首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is generally accepted that peridinin-containing dinoflagellate plastids are derived from red alga, but whether they are secondary plastids equivalent to plastids of stramenopiles, haptophytes, or cryptophytes, or are tertiary plastids derived from one of the other secondary plastids, has not yet been completely resolved. As secondary plastids, plastid gene phylogeny should mirror that of nuclear genes, while incongruence in the two phylogenies should be anticipated if their origin was as tertiary plastids. We have analyzed the phylogeny of plastid-encoded genes from Lingulodinium as well as that of nuclear-encoded dinoflagellate homologues of plastid-encoded genes conserved in all other plastid genome sequences. Our analyses place the dinoflagellate, stramenopile, haptophyte, and cryptophyte plastids firmly in the red algal lineage, and in particular, the close relationship between stramenopile plastid genes and their dinoflagellate nuclear-encoded homologues is consistent with the hypothesis that red algal-type plastids have arisen only once in evolution.  相似文献   

2.
The dinoflagellate Lepidodinium chlorophorum possesses "green" plastids containing chlorophylls a and b (Chl a+b), unlike most dinoflagellate plastids with Chl a+c plus a carotenoid peridinin (peridinin-containing plastids). In the present study we determined 8 plastid-encoded genes from Lepidodinium to investigate the origin of the Chl a+b-containing dinoflagellate plastids. The plastid-encoded gene phylogeny clearly showed that Lepidodinium plastids were derived from a member of Chlorophyta, consistent with pigment composition. We also isolated three different glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes from Lepidodinium-one encoding the putative cytosolic "GapC" enzyme and the remaining two showing affinities to the "plastid-targeted GapC" genes. In a GAPDH phylogeny, one of the plastid-targeted GapC-like sequences robustly grouped with those of dinoflagellates bearing peridinin-containing plastids, while the other was nested in a clade of the homologues of haptophytes and dinoflagellate genera Karenia and Karlodinium bearing "haptophyte-derived" plastids. Since neither host nor plastid phylogeny suggested an evolutionary connection between Lepidodinium and Karenia/Karlodinium, a lateral transfer of a plastid-targeted GapC gene most likely took place from a haptophyte or a dinoflagellate with haptophyte-derived plastids to Lepidodinium. The plastid-targeted GapC data can be considered as an evidence for the single origin of plastids in haptophytes, cryptophytes, stramenopiles, and alveolates. However, in the light of Lepidodinium GAPDH data, we need to closely examine whether the monophyly of the plastids in the above lineages inferred from plastid-targeted GapC genes truly reflects that of the host lineages.  相似文献   

3.
The chlorophyll c-containing algae comprise four major lineages: dinoflagellates, haptophytes, heterokonts, and cryptophytes. These four lineages have sometimes been grouped together based on their pigmentation, but cytological and rRNA data had suggested that they were not a monophyletic lineage. Some molecular data support monophyly of the plastids, while other plastid and host data suggest different relationships. It is uncontroversial that these groups have all acquired plastids from another eukaryote, probably from the red algal lineage, in a secondary endosymbiotic event, but the number and sequence of such event(s) remain controversial. Understanding chlorophyll c-containing plastid relationships is a first step towards determining the number of endosymbiotic events within the chromalveolates. We report here phylogenetic analyses using 10 plastid genes with representatives of all four chromalveolate lineages. This is the first organellar genome-scale analysis to include both haptophytes and dinoflagellates. Concatenated analyses support the monophyly of the chlorophyll c-containing plastids and suggest that cryptophyte plastids are the basal member of the chlorophyll c-containing plastid lineage. The gene psbA, which has at times been used for phylogenetic purposes, was found to differ from the other genes in its placement of the dinoflagellates and the haptophytes, and in its lack of support for monophyly of the green and red plastid lineages. Overall, the concatenated data are consistent with a single origin of chlorophyll c-containing plastids from red algae. However, these data cannot test several key hypothesis concerning chromalveolate host monophyly, and do not preclude the possibility of serial transfer of chlorophyll c-containing plastids among distantly related hosts.  相似文献   

4.
Phylogenetic analyses of first and second codon positions (DNA1 + 2 analysis) and amino acid sequences (protein analysis) are often thought to provide similar estimates of deep-level phylogeny. However, here we report a novel artifact influencing DNA level phylogenetic inference of protein-coding genes introduced by codon usage heterogeneity that causes significant incongruities between DNA1 + 2 and protein analyses. DNA1 + 2 analyses of plastid-encoded psbA genes (encoding of photosystem II D1 proteins) strongly suggest a relationship between haptophyte plastids and typical (peridinin-containing) dinoflagellate plastids. The psbA genes from haptophytes and a subset of the peridinin-type plastids display similar codon usage patterns for Leu, Ser, and Arg, which are each encoded by two separated codon sets that differ at first or first plus second codon positions. Our detailed analyses clearly indicate that these unusual preferences shared by haptophyte and some peridinin-type plastid genes are largely responsible for their strong affinity in DNA analyses. In particular, almost all of the support from DNA level analyses for the monophyly of haptophyte and peridinin-type plastids is lost when the codons corresponding to constant Leu, Ser, and Arg amino acids are excluded, suggesting that this signal comes from rapidly evolving synonymous substitutions, rather than from substitutions that result in amino acid changes. Indeed, protein maximum-likelihood analyses of concatenated PsaA and PsbA amino acid sequences indicate that, although 19' hexanoyloxyfucoxanthin-type (19' HNOF-type) plastids in dinoflagellates group with haptophyte plastids, peridinin-type plastids group weakly with those of stramenopiles. Consequently our results cast doubt on the single origin of peridinin-type and 19' HNOF-type plastids in dinoflagellates previously suggested on the basis of psaA and psbA concatenated gene phylogenetic analyses. We suggest that codon usage heterogeneity could be a more general problem for DNA level analyses of protein-coding genes, even when third codon positions are excluded.  相似文献   

5.
Here we use phylogenomics with expressed sequence tag (EST) data from the ecologically important coccolithophore-forming alga Emiliania huxleyi and the plastid-lacking cryptophyte Goniomonas cf. pacifica to establish their phylogenetic positions in the eukaryotic tree. Haptophytes and cryptophytes are members of the putative eukaryotic supergroup Chromalveolata (chromists [cryptophytes, haptophytes, stramenopiles] and alveolates [apicomplexans, ciliates, and dinoflagellates]). The chromalveolates are postulated to be monophyletic on the basis of plastid pigmentation in photosynthetic members, plastid gene and genome relationships, nuclear "host" phylogenies of some chromalveolate lineages, unique gene duplication and replacements shared by these taxa, and the evolutionary history of components of the plastid import and translocation systems. However the phylogenetic position of cryptophytes and haptophytes and the monophyly of chromalveolates as a whole remain to be substantiated. Here we assess chromalveolate monophyly using a multigene dataset of nuclear genes that includes members of all 6 eukaryotic supergroups. An automated phylogenomics pipeline followed by targeted database searches was used to assemble a 16-protein dataset (6,735 aa) from 46 taxa for tree inference. Maximum likelihood and Bayesian analyses of these data support the monophyly of haptophytes and cryptophytes. This relationship is consistent with a gene replacement via horizontal gene transfer of plastid-encoded rpl36 that is uniquely shared by these taxa. The haptophytes + cryptophytes are sister to a clade that includes all other chromalveolates and, surprisingly, two members of the Rhizaria, Reticulomyxa filosa and Bigelowiella natans. The association of the two Rhizaria with chromalveolates is supported by the approximately unbiased (AU)-test and when the fastest evolving amino acid sites are removed from the 16-protein alignment.  相似文献   

6.
The plastid genomes of early-diverging angiosperms were among the first land plant plastomes investigated. Despite their importance to understanding angiosperm evolution, no investigation has so far compared gene content or gene synteny of these plastid genomes with a focus on the Nymphaeales. Here, we report an evaluation and comparison of gene content, gene synteny and inverted repeat length for a set of 15 plastid genomes of early-diverging angiosperms. Seven plastid genomes of the Nymphaeales were newly sequenced for this investigation. We compare gene order and inverted repeat (IR) length across all genomes, review the gene annotations of previously published genomes, generate a multi-gene alignment of 77 plastid-encoded genes and reconstruct the phylogenetic relationships of the taxa under study. Our results show that gene content and synteny are highly conserved across early-diverging angiosperms: All species analyzed display complete gene synteny when accounting for expansions and contractions of the IRs. This conservation was initially obscured by ambiguous and potentially incorrect gene annotations in previously published genomes. We also report the presence of intact open reading frames across all taxa analyzed. The multi-gene phylogeny displays maximum support for the families Cabombaceae and Hydatellaceae, but no support for a clade of all Nymphaeaceae. It further indicates that the genus Victoria is embedded within Nymphaea. Plastid genomes of Trithuria were found to deviate by numerous substitutions and length changes in the IRs. Phylogenetic analyses further indicate that a previously published plastome named Nymphaea mexicana falls into a clade of N. odorata and should be re-evaluated.  相似文献   

7.
Despite their importance to evolution, ecology, and cell biology, eukaryotes that acquired plastids through secondary endosymbiosis remain poorly studied from a genomic standpoint. Chromalveolata, a eukaryotic supergroup proposed to have descended from a heterotrophic eukaryote that acquired a red algal plastid by secondary endosymbiosis, includes four major lineages (alveolates, cryptophytes, haptophytes, and heterokonts). The chromalveolates exhibit remarkable diversity of cellular organization, and the available data suggest that they exhibit equal diversity in their genome organization. One of the most obvious differences in cellular organization is the retention of a highly reduced red algal nucleus in cryptophytes (also known as cryptomonads), but there are other major differences among chromalveolate lineages, including the loss of photosynthesis in multiple lineages. Although the hypothesis of chromalveolate monophyly is appealing, there is limited support for the hypothesis from nuclear genes, and questions have even been raised about the monophyly of chromalveolate plastids. Evidence for the chromalveolate hypothesis from large‐scale nuclear data sets is reviewed, and alternative hypotheses are described. The potential for integrating information from chromalveolate genomics into functional genomics is described, emphasizing both the methodological challenges and the opportunities for future phylogenomic analyses of these groups.  相似文献   

8.
Unraveling the complexities of plastid transcription in plants   总被引:3,自引:0,他引:3  
  相似文献   

9.
Between 1 and 1.5 billion years ago, eukaryotic organisms acquired the ability to convert light into chemical energy through endosymbiosis with a Cyanobacterium (e.g.,). This event gave rise to "primary" plastids, which are present in green plants, red algae, and glaucophytes ("Plantae" sensu Cavalier-Smith). The widely accepted view that primary plastids arose only once implies two predictions: (1) all plastids form a monophyletic group, as do (2) primary photosynthetic eukaryotes. Nonetheless, unequivocal support for both predictions is lacking (e.g.,). In this report, we present two phylogenomic analyses, with 50 genes from 16 plastid and 15 cyanobacterial genomes and with 143 nuclear genes from 34 eukaryotic species, respectively. The nuclear dataset includes new sequences from glaucophytes, the less-studied group of primary photosynthetic eukaryotes. We find significant support for both predictions. Taken together, our analyses provide the first strong support for a single endosymbiotic event that gave rise to primary photosynthetic eukaryotes, the Plantae. Because our dataset does not cover the entire eukaryotic diversity (but only four of six major groups in), further testing of the monophyly of Plantae should include representatives from eukaryotic lineages for which currently insufficient sequence information is available.  相似文献   

10.
I discuss the evidence for a single origin of primary plastids in the context of a paper in this issue challenging this view, and I review recent evidence concerning the number of secondary plastid endosymbioses and the controversy over whether the relic plastid of apicomplexans is of red or green algal origin. A broad consensus has developed that the plastids of green algae, red algae, and glaucophytes arose from the same primary, cyanobacterial endosymbiosis. Although the analyses in this issue by Stiller and colleagues firmly undermine one of many sources of data, gene content similarities among plastid genomes used to argue for a monophyletic origin of primary plastids, the overall evidence still clearly favors monophyly. Nonetheless, this issue should not be considered settled and new data should be sought from better sampling of cyanobacteria and glaucophytes, from sequenced nuclear genomes, and from careful analysis of such key features as the plastid import apparatus. With respect to the number of secondary plastid symbioses, it is completely unclear as to whether the secondary plastids of euglenophytes and chlorarachniophytes arose by the same or two different algal endosymbioses. Recent analyses of certain plastid and nuclear genes support the chromalveolate hypothesis of Cavalier-Smith, namely, that the plastids of heterokonts, haptophytes, cryptophytes, dinoflagellates, and apicomplexans all arose from a common endosymbiosis involving a red alga. However, another recent paper presents intriguing conflicting data on this score for one of these groups—apicomplexans—arguing instead that they acquired their plastids from green algae.  相似文献   

11.
In recent years a consensus has emerged from molecular phylogenetic investigations favoring a common endosymbiotic ancestor for all chloroplasts. It is within this conceptual framework that most comparative analyses of eukaryotic biochemistry and genetics now are interpreted. One of the first and most influential sources of data leading to this consensus is the remarkable similarity in genome content among all major plastid lineages. Here we report statistical analyses of two sequence data sets, genes encoding ribosomal proteins and transfer RNAs, from representatives of the three primary plastid lineages and a mitochondrion. The latter almost certainly originated in an independent endosymbiotic association and serves as a control for similarity due to convergent evolution. When genes related to organelle‐specific function are factored out, plastid genomes appear to be no more similar to each other than they are to the mitochondrion. Total similarities in gene content, measured as deviations from the expectation from a process of random gene loss, are correlated with the extent of reduction in the two genomes compared. They do not appear to reflect putative evolutionary relationships among plastids. These analyses indicate that similarities in plastid genome content are better explained by convergent evolution due to constraint on gene loss than by a shared evolutionary history. A review of other data cited as support for a single plastid origin suggests that the alternative hypothesis of multiple origins is at least equally consistent in most cases.  相似文献   

12.
Serial transfer of plastids from one eukaryotic host to another is the key process involved in evolution of secondhand plastids. Such transfers drastically change the environment of the plastids and hence the selection regimes, presumably leading to changes over time in the characteristics of plastid gene evolution and to misleading phylogenetic inferences. About half of the dinoflagellate protists species are photosynthetic and unique in harboring a diversity of plastids acquired from a wide range of eukaryotic algae. They are therefore ideal for studying evolutionary processes of plastids gained through secondary and tertiary endosymbioses. In the light of these processes, we have evaluated the origin of 2 types of dinoflagellate plastids, containing the peridinin or 19'-hexanoyloxyfucoxanthin (19'-HNOF) pigments, by inferring the phylogeny using "covarion" evolutionary models allowing the pattern of among-site rate variation to change over time. Our investigations of genes from secondary and tertiary plastids derived from the rhodophyte plastid lineage clearly reveal "heterotachy" processes characterized as stationary covarion substitution patterns and changes in proportion of variable sites across sequences. Failure to accommodate covarion-like substitution patterns can have strong effects on the plastid tree topology. Importantly, multigene analyses performed with probabilistic methods using among-site rate and covarion models of evolution conflict with proposed single origin of the peridinin- and 19'-HNOF-containing plastids, suggesting that analysis of secondhand plastids can be hampered by convergence in the evolutionary signature of the plastid DNA sequences. Another type of sequence convergence was detected at protein level involving the psaA gene. Excluding the psaA sequence from a concatenated protein alignment grouped the peridinin plastid with haptophytes, congruent with all DNA trees. Altogether, taking account of complex processes involved in the evolution of dinoflagellate plastid sequences (both at the DNA and amino acid level), we demonstrate the difficulty of excluding independent, tertiary origin for both the peridinin and 19'-HNOF plastids involving engulfment of haptophyte-like algae. In addition, the refined topologies suggest the red algal order, Porphyridales, as the endosymbiont ancestor of the secondary plastids in cryptophytes, haptophytes, and heterokonts.  相似文献   

13.
Peridinin-pigmented dinoflagellates contain secondary plastids that seem to have undergone more nearly complete plastid genome reduction than other eukaryotes. Many typically plastid-encoded genes appear to have been transferred to the nucleus, with a few remaining genes found on minicircles. To understand better the evolution of the dinoflagellate plastid, four categories of plastid-associated genes in dinoflagellates were defined based on their history of transfer and evaluated for rate of sequence evolution, including minicircle genes (presumably plastid-encoded), genes probably transferred from the plastid to the nucleus (plastid-transferred), and genes that were likely acquired directly from the nucleus of the previous plastid host (nuclear-transferred). The fourth category, lateral-transferred genes, are plastid-associated genes that do not appear to have a cyanobacterial origin. The evolutionary rates of these gene categories were compared using relative rate tests and likelihood ratio tests. For comparison with other secondary plastid-containing organisms, rates were calculated for the homologous sequences from the haptophyte Emiliania huxleyi. The evolutionary rate of minicircle and plastid-transferred genes in the dinoflagellate was strikingly higher than that of nuclear-transferred and lateral-transferred genes and, also, substantially higher than that of all plastid-associated genes in the haptophyte. Plastid-transferred genes in the dinoflagellate had an accelerated rate of evolution that was variable but, in most cases, not as extreme as the minicircle genes. Furthermore, the nuclear-transferred and lateral-transferred genes showed rates of evolution that are similar to those of other taxa. Thus, nucleus-to-nucleus transferred genes have a more typical rate of sequence evolution, while those whose history was wholly or partially within the dinoflagellate plastid genome have a markedly accelerated rate of evolution. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Debashish Battacharya]  相似文献   

14.
Plastid DNA is absent in pollen or sperm cells of Arabidopsis thaliana. Accordingly, plastids and mitochondria, in a standard genetic cross, are transmitted to the seed progeny by the maternal parent only. Our objective was to test whether paternal plastids are transmitted by pollen as an exception. The maternal parent in our cross was a nuclear male sterile (ms1-1/ms1-1), spectinomycin-sensitive Ler plant. It was fertilized with pollen of a male fertile RLD-Spc1 plant carrying a plastid-encoded spectinomycin resistance mutation. Seedlings with paternal plastids were selected by spectinomycin resistance encoded in the paternal plastid DNA. Our data, in general, support maternal inheritance of plastids in A. thaliana. However, we report that paternal plastids are transmitted to the seed progeny in Arabidopsis at a low (3.9 x 10(-5)) frequency. This observation extends previous reports in Antirrhinum majus, Epilobium hirsutum, Nicotiana tabacum, Petunia hybrida, and the cereal crop Setaria italica to a cruciferous species suggesting that low-frequency paternal leakage of plastids via pollen may be universal in plants previously thought to exhibit strict maternal plastid inheritance. The genetic tools employed here will facilitate testing the effect of Arabidopsis nuclear mutations on plastid inheritance and allow for the design of mutant screens to identify nuclear genes controlling plastid inheritance.  相似文献   

15.
We here report a deviant genetic code, in which AUA is read as methionine (Met) instead of isoleucine (Ile), in the green alga-derived plastid in the dinoflagellate Lepidodinium chlorophorum. Although L. chlorophorum cDNA sequences of 11 plastid-encoded genes were deposited in the GenBank database, the non-canonical usage of AUA in this dinoflagellate plastid has been overlooked prior to this study. We compared 11 plastid-encoded genes of L. chlorophorum with the corresponding genes of 17 green algal plastids. Intriguingly, AUA often occurred in the L. chlorophorum sequences at codon positions that are predominantly occupied by Met amongst the green algal sequences. Coincidentally, the L. chlorophorum sequences utilized few AUA codons at the positions predominantly occupied by Ile amongst the green algal sequences. These observations clearly indicated that both AUA and AUG encode Met, while AUU and AUC encode Ile, in the L. chlorophorum plastid. Despite the rapidly-evolving nature of L. chlorophorum plastid-encoded genes, our statistical tests incorporating the deviant code suggest no significant difference in amino acid composition among the L. chlorophorum plastid and the green algal plastids considered in this study. Finally, the possible evolutionary events required for the reassignment of AUA from Ile to Met in Lepitodinium plastids were discussed.  相似文献   

16.
17.
18.
Review     
Most photosynthetic dinoflagellates harbour the peridinin plastid. This plastid is surrounded by three membranes and its characteristic pigments are chlorophyll c and the carotenoid peridinin. The evolutionary origin of this peculiar plastid remains controversial and is hotly debated. On the recently published tree of concatenated plastid-encoded proteins, dinoflagellates emerge from within the Chromista (clade containing cryptophytes, heterokonts, and haptophytes) and cluster specifically with Heterokonta. These data inspired a new version of the ‘chromalveolate’ model, according to which the peridinin plastid evolved by ‘descent with modification’ from a heterokont-like plastid that had been acquired from a rhodophyte by an ancestral chromalveolate. However, this model of plastid evolution encounters serious obstacles. Firstly, the heterokont plastid is surrounded by four membranes, which means that the ancestral peridinin plastid must have lost one of these primary membranes. However, such a loss could be traumatic, because it could potentially disturb protein import into and/or within the plastid. Secondly, on the phylogenetic tree of Dinoflagellata and Heterokonta, the first to diverge are not plastid, but heterotrophic, aplastidal taxa. Thus, when accepting the single origin of the heterokont and peridinin plastids, we would have to postulate multiple plastid losses, but such a scenario is highly doubtful when the numerous non-photosynthetic functions of plastids and their existence in heterotrophic protists, including parasitic lineages, are considered. Taking these obstacles into account, we suggest an alternative interpretation of the concatenated tree of plastid-encoded proteins. According to our hypothesis, the peridinin plastid evolved from a heterokont alga through tertiary endosymbiosis.  相似文献   

19.
Photosynthetic eukaryotes contain primary, secondary or tertiary plastids, depending on the source of the organelle (a cyanobacterium or a photosynthetic eukaryote). Plastid phylogeny is relatively well investigated, but molecular phylogenies have conflicted as a function of gene choice, taxon-representations, and analytical method. To better understand the influences of these variables, we performed analyses of a multi-gene data set based on 62 plastid-associated genes of 15 taxa representing the major plastid lineages. In an attempt to distinguish phylogenetic signal from non-phylogenetic patterns, we analyzed the data using a wide range of phylogenetic methods and examined the effect of covarion evolution and compositional bias. The data suggest that the chlorophyll c-containing plastids are monophyletic and acquired their plastids from the red algae after the emergence of the Cyanidiales. The relationships among chl c-containing plastids are particularly hard to resolve. This is the largest data set used for this purpose; the analyses show that cryptophyte plastids are sister to other chl c-containing plastids, and haptophyte and peridinin-containing dinoflagellate plastids are closely related.  相似文献   

20.
Sakaguchi M  Inagaki Y  Hashimoto T 《Gene》2007,405(1-2):47-54
By recent advance in evolutionary biology, the majority of eukaryotes are classified into six eukaryotic assemblages called as "supergroups". However, several eukaryotic groups show no clear evolutionary affinity to any of the six supergroups. Centrohelida, one of major heliozoan groups, are such an unresolved lineage. In this study, we newly determined the genes encoding translation elongation factor 2 (EF2), cytosolic heat shock protein 70 (HSP70), and cytosolic heat shock protein 90 (HSP90) from the centroheliozoan Raphidiophrys contractilis. The three Raphidiophrys genes were then combined with previously determined actin, alpha-tubulin, beta-tubulin, and SSU rRNA sequences to phylogenetically analyze the position of Centrohelida in global eukaryotic phylogeny. Although the multi-gene data sets examined in this study are the largest ones including the centroheliozoan sequences, the relationships between Centrohelida and the eukaryotic groups considered were unresolved. Our careful investigation revealed that the phylogenetic estimates were highly sensitive to genes included in the multi-gene alignment. The signal of SSU rRNA and that of alpha-tubulin appeared to conflict with one another: the former strongly prefers a monophyly of Diplomonadida (e.g., Giardia), Parabasalia (e.g., Trichomonas), Heterolobosea (e.g., Naegleria), and Euglenozoa (e.g., Trypanosoma), while the latter unites Diplomonadida, Parabasalia, Metazoa, and Fungi. In addition, EF2 robustly unites Rhodophyta and Viridiplantae, while the remaining genes considered in this study do not positively support the particular relationship. Thus, it is difficult to identify the phylogenetic relatives of Centrohelida in the present study, since strong (and some are conflicting) gene-specific "signals" are predominant in the current multi-gene data. We concluded that larger scale multi-gene phylogenies are necessary to elucidate the origin and evolution of Centrohelida.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号