrile, and cleaning up with a C(18) solid-phase extraction cartridge. For confirmation, analytes were separated by gradient LC on a C(18) column, ionized by electrospray ionization (ESI), and detected by MS-MS with an ion trap mass spectrometer. For determination, analytes were separated by a different gradient LC procedure and detected by UV at 287 nm. Fifteen drugs were dosed individually in laying hens, and residues of parent drug and/or metabolites were found in eggs for all the drugs. Validation was based on repetitive analyses of control samples, control samples fortified at 100 ppb sulfonamides, and samples of blended incurred eggs.  相似文献   

19.
A simple and rapid analytical method for the simultaneous quantification of zidovudine (AZT) and its monophosphate (AZTMP) in cell extracts has been developed using high-performance liquid chromatography (HPLC) with on-line solid-phase extraction and 2-aminoethyl-3'-azido-2',3'-dideoxythymidin-5'-yl phosphodiester sodium salt as internal standard (IS). The cell extract samples were directly injected on a short reversed-phase precolumn using an aqueous buffer containing an ion-pairing reagent as a mobile phase. Under these conditions, the analytes were retained on the precolumn whereas the proteins were discarded. The analytes were then transferred onto the analytical column by increasing the strength of the eluent. The calibration curve was linear over a concentration range of 0.5-100 microg/ml. Inter- and intra-day accuracy and precision results satisfied the accepted criteria for bioanalytical validation. This method was used to study the decomposition pathway of a model pronucleotide in an in vitro approach.  相似文献   

20.
Highly sensitive and specific analytical GC-MS procedures were developed and comprehensively validated for the determination of the opioid narcotics fentanyl, sufentanil and alfentanil and their major nor-metabolites in urine of potentially exposed opioid production workers. A simple, one step extraction protocol was developed using commercially available solid phase extraction (SPE) columns to recover all analytes from urine. The secondary amine functionalities of the nor-metabolites were derivatized to form stable, pentafluorobenzamide (PFBA)-derivatives with good chromatographic properties. Using the penta-deuterated analogues as internal standards, a limit-of-detection (LOD) of 2.5 pg fentanyl/ml, 2.5 pg sufentanil/ml and 7.5 pg alfentanil/ml urine was achieved. For the opioid metabolites the LODs were found to be <50 pg/ml urine. The developed analytical procedures show excellent intra-assay accuracy, particularly considering the ultra low levels of the analytes, with relative errors generally below 10%. Overall, an excellent reproducibility was observed with coefficients of variation below 10% at all spike levels for all opioid parent compounds and their metabolites, except for low norfentanyl concentrations. Upon storage at -30 degrees C urine samples were found to be stable for at least 2 months as no significant losses of either compound were observed. The developed analytical procedures have been successfully applied in a biological monitoring survey of fentanyl exposed production workers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号