首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lysosomal storage disorder galactosialidosis has been recognized as a distinct genetic and biochemical entity, associated with a combined beta-galactosidase and neuraminidase deficiency that is due to the lack of a 32-kilodalton (kDa) glycoprotein. The molecular basis of different clinical variants of galactosialidosis has been investigated. In the early-infantile form, the synthesis of the 52-kDa precursor of the 32-kDa "protective protein" is markedly reduced and the absence of the latter protein explains the severe neuraminidase deficiency. In the juvenile-adult form, there is relatively more 52-kDa precursor but no 32-kDa protein can be detected. Cells from the late-infantile form have in comparison with controls, besides a small amount of the 32-kDa glycoprotein, an accumulation of the 52-kDa precursor. Apparently, this protein is genetically altered in such a way that its further processing is impaired. Furthermore, in this mutant, the residual neuraminidase activity is stimulated four- to sixfold upon leupeptin treatment together with an increase of the 32-kDa glycoprotein.  相似文献   

2.
Abstract: Synaptosomes from five regions of adult rat brain were isolated, analyzed for methyl acceptor proteins, and probed for methyltransferases by photoaffinity labeling. Methylated proteins of 17 and 35 kDa were observed in all regions, but cerebellar synaptosomes were enriched in a 21–26-kDa family of methyl acceptor proteins and contained a unique major methylated protein of 52 kDa and a protein of 50 kDa, which was methylated only in the presence of EGTA. When cerebellar and liver subcellular fractions were compared, the cytosolic fractions of each tissue contained methylated proteins of 17 and 35 kDa; liver membrane fractions contained few methylated proteins, whereas cerebellar microsomes had robust methylation of the 21–26-kDa group. Differential centrifugation of lysed cerebellar synaptosomes localized the 17- and 35-kDa methyl acceptor proteins to the synaptoplasm, the 21–26-kDa family to the synaptic membranes, and the 52-kDa to synaptic vesicles. The 21–26-kDa family was identified as GTP-binding proteins by [α-32P]GTP overlay assay; these proteins contained a putative methylated carboxyl cysteine, based on the presence of volatile methyl esters and the inhibition of methylation by acetylfarnesylcysteine. The 52-kDa methylated protein also contained volatile methyl esters, but did not bind [α-32P]GTP. When synaptosomes were screened for putative methyltransferases by S -adenosyl-L-[ methyl -3H]methionine photoaffinity labeling, a protein of 24 kDa was detected only in cerebellum, and this labeled protein was localized to synaptic membranes.  相似文献   

3.
Immunoprecipitation of native rat liver microsomal 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, phosphorylated by [gamma-32P]ATP in the presence of reductase kinase, revealed a major 97-kDa 32P band which disappeared upon competition with pure unlabeled 53-kDa HMG-CoA reductase. A linear correlation between the expressed/total HMG-CoA reductase activity ratio (E/T) and the fraction of 32P released from the 97-kDa enzyme established the validity of the E/T ratio as an index of HMG-CoA reductase phosphorylation state in isolated microsomes. Incubation of rat hepatocytes with mevalonolactone resulted in a rapid increase in phosphorylation of microsomal reductase (decrease in E/T) followed by an enhanced rate of decay of total reductase activity which was proportional to the loss of 97-kDa enzyme mass determined by immunoblots. Inhibitors of lysosome function dampened both basal and mevalonate-induced reductase degradation in hepatocytes. In an in vitro system using the calcium-dependent protease calpain-2, up to 5-fold greater yields of soluble 52-56-kDa fragments of reductase (immunoblot and total activity) were obtained when the substrate 97-kDa reductase was phosphorylated before proteolysis. Immunoblots of unlabeled phosphorylated reductase compared with gels of immunoprecipitated 32P-labeled reductase resolved a 52-56-kDa doublet which contained 32P solely in the upper band. These data suggest that a major phosphorylation site of HMG-CoA reductase lies within the "linker" segment joining the membrane spanning and cytoplasmic domains of the native 97-kDa protein.  相似文献   

4.
A fast protein liquid chromatography procedure for purification of the V-type H+-ATPase from higher plant vacuolar membrane to yield near-homogeneous enzyme with a specific activity of 20-25 mumol/mg.min is described. When precautions are taken to ensure the quantitative recovery of protein before sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the preparation is found to be constituted of seven major polypeptides of 100, 67, 55, 52, 44, 32, and 16 kDa, respectively, and two minor components of 42 and 29 kDa. The 52-, 44-, and 32-kDa polypeptides do not cross-react with antisera raised to the 67- and 55-kDa subunits of the enzyme, and two independent sample preparation procedures yield the same apparent subunit composition. The additional polypeptides are not breakdown products or aggregates of the previously identified subunits of the ATPase. The ATPase of tonoplast vesicles is subject to MgATP-dependent cold inactivation, and the conditions for inactivation are identical to those for the bovine chromaffin granule H+-ATPase (Moriyama, Y., and Nelson, N. (1989) J. Biol. Chem. 264, 3577-3582). Cold inactivation is accompanied by the detachment of five major polypeptides of 67, 55, 52, 44, and 32 kDa from the membrane, and all five components co-migrate with the corresponding polypeptides of the purified ATPase upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The 100- and 16-kDa polypeptides of the ATPase are not removed from the membrane during cold inactivation, but the latter can be purified to homogeneity by chloroform:methanol extraction of the fast protein liquid chromatography-purified enzyme. It is concluded that the tonoplast H+-ATPase is constituted of 6-7 major polypeptides organized into a peripheral sector comprising the 67-, 55-, 52-, 44-, and 32-kDa components and an integral sector consisting of the 100- and 16-kDa polypeptides. The V-type H+-ATPase from animal endomembranes and higher plant vacuolar membranes therefore have remarkably similar subunit compositions and gross topographies.  相似文献   

5.
Two antigens, 19-kDa each, were purified from Mycobacterium bovis culture filtrate protein extract by chromatofocusing. Antigen I had a 4.5 pI, and its amino terminal (DPVDAVINTTCNYGQVVAALNATDP) showed a 100% homology with the hypothetical protein Rv1174c. Antigen II had a pI of 6.0 pI and its amino terminal (GDLVGPGCAEYAAANPTGPASVQGM) showed a 100% homology with M. bovis MPB70/80. Antigen I is a hetero-dimer formed by a glycosylated, 10.5-kDa, monomer and a non-glycosylated 8-kDa monomer with identical amino terminal sequences. Both antigens were recognized by the sera of PPD+ animals, but antigen I did not crossreact with sera of human PPD+ individuals. Antigen I was a weak inducer of lymphocyte proliferation and IFN-gamma production. Our results show that M. bovis expresses a 19 kDa glycoprotein, homologue to the product of M. tuberculosis gen Rv1174c, which may prove useful for bovine TB diagnostic assays.  相似文献   

6.
Bordetella pertussis virulence-associated 30-, 32-, 90- and 95-kDa outer membrane proteins were purified and their N-terminal amino acid sequences were determined. The 30- and 32-kDa outer membrane proteins showed identity to the C-terminal region of the precursors of the serum resistance protein (BrkA) and the tracheal colonization factor, respectively. We confirmed the cleavage site of these precursors after N731 for BrkA and after N393 for tracheal colonization factor. Associated with the 32-kDa outer membrane protein, we found a new group of 36-kDa virulence-associated peptides. The 95-kDa outer membrane protein showed identity to Vag8. The 90-kDa outer membrane protein did not show homology with the described proteins. We report the N-termini sequence of Vir-90, a novel potential virulence factor.  相似文献   

7.
An estrogen-regulated 52-kDa glycoprotein secreted by MCF7 breast cancer cells was first purified from serum-free conditioned medium by concanavalin-A--Sepharose (ConA--Sepharose). The 13% pure protein was then used to obtain monoclonal antibodies to the 52-kDa protein [Garcia et al. (1985) Cancer Res. 45, 709-716]. Using ConA--Sepharose and monoclonal antibody affinity chromatographies, the secreted 52-kDa protein was finally purified to homogeneity as verified by silver staining of sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) and one single N-terminal amino acid. The purification factor was approximately 1400 and the yield 40%. The same two-step procedure, applied to MCF7 cell extracts, yielded four immunologically related proteins of 52 kDa, 48 kDa, 34 kDa and 17 kDa, which were purified 1250-fold with a yield of 30%. These components were further separated by high-performance liquid chromatography gel filtration under denaturing conditions. The final products were homogeneous on the basis of silver-stained SDS-PAGE and gel filtration. However, isoelectrofocusing showed that the pI of the secreted 52-kDa protein and the cellular 34-kDa protein varied from 5.5 to 6.5. Amino acid analysis of the secreted and the related cellular 34-kDa protein is given. Western immunoblotting, pulse chase studies and post-translational studies indicate that the 52-kDa protein is the precursors of a lysosomal enzyme which is partially secreted and partially processed into smaller cellular forms.  相似文献   

8.
A partially purified preparation of human erythrocyte protein 4.9, consisting of 48-, 52-, and 55-kilodalton polypeptides, is capable of bundling rabbit muscle actin in vitro (Siegel, D. L., and Branton, D. (1985) J. Cell Biol. 100, 775-785). Purification schemes, peptide mapping, antibody cross-reactivity, and chemical cross-linking techniques show that the 48- and 52-kDa polypeptides are sequence-related phosphorylated components, whereas the 55-kDa polypeptide is not. Purified protein 4.9 (dematin), consisting of 48- and 52-kDa polypeptides, effectively bundles actin in vitro; under similar conditions, the isolated 55-kDa polypeptide does not bundle actin. In fact, when added back to purified dematin, fractions containing the 55-kDa polypeptide can completely abolish dematin's actin-bundling activity. The basis for this inhibitory activity is an endogenous protein kinase that phosporylates both the 48- and 52-kDa isoforms of dematin, thus abolishing dematin's actin-bundling activity (Husain-Chishti, A., Levin, A., and Branton, D. (1988) Nature 334, 718-721). Although the endogenous kinase often co-purifies with the 55-kDa polypeptide, it can be separated from the 55-kDa polypeptide and has the characteristics of a catalytic subunit of a cyclic AMP-dependent protein kinase.  相似文献   

9.
A 32-kDa protein was purified from acrosomal extracts of ejaculated boar spermatozoa as a complex with 55- and 53-kDa proacrosins. In the presence of the 32-kDa protein, these proacrosins were sequentially converted by autoactivation to a 49-kDa intermediate, a 43-kDa intermediate, and then a 35-kDa mature acrosin. This activation process was consistent with that in the absence of the 32-kDa protein, but differed in producing the 49-kDa form as the predominant acrosin intermediate. Thus, the 32-kDa protein may be a regulatory protein for proacrosin activation. The 49-kDa intermediate was a two-chain polypeptide with the amino-terminal sequences corresponding to those of the light and heavy chains of mature acrosin, whereas the carboxyl-terminal sequence of its heavy chain was identical with that of the 53-kDa proacrosin. These results suggest that the 49-kDa intermediate is produced from 53-kDa proacrosin during proacrosin activation by the cleavage of the peptide bond between Arg-23 and Val-24, which results in the formation of the light and heavy chains.  相似文献   

10.
We previously identified a 70-kDa serine/threonine protein kinase (MbK or PknD) from Mycobacterium tuberculosis Erdman containing a transmembrane domain and bearing a 270-amino acid N-terminal kinase domain. With the use of a polyclonal serum, Mbk has now been identified by Western blotting in protein extracts from M. tuberculosis and confirmed to be localised in the envelope. An identical mbk gene has been found by sequencing different M. tuberculosis and M. africanum strains. Surprisingly, in two virulent M. bovis strains and four different strains of M. bovis BCG, an additional adenine after position 829 of the open reading frame was found that produces a frame shift resulting in a predicted truncated, presumably free cytoplasmic protein, encoding only the N-terminal 30-kDa Mbk kinase domain. This sequence polymorphism has been confirmed by Western blot analysis of M. bovis BCG protein extracts.  相似文献   

11.
R H Durland  D R Helinski 《Plasmid》1987,18(2):164-169
The trfA gene of the broad-host-range plasmid RK2 encodes two proteins of 43- and 32-kDa by initiating translation at either of two in-phase AUG codons in a single open reading frame. At least one of these proteins is essential for replication of RK2 derivatives. In order to study the role of the 43-kDa protein, Bal31 deletions into the 5' end of the trfA gene were constructed and incorporated into minimal RK2 replicons. When examined in Escherichia coli, replication and maintenance properties of plasmids encoding only the 32-kDa protein were indistinguishable from those of plasmids encoding both the 43- and the 32-kDa proteins. In four other gram-negative hosts deletion of sequences encoding only the 43-kDa protein did not have a substantial effect on plasmid establishment or stable maintenance. However, in Pseudomonas aeruginosa, deletion of 43-kDa coding sequences greatly reduced the efficiency of plasmid maintenance, suggesting a host-specific role for the 43-kDa TrfA protein in RK2 replication.  相似文献   

12.
A 17-kDa protein (CadI) was induced by cadmium in Mycobacterium bovis and Mycobacterium tuberculosis. Comparison of the N-terminal sequence from M. bovis CadI with the annotated M. tuberculosis genome database identified Rv2641 as the encoding gene. Long and short promoter fragments from M. bovis cadI were fused to the lacZ reporter gene in pYUB76. Only the long fragment directed cadmium-inducible activity when electroporated into M. bovis. The cadI promoter has potential for both constitutive and inducible expression studies in M. bovis and M. tuberculosis.  相似文献   

13.
We have previously reported that molybdate-stabilized cytosol prepared from 32P-labeled L-cells contains two phosphoproteins (a 90-92- and a 98-100-kDa protein) that elute from an affinity resin of deoxycorticosterone-derivatized agarose in a manner consistent with the predicted behavior of the glucocorticoid receptor (Housley, P. R., and Pratt, W. B. (1983) J. Biol. Chem. 258, 4630-4635). In the present work we report that both the 90-92- and 98-100-kDa 32P-labeled proteins are also extracted from molybdate-stabilized cytosol by incubation with a monoclonal antibody and protein A-Sepharose. Only the 98-100-kDa protein is specifically labeled when either L-cell cytosol or L-cell cytosol proteins bound to the affinity resin are labeled with the glucocorticoid binding site-specific affinity ligand [3H]dexamethasone 21-mesylate. The 98-100-kDa protein labeled with [3H]dexamethasone mesylate is adsorbed to protein A-Sepharose in an immune-specific manner after reaction with the monoclonal antibody. Sodium dodecyl sulfate-polyacrylamide gel analysis of the protein A-Sepharose-bound material resulting from incubating the monoclonal antibody with a mixture of 32P-labeled cytosol and [3H]dexamethasone mesylate-labeled cytosol demonstrates identity of the 98-100-kDa [3H]dexamethasone mesylate-labeled band with the 98-100-kDa 32P-labeled band and clear separation from the nonsteroid-binding 90-92-kDa phosphoprotein. The results of immunoblot experiments demonstrate that the 90-92-kDa protein is structurally distinct from the 98-100-kDa steroid-binding protein. As the 90-92-kDa nonsteroid-binding phosphoprotein co-purified with the 98-100-kDa uncleaved form of the glucocorticoid receptor by two independent methods, one of which is based on recognizing a steroid-binding site and the other of which is based on recognizing an antibody binding site, we propose that the 90-92-kDa phosphoprotein is a component of the molybdate-stabilized, untransformed glucocorticoid-receptor complex in L-cell cytosol.  相似文献   

14.
C F Lai  S C Gong    M Esteban 《Journal of virology》1991,65(1):499-504
The nature of interaction between vaccinia virus and the surface of host cells as the first step in virus infection is undefined. A 32-kDa virus envelope protein has been identified as a cell surface binding protein (J.-S. Maa, J. F. Rodriguez, and M. Esteban, J. Biol. Chem. 265:1569-1577, 1990). To carry out studies on the structure-function relationship of this protein, the 32-kDa protein was obtained from Escherichia coli cells harboring the expression plasmid pT7Ek32. The recombinant polypeptide was found to have structural properties similar to those of the native virus envelope protein. Binding studies of 125I-labeled 32-kDa protein to cultured cells of various origins revealed that the E. coli-produced 32-kDa protein exhibited selectivity, specificity, and saturability. Scatchard analysis indicated about 4.5 x 10(4) sites per cell with a high affinity (Kd = 1.8 x 10(-9) M), suggesting interaction of the 32-kDa protein with a specific receptor. The availability of large quantities of the 32-kDa virus protein in bacteria will permit further structural and functional studies of this virus envelope protein and facilitate identification of the specific cell surface receptor.  相似文献   

15.
Three strains of Streptococcus dysgalactiae subsp. dysgalactiae (S. dysgalactiae) and five strains of Streptococcus agalactiae were used to identify lactoferrin-binding proteins (LBPs). LBPs from extracted surface proteins were detected by polyacrylamide gel electrophoresis and Western blotting. All strains of S. dysgalactiae evaluated had 52- and 74-kDa protein bands. All strains of S. agalactiae evaluated had 52-, 70- and 110-kDa protein bands. In addition, a 45-kDa band was detected in two of five S. agalactiae strains evaluated. This study demonstrated that S. dysgalactiae and S. agalactiae of bovine origin contain two and three major LBPs, respectively.  相似文献   

16.
Epithelial surface antigen (ESA) is a glycoprotein with a distribution in vivo that is largely confined to human epithelial cells. Previous studies using a mouse monoclonal antibody (MH99) detecting ESA had shown that the antigen immunoprecipitated from most epithelial cancer cell lines has two chains (38,000 and 32,000 Da) when separated under reducing conditions and only one (38,000 Da) under nonreducing conditions. We now show that the 38-kDa band observed under nonreducing conditions consists of two species, one a 38-kDa single chain protein and the other a disulfide-linked dimer consisting of the 32-kDa chain bonded to a previously unrecognized 6-kDa chain. Pulse-chase studies have shown that ESA is synthesized as a 34-kDa protein which is glycosylated to a 38-kDa glycoprotein containing both high mannose and complex carbohydrate chains. With longer chase periods, a 32-kDa species also appears. Peptide mapping, together with the pulse-chase data, suggests that the 32- and 6-kDa species are formed from the 38-kDa protein, probably by limited proteolysis. Epithelial cell lines differ in their ratios of 38/32-kDa species, some cell lines having only the 38-kDa form. Incubation of radiolabeled extracts of cells having only the 38-kDa protein with unlabeled extracts of the other cell types resulted in progressive conversion of the 38-kDa species to the 32- and 6-kDa forms. Only cell lines expressing both forms of ESA are able to carry out this cleavage of the 38-kDa protein. This is a novel mechanism for generating cell-type related differences in cell surface glycoprotein expression. Finally, sequential immunoprecipitation experiments showed that the antigen detected by Ab MH99 is closely related or identical to that detected by Ab 17-1A, a previously described colon cancer antigen.  相似文献   

17.
An estrogen-induced 52-kDa glycoprotein secreted by human breast cancer cells and able to autostimulate the growth of MCF7 cells has been purified, using monoclonal antibodies, and characterized. The protein contains mannose 6-phosphate signals on its N-linked high-mannose chains, suggesting that it is a lysosomal enzyme. Both the secreted 52-kDa protein and its processed cellular forms (52-, 48- and 34-kDa) were identified as carboxyl proteinases having an optimal activity at pH 3.5 and being specifically inhibited by pepstatin. This protease is characterized by its inducibility by estrogens and its high concentration in proliferative benign and malignant mammary tissue, when detected by immunohistochemistry. The estrogen-induced secretion of this protease may help to understand how estrogens stimulate mammary tumor growth and/or invasion.  相似文献   

18.
Chinese hamster ovary cells cultured in vitro were used to assess the role of glutathione metabolism in the induction of the 32-kDa stress protein. Enhanced synthesis of the 32-kDa protein was observed after cells were incubated with CdCl2 or diethylmaleate and protein was subjected to SDS-PAGE followed by fluorography. Concomitantly, in both cell preparations an increase in heme oxygenase activity was observed. Proteins from CdCl2- and diethylmaleate-treated cells were subjected to Western blotting and protein crossreacting with either rabbit antibody to rat liver heme oxygenase-1 (32,000 Mr) or rat testis heme oxygenase-2 (36,000 Mr) quantitated. The analysis indicated that the CdCl2 treatment increased the intensity of the HO-1 band 5.5-fold while the diethylmaleate treatment increased it three-fold relative to control. Neither treatment affected the intensity of HO-2 antibody binding. Incubation of cells with buthionine sulfoximine, under conditions which resulted in greater than or equal to 90% of the intracellular glutathione being depleted, enhanced synthesis of a 32-kDa protein when assayed by SDS-PAGE. This protein exhibited a Mr similar to the 32-kDa protein induced by either CdCl2 or diethylmaleate treatment. Proteins from buthionine sulfoximine and diethylmaleate-treated cells were mixed together and subjected to 2D PAGE. The resulting fluorograph demonstrated that both treatments produced identical patterns. In contrast, incubation of cells in diamide, a thiol oxidizing compound, resulted in enhanced synthesis of the 110-, 90-, and 73-kDa heat shock proteins but not the 32-kDa protein. The data presented have shown that depletion of glutathione by two independent methods, conjugation and inhibition of synthesis, enhances the synthesis of a 32-kDa protein identified as heme oxygenase-1; oxidation of glutathione, on the other hand did not. We interpret this to indicate that glutathione depletion rather than conjugation or oxidation represents one pathway for induction of heme oxygenase-1.  相似文献   

19.
The 70-kDa protoxin of Cry11A, a dipteran-specific insecticidal protein, was processed by trypsin into 36- and 32-kDa fragments. To investigate the potent function of the two processed fragments, a GST (Glutathione-S-transferase) fusion protein of each polypeptide was constructed. While neither the 36- nor the 32-kDa fragment was toxic to Culex pipiens larvae, coexpression of the two fragments restored the insecticidal activity. Furthermore, the coprecipitation experiment demonstrated that the 36-kDa fragment was associated with the 32-kDa fragment. It was, therefore, shown that the coexistence of the two processed fragments of Cry11A was essential for the toxicity. The mutant of the 36-kDa fragment lacking the region from Gly(257) to Arg(360) bound to the 32-kDa fragment but the coexpression with the 32-kDa fragment resulted in no toxicity, suggesting that this region was involved in insecticidal activity.  相似文献   

20.
We have constructed cDNA libraries with poly(A)+ RNA from normal mouse footpad epidermis and from a squamous cell carcinoma of mouse back skin. Both libraries were screened for type I keratin clones. We present sequence data of three keratin cDNA clones which selected mRNAs coding for two 52-kDa proteins (clones pke 52 and pkSCC 52) as well as for a 50-kDa protein (clone pkSCC50). According to their carboxyl-terminal sequences, the two 52-kDa keratin proteins belong to a group of keratins with serine-rich subdomains adjacent to the alpha-helix, whereas the short carboxyl-terminus of the 50-kDa protein lacks a distinct substructure. Sequentially the two 52-kDa keratins are more closely related to each other than to any other mouse type I keratin. However, in situ hybridization with specific subclones reveals a distinctly different pattern of expression in mouse epithelia. Clone pkSCC 52 contains sequence information for a 52-kDa keratin present in basal cells of epidermis and other stratified epithelia, whereas the pke 52 cDNA encodes a keratin which is predominantly expressed in suprabasal cells of nonepidermal tissues. In terms of nucleotide sequence identities, it cannot precisely be decided which of the two mouse 52-kDa proteins is the equivalent of the human epidermal 50-kDa keratin protein (Hanukoglu, I., and Fuchs, E. (1982) Cell 31, 243-252). In the case of the bovine keratin VII, however (Jorcano, J.L., Rieger, M., Franz, J.K., Schiller, D.L., Moll, R., and Franke, W.W. (1984) J. Mol. Biol. 179, 257-281) the sequence identity values speak for an equivalence with the mouse ke 52 keratin. Obviously, in situ hybridization experiments would best be suited to unravel the precise interspecies relationship between the four highly similar keratins. The discriminatory efficacy of this technique is further emphasized by the demonstration that the mRNA for a 50-kDa keratin is present not only in hyperproliferative epithelia, but also in normal cells of hair follicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号