首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Brown planthopper (BPH) is one of the most destructive insect pests of rice. Wild species of rice are a valuable source of resistance genes for developing resistant cultivars. A molecular marker-based genetic analysis of BPH resistance was conducted using an F2 population derived from a cross between an introgression line, ‘IR71033-121-15’, from Oryza minuta (Accession number 101141) and a susceptible Korean japonica variety, ‘Junambyeo’. Resistance to BPH (biotype 1) was evaluated using 190 F3 families. Two major quantitative trait loci (QTLs) and two significant digenic epistatic interactions between marker intervals were identified for BPH resistance. One QTL was mapped to 193.4-kb region located on the short arm of chromosome 4, and the other QTL was mapped to a 194.0-kb region on the long arm of chromosome 12. The two QTLs additively increased the resistance to BPH. Markers co-segregating with the two resistance QTLs were developed at each locus. Comparing the physical map positions of the two QTLs with previously reported BPH resistance genes, we conclude that these major QTLs are new BPH resistance loci and have designated them as Bph20(t) on chromosome 4 and Bph21(t) on chromosome 12. This is the first report of BPH resistance genes from the wild species O. minuta. These two new genes and markers reported here will be useful to rice breeding programs interested in new sources of BPH resistance.  相似文献   

2.
Tan GX  Weng QM  Ren X  Huang Z  Zhu LL  He GC 《Heredity》2004,92(3):212-217
The whitebacked planthopper (WBPH), Sogatella furcifera, and brown planthopper (BPH) Nilaparvata lugens St?l are important sucking insects of rice (Oryza sativa L.) crops throughout the world. Rice 'B5', which has derived its resistance genes from the wild rice O. officinalis Wall ex Watt, is a line that is highly resistant to both WBPH and BPH. Previously, two resistance genes against BPH, Qbp1, and Qbp2 in 'B5' had been mapped onto chromosome 3 and chromosome 4, respectively. In this study, we employed a mapping population composed of 187 recombinant inbred lines (RILs), produced from a cross between 'B5' and susceptible variety 'Minghui63', to locate the WBPH and BPH resistance genes. A RFLP survey of the bulked extremes from the RIL population identified two genomic regions, one on chromosome 3 and the other on chromosome 4, likely containing the resistance genes to planthoppers. QTL analysis of the RILs further confirmed that two WBPH resistance genes were mapped on the same loci as Qbp1 and Qbp2, using a linkage map with 242 molecular markers distributed on 12 rice chromosomes. Of the two WBPH resistance genes, one designated Wbph7(t) was located within a 1.1-cM region between R1925 and G1318 on chromosome 3, the other designated Wbph8(t) was within a 0.3-cM region flanked by R288 and S11182 on chromosome 4. A two-way analysis of variance showed that two loci acted independently with each other in determining WBPH resistance. The results have significant implications in studying the interactions between sucking insects and plants and in breeding programs of resistance to rice planthoppers.  相似文献   

3.
 We used graphical genotyping and linkage analyses with molecular markers to determine the chromosomal location of the rice stripe disease resistance gene, Stv-b i . The stripe resistance gene from the indica rice (Oryza sativa) cv ‘Modan’ was introgressed into several Japanese rice varieties. We found 4 RFLP markers in ‘Modan’, five susceptible parental rice varieties (‘Norin No. 8’, ‘Sachihikari’, ‘Kanto No. 98’, ‘Hokuriku No.103’ and ‘Koganebare’) and four resistant progeny varieties (‘St. No. 1’, ‘Aichi No. 6’, ‘Aoisora’ and ‘Asanohikari’). Graphical genotyping of the resistant progeny revealed a chromosomal segment ascribable to ‘Modan’ and associated with stripe resistance. The chromosomal segment from ‘Modan’ was located at 35.85 cM on chromosome 11. Linkage analysis using 120 F2 individuals from a cross between ‘Koshihikari’ (susceptible) and ‘Asanohikari’ (resistant) revealed another 8 RFLP markers in the same chromosome. We performed a bioassay for rice stripe resistance in F3 lines of the F2 individuals using infective small brown planthoppers and identified an 1.8-cM segment harboring the rice stripe disease resistance gene, Stv-b i , between XNpb220 and XNpb257/ XNpb254. Furthermore, Stv-b i was linked by 0.0 cM to a RFLP marker, ST10, which was developed on the basis of the results of RAPD analysis. These DNA markers near the Stv-b i locus may be useful in marker-assisted selection and map-based cloning of the Stv-b i gene. Received: 26 September 1997 / Accepted: 4 November 1997  相似文献   

4.
The brown planthopper (Nilaparvata lugens Stål; BPH) is one of the most serious rice pests worldwide. Growing resistant varieties is the most effective way to manage this insect, and wild rice species are a valuable source of resistance genes for developing resistant cultivars. BPH27 derived from an accession of Guangxi wild rice, Oryza rufipogon Griff. (Accession no. 2183, hereafter named GX2183), was primarily mapped to a 17-cM region on the long arm of the chromosome four. In this study, fine mapping of BPH27 was conducted using two BC1F2 populations derived from introgression lines of GX2183. Insect resistance was evaluated in the BC1F2 populations with 6,010 individual offsprings, and 346 resistance extremes were obtained and employed for fine mapping of BPH27. High-resolution linkage analysis defined the BPH27 locus to an 86.3-kb region in Nipponbare. Regarding the sequence information of rice cultivars, Nipponbare and 93-11, all predicted open reading frames (ORFs) in the fine-mapping region have been annotated as 11 types of proteins, and three ORFs encode disease-related proteins. Moreover, the average BPH numbers showed significant differences in 96–120 h after release in comparisons between the preliminary near-isogenic lines (pre-NILs, lines harboring resistance genes) and BaiR54. BPH growth and development were inhibited and survival rates were lower in the pre-NIL plants compared with the recurrent parent BaiR54. The pre-NIL exhibited 50.7 % reductions in population growth rates (PGR) compared to BaiR54. The new development in fine mapping of BPH27 will facilitate the efforts to clone this important resistant gene and to use it in BPH-resistance rice breeding.  相似文献   

5.
The PM687 line of Capsicum annuum L. has a single dominant gene, Me 3 , that confers heat-stable resistance to root-knot nematodes (RKN). Me 3 was mapped using doubled-haploid (DH) lines and F2 progeny from a cross between the susceptible cultivar ’Yolo Wonder’ (’YW’) and the highly resistant line ’PM687’. Bulked-segregant analysis with DNA pools, from susceptible or resistant DH lines, was performed to identify RAPD and AFLP markers linked to Me 3 . There was no polymorphism between bulks of ten DH lines using over 800 RADP primers (4,000 amplified fragments analysed). Using 512 AFLP primers (74,000 amplified fragments analysed), and bulked DNA templates from 20 resistant and 20 susceptible plants, we identified eight repulsion-phase and four coupling-phase markers linked to Me 3. Analysed in 103 DH progeny, they defined a 56.1-cM interval containing the target gene. The nearest were located 0.5, 1.0, 1.5 and 3.0 centimorgans (cM) on both sides of the gene. Analysis of the F2 progeny (162 plants) with the nearest coupling-phase marker confirmed its close position. Another resistance gene to RKN, present in ’PM687’ (Me 4 ), was shown to be linked to Me 3 , 10 cM from it. In order to localize Me 3 and Me 4 on our reference intraspecific pepper linkage map, two AFLP markers were mapped. The Me 3 nearest marker was 10.1cM from a RAPD marker named Q04_0.3 and 2.7cM from a RFLP marker named CT135. We investigated map-position orthologies between Me 3 and two other nematode resistance genes, the tomato Mi-3 and the potato Gpa 2 genes, which mapped in the telomeric region of the short arm of the tomato and potato chromosome 12 (or XII for potato). Received: 23 March 2000 / Accepted: 2 January 2001  相似文献   

6.
Rhizoctonia solani is a necrotrophic fungal pathogen that causes disease on many crop-plant species. Anastomosis group 1-IA is the causal agent of sheath blight of rice (Oryza sativa L.), one of the most important rice diseases worldwide. R. solani AG1-IA produces a necrosis-inducing phytotoxin and rice cultivar’s sensitivity to the toxin correlates with disease susceptibility. Unlike genetic analyses of sheath blight resistance where resistance loci have been reported as quantitative trait loci, phytotoxin sensitivity is inherited as a Mendelian trait that permits high-resolution mapping of the sensitivity genes. An F2 mapping population derived from parent cultivars ‘Cypress’ (toxin sensitive) and ‘Jasmine 85’ (toxin insensitive) was used to map Rsn1, the necrosis-inducing locus. Initial mapping based on 176 F2 progeny and 69 simple sequence repeat (SSR) markers located Rsn1 on the long arm of chromosome 7, with tight linkage to SSR marker RM418. A high-resolution genetic map of the region was subsequently developed using a total of 1,043 F2 progeny, and Rsn1 was mapped to a 0.7 cM interval flanked by markers NM590 and RM418. Analysis of the corresponding 29 Kb genomic sequences from reference cultivars ‘Nipponbare’ and ‘93-11’ revealed the presence of four putative genes within the interval. Two are expressed cytokinin-O-glucosyltransferases, which fit an apoptotic pathway model of toxin activity, and are individually being investigated further as potential candidates for Rsn1.  相似文献   

7.
The brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the most serious and destructive pests of rice, and can be found throughout the rice-growing areas of Asia. To date, more than 24 major BPH-resistance genes have been reported in several Oryza sativa ssp. indica cultivars and wild relatives. Here, we report the genetic basis of the high level of BPH resistance derived from an Indian rice cultivar, ADR52, which was previously identified as resistant to the whitebacked planthopper (Sogatella furcifera [Horváth]). An F2 population derived from a cross between ADR52 and a susceptible cultivar, Taichung 65 (T65), was used for quantitative trait locus (QTL) analysis. Antibiosis testing showed that multiple loci controlled the high level of BPH resistance in this F2 population. Further linkage analysis using backcross populations resulted in the identification of BPH-resistance (antibiosis) gene loci from ADR52. BPH25 co-segregated with marker S00310 on the distal end of the short arm of chromosome 6, and BPH26 co-segregated with marker RM5479 on the long arm of chromosome 12. To characterize the virulence of the most recently migrated BPH strain in Japan, preliminary near-isogenic lines (pre-NILs) and a preliminary pyramided line (pre-PYL) carrying BPH25 and BPH26 were evaluated. Although both pre-NILs were susceptible to the virulent BPH strain, the pre-PYL exhibited a high level of resistance. The pyramiding of resistance genes is therefore likely to be effective for increasing the durability of resistance against the new virulent BPH strain in Japan.  相似文献   

8.
Aphanomyces root rot, caused by Aphanomyces cochlioides Drechs., is one of the most serious diseases of sugar beet (Beta vulgaris L.). Identification and characterization of resistance genes is a major task in sugar beet breeding. To ensure the effectiveness of marker-assisted screening for Aphanomyces root rot resistance, genetic analysis of mature plants’ phenotypic and molecular markers’ segregation was carried out. At a highly infested field site, some 187 F2 and 66 F3 individuals, derived from a cross between lines ‘NK-310mm-O’ (highly resistant) and ‘NK-184mm-O’ (susceptible), were tested, over two seasons, for their level of resistance to Aphanomyces root rot. This resistance was classified into six categories according to the extent and intensity of whole plant symptoms. Simultaneously, two selected RAPD and 159 ‘NK-310mm-O’-coupled AFLP were used in the construction of a linkage map of 695.7 cM. Each of nine resultant linkage groups was successfully anchored to one of nine sugar beet chromosomes by incorporating 16 STS markers. Combining data for phenotype and molecular marker segregation, a single QTL was identified on chromosome III. This QTL explained 20% of the variance in F2 population (in the year 2002) and 65% in F3 lines (2003), indicating that this QTL plays a major role in the Aphanomyces root rot resistance. This is the first report of the genetic mapping of resistance to Aphanomyces-caused diseases in sugar beet.  相似文献   

9.
A major gene determining non-specific adult-plant disease resistance against stripe rust (Puccinia striiformis) designated Yrns-B1 was mapped by using a cross between ’Lgst.79–74’ (resistant) and ’Winzi’ (susceptible). Analyzing F3 lines of two consecutive experimental years contrary modes of inheritance were observed due to the intermediate character of the gene and the difference in the disease pressure during the seasons. Using the disease scoring data of both experimental years independently two maps were constructed detecting Yrns-B1 20.5 and 21.7 cM, respectively, proximal to the wheat microsatellite (WMS) marker Xgwm493 on the short arm of chromosome 3BS. The genetic relationships to other major genes or to quantitative trait loci controlling adult plant disease resistance against rusts in wheat are discussed. Received: 27 May 1999 / Accepted: 28 September 1999  相似文献   

10.
The brown planthopper (BPH) is one of the most destructive insect pests of rice in Thailand. We performed a cluster analysis that revealed the existence of four groups corresponding to the variation of virulence against BPH resistance genes in 45 BPH populations collected in Thailand. Rice cultivars Rathu Heenati and PTB33, which carry Bph3, showed a broad-spectrum resistance against all BPH populations used in this study. The resistant gene Bph3 has been extensively studied and used in rice breeding programs against BPH; however, the chromosomal location of Bph3 in the rice genome has not yet been determined. In this study, a simple sequence repeat (SSR) analysis was performed to identify and localize the Bph3 gene derived from cvs. Rathu Heenati and PTB33. For mapping of the Bph3 locus, we developed two backcross populations, BC1F2 and BC3F2, from crosses of PTB33 × RD6 and Rathu Heenati × KDML105, respectively, and evaluated these for BPH resistance. Thirty-six polymorphic SSR markers on chromosomes 4, 6 and 10 were used to survey 15 resistant (R) and 15 susceptible (S) individuals from the backcross populations. One SSR marker, RM190, on chromosome 6 was associated with resistance and susceptibility in both backcross populations. Additional SSR markers surrounding the RM190 locus were also examined to define the location of Bph3. Based on the linkage analysis of 208 BC1F2 and 333 BC3F2 individuals, we were able to map the Bph3 locus between two flanking SSR markers, RM589 and RM588, on the short arm of chromosome 6 within 0.9 and 1.4 cM, respectively. This study confirms both the location of Bph3 and the allelic relationship between Bph3 and bph4 on chromosome 6 that have been previously reported. The tightly linked SSR markers will facilitate marker-assisted gene pyramiding and provide the basis for map-based cloning of the resistant gene.  相似文献   

11.
Brown planthopper (BPH) is a destructive insect pest of rice and causes severe yield loss. In attempts to develop a BPH-resistant rice variety, Rathu Heenati (RH), a rice cultivar with a strong BPH resistance, has been used as the donor in breeding programs. Quantitative trait loci analysis was conducted for the area under the curve of BPH damage scores of a backcross (BC3F5) population infested by six different BPH populations. Single nucleotide polymorphism (SNP) markers on chromosome 4, i.e., LecRK2-SNP and LecRK3-SNP, and markers on chromosome 6, i.e., Bph32-SNP and SSR23, were identified to be associated with resistance against five BPH populations. To identify genes on chromosome 6 that are involved in BPH resistance, expression analysis was conducted for genes located in the genomic region of Bph32-SNP and SSR23. Genes that showed differential expression ofRH at 24 h after BPH infestation, when compared to an RH control, were identified. Those that encode proteins putatively involved in the BPH resistance mechanism are LOC_Os06g03240, LOC_Os06g03380, LOC_Os06g03486, LOC_Os06g03514, LOC_Os06g03520, LOC_Os06g03610, LOC_Os06g03676, and LOC_Os06g03890. SNP markers were developed from several differentially expressed genes and were validated by genotyping in the backcross population. The SNP marker developed from LOC_Os06g03514 showed the highest association with BPH resistance and the gene may be involved in the BPH resistance mechanism. This SNP marker will be useful in breeding programs for BPH resistance.  相似文献   

12.
Spot blotch caused by Bipolaris sorokiniana is a destructive disease of wheat in warm and humid wheat growing regions of the world. To identify quantitative trait loci (QTLs) for spot blotch resistance, two mapping populations were developed by making the crosses between common susceptible cultivar ‘Sonalika’ with the resistant breeding lines ‘Ning 8201’ and ‘Chirya 3’. Single seed descent derived F6, F7, F8 lines of the first cross ‘Ning 8201’ × ‘Sonalika’ were evaluated for resistance to spot blotch in three blocks in each of the 3 years. After screening of 388 pairs of simple sequence repeat primers between the two parents, 119 polymorphic markers were used to genotype the mapping population. Four QTLs were identified on the chromosomes 2AS, 2BS, 5BL and 7DS and explained 62.9% of phenotypic variation in a simultaneous fit. The QTL on chromosome 2A was detected only in 1 year and explained 22.7% of phenotypic variation. In the second cross (‘Chirya 3’ × ‘Sonalika’), F7 and F8 population were evaluated in three blocks in each of the 2 years. In this population, five QTLs were identified on chromosomes 2BS, 2DS, 3BS, 7BS and 7DS. The QTLs identified in the ‘Chirya 3’ × ‘Sonalika’ population explained 43.4% of phenotypic variation in a simultaneous fit. The alleles for reduced disease severity in both the populations were derived from the respective resistant parent. The QTLs QSb.bhu-2B and QSb.bhu-7D from both populations were placed in the same deletion bins, 2BS1-0.53-0.75 and 7DS5-0.36-0.61, respectively. The closely linked markers Xgwm148 to the QTL on chromosome 2B and Xgwm111 to the QTL on chromosome 7D are potentially diagnostic markers for spot blotch resistance.  相似文献   

13.
An incompletely dominant gene conferring resistance to Puccinia hordei, Rph14, identified previously in an accession of Hordeum vulgare, confers resistance to all known pathotypes of P. hordei in Australia. Knowledge of the chromosomal location of Rph14 and the identification of DNA markers closely linked to it will facilitate combining it with other important leaf rust resistance genes to achieve long lasting resistance. The inheritance of Rph14 was confirmed using 146 and 106 F3 lines derived from the crosses ‘Baudin’/‘PI 584760’ (Rph14) and ‘Ricardo’/‘PI 584760’ (Rph14), respectively. Bulk segregant analysis on DNA from the parental genotypes and resistant and susceptible DNA bulks using DArT markers located Rph14 to the short arm of chromosome 2H. DArT marker bPb-1664 was identified as having the closest genetic association with Rph14. PCR based marker analysis identified a single SSR marker, Bmag692, linked closely to Rph14 at a map distance of 2.1 and 3.8 cm in the ‘Baudin’/‘PI 584760’and ‘Ricardo’/‘PI 584760’ populations, respectively.  相似文献   

14.
Barley is compatible with the rice blast pathogen (Pyricularia oryzae Cav.). Fiftyfour barley cultivars of diverse geographic origin and pedigree were inoculated with three isolates of the rice blast pathogen. All barley genotypes showed blast disease symptoms when inoculated at the seedling stage with each of the three isolates. However, one genotype showed quantitative resistance to all three isolates and three genotypes showed quantitative resistance to one or two of the isolates. By inoculating a set of doubled-haploid lines derived from the cross ’Harrington’ (susceptible) and ’TR306’ (resistant) with isolate Ken 54–20, we mapped quantitative trait loci (QTLs) determining seedling stage blast resistance. At all QTLs, TR306 contributed the resistance alleles. The four QTLs, when considered jointly, explained 43.6% of the phenotypic variation in blast symptom expression. A comparison of the blast resistance QTLs with other disease resistance QTLs reported in this population revealed a region on chromosome 4 (4H) with multiple disease resistance loci. It will be useful to capitalize on the syntenic relationship of rice and barley and to integrate information on species-specific resistance genes with information on the reaction of the two species to the same pathogen. Received: 7 January 2000 / Accepted: 22 September 2000  相似文献   

15.
A framework linkage map was developed using 284 F10 recombinant inbred lines (RILs) from a ’Lemont’×’Teqing’ rice cultivar cross. Evaluation of a subset of 245 of these RILs with five races of the rice blast pathogen permitted RFLP mapping of three major resistance genes from Teqing and one major gene from Lemont. All mapped genes were found to confer resistance to at least two blast races, but none conferred resistance to all five races evaluated. RFLP mapping showed that the three resistance genes from Teqing, designated Pi-tq5, Pi-tq1 and Pi-tq6, were present on chromosomes 2, 6 and 12, respectively. The resistance gene from Lemont, Pi-lm2, was located on chromosome 11. Pi-tq1 is considered a new gene, based on its reaction to these five races and its unique map location, while the other three genes may be allelic with previously reported genes. Lines with different gene combinations were evaluated for disease reaction in field plots. Some gene combinations showed both direct effects and non-linear interaction. The fact that some of the lines without any of the four tagged genes exhibited useful levels of resistance in the field plots suggests the presence of additional genes or QTLs affecting the blast reaction segregating in this population. Received: 16 December 1999 / Accepted: 28 February 2000  相似文献   

16.
17.
Triticum monococcum L, a diploid wheat species closely related to the A genome of cultivated wheats, is highly resistant to leaf rust. A synthetic amphiploid, T. monococcumT. durum was crossed with T. aestivum cv WL711, highly susceptible to leaf rust. Leaf rust resistant derivatives were selected among backcross generations with the recurrent parent WL711 and cytologically analysed. Chromosome number of the leaf rust resistant BC1F3 progenies varied from 39 to 44. Six leaf rust resistant and susceptible bulks from different BC1F3 progenies were analysed using 29 wheat microsatellite(WMS) markers already mapped on A genome of bread wheat and found polymorphic among parents. One T. monococcum specific allele of WMS gwm136 locus was found to be closely linked to the leaf rust resistance gene in all the resistant bulks. Differential chromosome number, frequency of univalents and multivalents, however, indicated that the critical T. monococcum chromosome might be present in addition to the A genome chromosomes of wheat, substituted either for the B or D genome chromosome of wheat or translocated to chromosome 1A of wheat in one or the other bulks. The association of the T. monococcum specific allele of WMS gwm136 locus to leaf rust resistance was further confirmed from bulked segregant analysis in BC2F1 generation.  相似文献   

18.
19.
Brown planthopper (Nilaparvata lugens St?l) is one of the major insect pests of rice. A Sri Lankan indica rice cultivar Rathu Heenati was found to be resistant to all biotypes of the brown planthopper. In the present study, a total of 268 F7 RILs of IR50 and Rathu Heenati were phenotyped for their level of resistance against BPH by the standard seedbox screening test (SSST) in the greenhouse. A total of 53 SSR primers mapped on the chromosome 3 were used to screen the polymorphism between the parents IR50 and Rathu Heenati, out of which eleven were found to be polymorphic between IR50 and Rathu Heenati. The eleven primers that have shown polymorphism between the IR50 and Rathu Heenati parents were genotyped in a set of five resistant RILs and five susceptible RILs along with the parents for co-segregation analysis. Among the eleven primers, two primers namely RM3180 (18.22 Mb) and RM2453 (20.19 Mb) showed complete co-segregation with resistance. The identification of SSR markers linked with BPH resistant could be used for the maker assisted selection (MAS) program in rice breeding and to map the resistant genes on rice chromosomes for further gene cloning.  相似文献   

20.
Two quantitative trait loci (QTL) from Lycopersicon hirsutum, Rcm 2.0 and Rcm 5.1, control resistance to Clavibacter michiganensis subsp. michiganensis (Cmm). To precisely map both loci, we applied interval mapping techniques to 1,056 individuals in three populations exhibiting F2 segregation. Based on a 1-LOD confidence interval, Rcm 2.0 mapped to a 14.9-cM interval on chromosome 2 and accounted for 25.7–34.0% of the phenotypic variation in disease severity. Rcm 5.1 mapped to a 4.3-cM interval on chromosome 5 and accounted for 25.8–27.9% of the phenotypic variation. Progeny testing of recombinant plants narrowed the QTL location for Rcm 2.0 to a 4.4-cM interval between TG537-TG091 and to a 2.2-cM interval between CT202-TG358 for Rcm 5.1. A population of 750 individuals exhibiting F2 segregation was used to detect epistasis between both loci using ANOVA and orthogonal contrasts (P=0.027), suggesting that resistance was determined by additive gene action and an additive-by-additive epistatic interaction. A partial diallel mating design was used to confirm epistasis, advance superior genotypes, randomize genetic backgrounds, and create recombination opportunities. This crossing scheme created a more balanced population (n=112) containing the nine F2 genotypic classes. Parents in the diallel were selected from the previous population based on resistance, genotype at the Rcm 2.0 and Rcm 5.1 loci, and horticultural traits. A replicated trial using the diallel population confirmed additive-by-additive epistasis (P<0.0001). These results validate the gene action, intra -locus interaction, and map position of two loci controlling resistance to Cmm.Communicated by G. Wenzel  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号