首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C3 photosynthesis is an inefficient process, because the enzyme that lies at the heart of the Benson–Calvin cycle, ribulose 1,5-bisphosphate carboxylase-oxygenase (Rubisco) is itself a very inefficient enzyme. The oxygenase activity of Rubisco is an unavoidable side reaction that is a consequence of its reaction mechanism. The product of oxygenation, glycollate 2-P, has to be retrieved by photorespiration, a process which results in the loss of a quarter of the carbon that was originally present in glycollate 2-P. Photorespiration therefore reduces carbon gain. Purely in terms of carbon economy, there is, therefore, a strong selection pressure on plants to reduce the rate of photorespiration so as to increase carbon gain, but it also improves water- and nitrogen-use efficiency. Possibilities for the manipulation of plants to decrease the amount of photorespiration include the introduction of improved Rubisco from other species, reconfiguring photorespiration, or introducing carbon-concentrating mechanisms, such as inorganic carbon transporters, carboxysomes or pyrenoids, or engineering a full C4 Kranz pathway using the existing evolutionary progression in C3–C4 intermediates as a blueprint. Possible routes and progress to suppressing photorespiration by introducing C4 photosynthesis in C3 crop plants will be discussed, including whether single cell C4 photosynthesis is feasible, how the evolution of C3–C4 intermediates can be used as a blueprint for engineering C4 photosynthesis, which pathway for the C4 cycle might be introduced and the extent to which processes and structures in C3 plant might require optimisation.  相似文献   

2.
This paper describes thein vivobehavior and potential metabolism of C60and a more water-soluble quaternary ammonium salt-derivatized C60. In both cases, a14C-labeled fullerene core was utilized for the target molecules that were intravenously injected into female Sprague–Dawley rats. The14C-labeled C60(*C60) was rapidly (within 1 min) cleared from the circulation and the majority of the *C60accumulated in the liver (90–95%). *C60was not eliminated from the liver over the 120-h period of this study. Our results also suggest that C60is not metabolized by the typical oxidative patterns characteristic of other polycyclic aromatics. Therefore, although not acutely toxic, use of C60, or its derivatives that could be cleaved back to the parent C60in vivo, would likely lead to long-term fullerene accumulation in the liver. The uptake of *C60and14C-labeled ammonium salt-derivatized C60(1)by human keratinocytesin vitroshowed that while both *C60and1are readily taken up by cells,1accumulates more slowly. Additionally, while C60, at rather high concentrations (2.0 μM) and over extended periods of time (8 days), is able to inhibit the growth of human keratinocytes by about 50%, this effect showed little, if any, photoinducability.  相似文献   

3.
Two C3 dicotyledonous crops and five C4 monocotyledons treated with three levels of nitrogen were used to evaluate quantitatively the relationship between the allocation of absorbed light energy in PSII and photosynthetic rates (P N) in a warm condition (25–26°C) at four to five levels [200, 400, 800, 1,200 (both C3 and C4) and 2,000 (C4 only) μmol m−2 s−1] of photosynthetic photon flux density (PPFD). For plants of the same type (C3 or C4), there was a linear positive correlation between the fraction of absorbed light energy that was utilized in PSII photochemistry (P) and P N, regardless of the broad range of their photosynthetic rates due to species-specific effect and/or nitrogen application; meanwhile, the fraction of absorbed light energy that was dissipated through non-photochemical quenching (D) showed a negative linear regression with P N for each level of PPFD. The intercept of regression lines between P and P N of C3 and C4 plants decreased, and that between D and P N increased with increasing PPFD. With P and D as the main components of energy dissipation and complementary to each other, the fraction of excess absorbed light energy (E) was unchanged by P N under the same level of PPFD. At the same level of P N, C4 plants had lower P and higher D than C3 plants, due to the fact that C4 plants with little or no photorespiration is considered a limited energy sink for electrons. Nevertheless there was a significant negative linear correlation between D and P when data from both C3 and C4 plants at varied PPFD levels was merged. The slope of regression lines between P and D was 0.85, indicating that in plants of both types, most of the unnecessary absorbed energy (ca. 85%) could dissipate through non-photochemical quenching, when P was inhibited by low P N due to species-specific effect and nitrogen limitation at all levels of illumination used in the experiment.  相似文献   

4.
C4 photosynthesis is functionally dependent on metabolic interactions between mesophyll- and bundle-sheath cells. Although the C4 cycle is biochemically well understood, many aspects of the regulation of enzyme activities, gene expression and cell differentiation are elusive. Protein kinases are likely involved in these regulatory processes, providing links to hormonal, metabolic and developmental signal-transduction pathways. Here we describe the cloning and characterization of 14 different putative protein kinase leaf cDNA clones from the C4 plant Sorghum bicolor. These genes belong to three different protein kinase subfamilies: ribosomal protein S6 kinases, SNF1-like protein kinases, and receptor-like protein kinases. We report the partial cDNA sequences, mesophyll/bundle-sheath steady-state mRNA ratios, mesophyll/etiolated leaf steady-state mRNA ratios, and the positions of 14 protein kinase genes on the genetic map of S. bicolor. Only three of the protein kinase genes described here are expressed preferentially in mesophyll cells as compared with the bundle-sheath. Received: 16 January 1998 / Accepted: 3 April 1998  相似文献   

5.
An unstable epoxide, leukotriene A4 (5(S)-trans-5,6-oxido-7,9-trans-11,14-cis-eicosatetraenoic acid), was earlier proposed to be an intermediate in the conversion of arachidonic acid into the slow reacting substance (SRS), leukotriene C4. In the present work synthetic leukotriene A4 was incubated with human leukocytes or murine mastocytoma cells. A lipoxygenase inhibitor, BW755C, was added in order to prevent leukotriene formation from endogenous substrate. Leukotriene C4 and 11-trans-leukotriene C4 were the main products with SRS activity. It was not established whether the 11-trans-compound was formed by isomerization at the leukotriene A4 or C4 stage.  相似文献   

6.
Rat glioma cells (C6) cultured in serum-free defined medium   总被引:2,自引:0,他引:2  
Rat glioma C6 cells were adapted to and maintained in serum-free medium for 11 months. Morphological differentiation with extended dendrite processes was observed. This phenomenon is reversible if serum is re-supplemented and is protein or RNA synthesis dependent. The formed cytoplasmic processes rapidly retract when colchicine or vinblastine sulfate is added. db-cAMP is found able to stimulate the extension of cytoplasmic processes of cells cultured in medium containing serum, but no further stimulation was observed in cells adapted to serum-free medium. The serum-free adapted cells retain the ability to synthesize the acidic S-100 protein and the production rate is 25% higher than the cells cultured in serum-supplemented medium. The serum-free adapted cells have a longer population doubling time but the metaphase chromosomes show the same karyotype and modal number as that of C6 cells continuously cultured in serum-supplemented medium.  相似文献   

7.
Temperature and vapor pressure deficit (VPD) effects on turfgrass growth are almost always confounded in experiments because VPD commonly is substantially increased in elevated-temperature treatments. The objective of this study as to examine specifically the influence of VPD on transpiration response of four ‘warm-season’ (C4) and four ‘cool-season’ (C3) turfgrasses to increasing VPD at a stable temperature (29.3 ± 1.5 °C). Although transpiration rates were noticeably lower in C4 grasses, transpiration rates increased linearly in response to increasing VPD across the range of 0.8–3.0 kPa. In contrast, transpiration rates of C3 increased sharply with increasing VPD across the range of low VPDs, but became constrained at higher VPDs (>1.35 kPa). Restricted transpiration rate at elevated VPD was most evident in Agrostis palustris and Lolium perenne. Assuming restricted transpiration rates reflect a limitation on leaf CO2 uptake, these results indicate that the commonly observed decline in growth of C3 (and success of C4) grasses at elevated temperature may include a sensitivity to elevated VPD.  相似文献   

8.
The addition of 25-azacycloartanol to the medium of suspension cultures of bramble cells resulted, after 6 weeks of growth, in a large decrease in the percentage of C10 side-chain sterols, sitosterol and isofucosterol (83 % of the total in the control, 9 % in the treated cells), and in a spectacular increase in the percentage of C8 side-chain sterols, cycloartenol, desmosterol and cholesterol (less than 1 % in the control, 53 % in the treated cells). In addition the relative percentage of C9 side-chain sterols, mainly 24-methylene cholesterol increased significantly (from 16 to 37 %). A secondary effect of 25-azacycloartanol consisted in an increase of the percentage of Δ24 sterols and in a decrease of the percentage of sterols with a saturated side chain. These results are in agreement with an inhibition by 25-azacycloartanol of the C-24 and C-28 methyltransferases and of the Δ24 reductase.  相似文献   

9.
10.
A C30 stationary phase was specifically engineered for carotenoid separations, and carotenoid measurements using this column are compared with those obtained using a somewhat more conventional C18 column. Both methods were used to contribute measurements for the certification of carotenoids in Standard Reference Material 968b, Fat-Soluble Vitamins and Cholesterol in Human Serum. Analytes were extracted from the serum into hexane. Measurements on the C18 column were made using a gradient of acetonitrile, methanol, and ethyl acetate, which is described in detail elsewhere. Measurements on the C30 column were made using a gradient of water, methanol, and methyl tert.-butyl ether.  相似文献   

11.
The Basidiomycete fungus Ustilago maydis is the common agent of corn smut and is capable of inducing gall growth on infected tissue of the C4 plant maize (Zea mays). While U. maydis is very well characterized on the genetic level, the physiological changes in the host plant in response to U. maydis infection have not been studied in detail, yet.Therefore, we examined the influence of U. maydis infection on photosynthetic performance and carbon metabolism in maize leaf galls.At all stages of development, U. maydis-induced leaf galls exhibited carbon dioxide response curves, CO2 compensation points and enzymatic activities that are characteristic of C3 photosynthesis, demonstrating that the establishment of C4 metabolism is prevented in infected tissue. Hexose contents and hexose/sucrose ratio of leaf galls remained high at 6 days post infection, while a shift in free sugar metabolism was observed in the uninfected controls at that time point. Concomitantly, transitory starch production and sucrose accumulation during the light period remained low in leaf galls. Given that U. maydis is infectious on young developing tissue, the observed changes in carbohydrate metabolism suggest that the pathogen manipulates the developing leaf tissue to arrest sink-to-source transition in favor of maintaining sink metabolism in the host cells.Furthermore, evidence is presented that carbohydrate supply during the biotrophic phase of the pathogen is assured by a fungal invertase.  相似文献   

12.
The desaturation reactions of C30 carotenoids from diapophytoene to diaponeurosporene was investigated in vitro and by complementation in Escherichia coli. The expressed diapophytoene desaturase from Staphylococcus aureus inserts three double bonds in an FAD-dependent reaction. The enzyme is inhibited by diphenylamine. In the complementation experiment diapophytoene desaturase was able to convert C40 phytoene to some extend but exhibited a high affinity to ζ-carotene. Comparison to the reaction of a phytoene desaturase from Rhodobacter capsulatus catalyzing a parallel three-step desaturation sequence with the corresponding C40 carotenes revealed that this desaturase can also convert C30 diapophytoene. Other homologous bacterial C40 carotene desaturases could also utilize C30 substrates, including one type of ζ-carotene desaturase which converted diaponeurosporene to diapolycopene. Further complementation experiments including the diapophytoene synthase gene from S. aureus revealed that the C30 carotenogenic pathway is determined by this initial enzyme which is highly homologous to C40 phytoene synthases.  相似文献   

13.
Atmospheric CO2 (Ca) concentration has increased significantly during the last 20 000 years, and is projected to double this century. Despite the importance of belowground processes in the global carbon cycle, community‐level and single species root responses to rising Ca are not well understood. We measured net community root biomass over 3 years using ingrowth cores in a natural C3–C4 grassland exposed to a gradient of Ca from preglacial to future levels (230–550 μmol mol?1). Root windows and minirhizotron tubes were installed below naturally occurring stands of the C4 perennial grass Bothriochloa ischaemum and its roots were measured for respiration, carbohydrate concentration, specific root length (SRL), production, and lifespan over 2 years. Community root biomass increased significantly (P<0.05) with Ca over initial conditions, with linear or curvilinear responses depending on sample date. In contrast, B. ischaemum produced significantly more roots at subambient than elevated Ca in minirhizotrons. The lifespan of roots with five or more neighboring roots in minirhizotron windows decreased significantly at high Ca, suggesting that after dense root growth depletes soil resource patches, plants with carbon surpluses readily shed these roots. Root respiration in B. ischaemum showed a curvilinear response to Ca under moist conditions in June 2000, with the lowest rates at Ca<300 μmol mol?1 and peak activity at 450 μmol mol?1 in a quadratic model. B. ischaemum roots at subambient Ca had higher SRLs and slightly higher carbohydrate concentrations than those at higher Ca, which may be related to drier soils at low Ca. Our data emphasize that belowground responses of plant communities to Ca can be quite different from those of the individual species, and suggest that complex interactions between and among roots and their immediate soil environment influence the responses of root physiology and lifespan to changing Ca.  相似文献   

14.
A novel organic-inorganic hybrid pentaborate [Ni(C4H10N2)(C2H8N2)2][B5O6(OH)4]2 has been synthesized by hydrothermal reaction and characterized by FT-IR, Raman spectroscopy, elemental analyses and DTA-TGA. Its crystal structure was determined from single crystal X-ray diffraction. The structure consists of isolated polyborate anion [B5O6(OH)4] and nickel complex cation of [Ni(C4H10N2)(C2H8N2)2]2+, in which the two kinds of ligands come from the decomposition of triethylenetriamine material. The [B5O6(OH)4] units are connected to one another through hydrogen bonds, forming a three-dimensional framework with large channel along the a and c axes, in which the templating [Ni(C4H10N2)(C2H8N2)2]2+ cations are located. The assignments of the record FT-IR absorption frequencies and Raman shifts were given.  相似文献   

15.
Bis(pentamethylcyclopentadienyl)samarium bis- (tetrahydrofuranate), (C5Me5)2Sm(THF)2, reacts with 2,3,5,6-tetramethylphenol in toluene to yield (C5Me5)2Sm(OC6HMe4-2,3,5,6). The compound crystallizes in the space group P21/c with a = 8.725(3) Å, b=18.821(6) Å, c=18.461(6) Å, β= 111.17(2)°, V = 2827(2) Å3 and Dc=1.340 g cm−3 for Z = 4. Molecules of the aryloxide complex are monomeric and exhibit a bent metallocene structure with a nearly linear Sm---O---C(aryloxide) linkage: Sm---O = 2.13(1) Å, O---C = 1.29(2) Å, and Sm---O---C = 172.3(13)°. Reaction of the samarium complex with phenyllithium produces the previously- characterized species (C5Me5)2Sm(C6H5)(THF).  相似文献   

16.
C4 plants have two carboxylases which function in photosynthesis. One, phosphoenolpyruvate carboxylase (PEPC) is localized in mesophyll cells, and the other, ribulose bisphosphate carboxylase (RuBPC) is found in bundle sheath cells. In contrast, C3 plants have only one photosynthetic carboxylase, RuBPC, which is localized in mesophyll cells. The expression of PEPC in C3 mesophyll cells is quite low relative to PEPC expression in C4 mesophyll cells. Two chimeric genes have been constructed consisting of the structural gene encoding β-glucuronidase (GUS) controlled by two promoters from C4 (maize) photosynthetic genes: (i) the PEPC gene (pepc) and (ii) the small subunit of RuBPC (rbcS). These constructs were introduced into a C3 cereal, rice. Both chimeric genes were expressed almost exclusively in mesophyll cells in the leaf blades and leaf sheaths at high levels, and no or very little activity was observed in other cells. The expression of both genes was also regulated by light. These observations indicate that the regulation systems which direct cell-specific and light-inducible expression of pepc and rbcS in C4 plants are also present in C3 plants. Nevertheless, expression of endogenous pepc in C3 plants is very low in C3 mesophyll cells, and the cell specificity of rbcS expression in C3 plants differs from that in C4 plants. Rice nuclear extracts were assayed for DNA-binding protein(s) which interact with a cis-regulatory element in the pepc promoter. Gel-retardation assays indicate that a nuclear protein with similar DNA-binding specificity to a maize nuclear protein is present in rice. The possibility that differences in pepc expression in a C3 plant (rice) and C4 plant (maize) may be the result of changes in cis-acting elements between pepc in rice and maize is discussed. It also appears that differences in the cellular localization of rbcS expression are probably due to changes in a trans-acting factor(s) required for rbcS expression.  相似文献   

17.
Oxygen conformance can be described as the ability to reduce energy demand, and hence oxygen consumption, in response to a decline in oxygen availability without a decrease in the concentration of ATP. It has been proposed that oxygen conformance may enhance cellular survival at low oxygen concentrations. We demonstrate that non-contracting C2C12 cells, a mouse skeletal muscle cell line, are capable of oxygen conformance. Typically, we found oxygen consumption to decline by 30–40% as the concentration of oxygen was reduced from 100 μM to 10 μM. Unexpectedly, the rate of protein synthesis, a major energy consumer in the cell, did not decrease significantly during oxygen conformance. Unlike oxygen conformance, severe hypoxia (<0.5 μM) caused a 36% decline in the concentration of PCr, and under these conditions of energy stress, the rate of protein synthesis declined by 43%. We conclude that there are two distinct metabolic responses to declines in oxygen concentration in non-contracting C2C12 cells.  相似文献   

18.
Stomatal function mediates physiological trade‐offs associated with maintaining a favourable H2O balance in leaf tissues while acquiring CO2 as a photosynthetic substrate. The C3 and C4 species appear to have different patterns of stomatal response to changing light conditions, and variation in this behaviour may have played a role in the functional diversification of the different photosynthetic pathways. In the current study, we used gain analysis theory to characterize the stomatal conductance response to light intensity in nine different C3, C4 and C3‐C4 intermediate species Flaveria species. The response of stomatal conductance (gs) to a change in light intensity represents both a direct (related to a change in incident light intensity, I) and indirect (related to a change in intercellular CO2 concentration, Ci) response. The slope of the line relating the change in gs to Ci was steeper in C4 species, compared with C3 species, with C3‐C4 species having an intermediate response. This response reflects the greater relative contribution of the indirect versus direct component of the gs versus I response in the C4 species. The C3‐C4 species, Flaveria floridana, exhibited a C4‐like response whereas the C3‐C4 species, Flaveria sonorensis and Flaveria chloraefolia, exhibited C3‐like responses, similar to their hypothesized position along the evolutionary trajectory of the development of C4 photosynthesis. There was a positive correlation between the relative contribution of the indirect component of the gs versus I response and water use efficiency when evaluated across all species. Assuming that the C3‐C4 intermediate species reflect an evolutionary progression from fully expressed C3 ancestors, the results of the current study demonstrate an increase in the contribution of the indirect component of the gs versus I response as taxa evolve toward the C4 extreme. The greater relative contribution of the indirect component of the stomatal response occurs through both increases in the indirect stomatal components and through decreases in the direct. Increases in the magnitude of the indirect component may be related to the maintenance of higher water use efficiencies in the intermediate evolutionary stages, before the appearance of fully integrated C4 photosynthesis.  相似文献   

19.
We have investigated carbon isotopic compositions of four plant genus/species, Bothriochloa ischaemum (C4), Stipa bungeana (C3), Lespedeza sp. (C3) and Heteropappus less (C3), along a precipitation gradient in northwest China in order to assess the impact of water availability on the carbon isotopic discrimination against 13C during carbon assimilation in this area. This information is necessary for reconstruction of paleovegetation, particularly paleo‐C3/C4 plant ratios using δ13C value of organic matter in loess and paleosols in the Chinese Loess Plateau. The δ13C of C3 plants, as a group, exhibits a negative correlation with the annual precipitation amount with a total change and sensitivity of 5‰ and ?1.1‰/100 mm, respectively, for the precipitation range from 200 to 700 mm. The C4 grass, B. ischaemum responds to aridity by decreasing 1.7‰ for over the precipitation range from 350 to 700 mm; the plant δ13C is significantly correlated with annual precipitation with a slope ?0.61‰/100 mm. This result implies that without considering the effect of water availability on the plant δ13C values, reconstruction of percent C4 vegetation during the last glaciation can be overestimated by about a factor of two.  相似文献   

20.
Attempts are being made to introduce C4 photosynthetic characteristics into C3 crop plants by genetic manipulation. This research has focused on engineering single‐celled C4‐type CO2 concentrating mechanisms into C3 plants such as rice. Herein the pros and cons of such approaches are discussed with a focus on CO2 diffusion, utilizing a mathematical model of single‐cell C4 photosynthesis. It is shown that a high bundle sheath resistance to CO2 diffusion is an essential feature of energy‐efficient C4 photosynthesis. The large chloroplast surface area appressed to the intercellular airspace in C3 leaves generates low internal resistance to CO2 diffusion, thereby limiting the energy efficiency of a single‐cell C4 concentrating mechanism, which relies on concentrating CO2 within chloroplasts of C3 leaves. Nevertheless the model demonstrates that the drop in CO2 partial pressure, pCO2, that exists between intercellular airspace and chloroplasts in C3 leaves at high photosynthetic rates, can be reversed under high irradiance when energy is not limiting. The model shows that this is particularly effective at lower intercellular pCO2. Such a system may therefore be of benefit in water‐limited conditions when stomata are closed and low intercellular pCO2 increases photorespiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号