首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
胰蛋白酶与ANS的相互作用   总被引:7,自引:0,他引:7  
利用荧光光谱法研究了在不同pH、压力及不同浓度的脲作用时荧光探针1,8-ANS(1-anilionnaphthalene-8-sulfonicacid)与胰蛋白酶的相互作用.发现在低pH时ANS可以结合到胰蛋白酶上,其中以pH2.0、3.0时结合最强.进一步的研究发现脲变性对胰蛋白酶结合ANS的能力有很大的影响:1.5mol/L的脲即可使得胰蛋白酶结合ANS的能力大大降低,但有趣的是即使高达4mol/L的脲对胰蛋白酶色氨酸残基荧光也无明显影响.另外,在pH猝变、脲变性、及逐渐改变压力时,胰蛋白酶色氨酸残基荧光和结合到胰蛋白酶分子上的ANS的荧光的变化大不相同.上述结果暗示胰蛋白酶的色氨酸残基所在的区域和其结合ANS的区域是两个不相同的区域.  相似文献   

2.
The interactions of quercetin and morin with trypsin were investigated by UV–vis absorption, fluorescence, synchronous fluorescence and three‐dimensional fluorescence spectra techniques under physiological pH 7.40. Quercetin and morin effectively quenched the intrinsic fluorescence of trypsin via static quenching. The process of binding quercetin and morin on trypsin was a spontaneous molecular interaction procedure. The binding constants and thermodynamic parameters at two different temperatures, the binding locality and the binding power were obtained. The conformation of trypsin was discussed by synchronous and three‐dimensional fluorescence techniques. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Tolvaptan (TF), a selective arginine vasopressin V2 receptor antagonist, was approved by the Food and Drug Administration in 2009. This study mainly investigated the differences between the binding of TF with pepsin and trypsin by using a series of spectroscopy and molecular modeling methods. Thermodynamic parameters and molecular docking results suggested that the binding of TF to pepsin and trypsin were both spontaneous but driven by different forces. For pepsin, the binding was driven by hydrogen bonds and van der Waals forces; but for trypsin, it was driven by electrostatic forces and hydrophobic forces. The quenching mechanism between TF and pepsin and trypsin was investigated by fluorescence experiments and time‐resolved fluorescence spectroscopy. Synchronous fluorescence and 3‐dimensional fluorescence were used to investigate the micro‐environmental and conformational changes of pepsin and trypsin after the insertion of TF. In addition, activity‐measurement results showed that both the pepsin and trypsin activities increased with increasing TF concentration, which may help to understand the possible effect of TF on the digestion and absorption of nutrients in vivo.  相似文献   

4.
A direct and continuous kinetic method for the fluorometric determination of alpha-chymotrypsin and trypsin is described, and 2-aminoacridone (2-AA) is introduced as a promising new fluorophore in analytical biochemistry. N-Succinyl- and N-glutaryl-phenylalanine as well as N-benzoylarginine were coupled to 2-AA via a peptide bond and the resulting fluorogenic substrates are shown to be cleaved by the two enzymes. Since the substrate and product of hydrolysis have quite different spectral properties, the increase in the long-wave fluorescence of 2-AA (measured at 570 nm under 450-nm excitation) is a parameter for the enzyme activity. Chymotrypsin (0.5 microgram/ml) and trypsin (0.1 microgram/ml) were detectable in a 3-min assay. The major advantages of the new substrates over existing ones are the analytical wavelengths which are distinctly outside the background fluorescence of most biological matter and the somewhat faster reaction rates which can reduce the time of analysis.  相似文献   

5.
The interaction of trypsin with tetramethylpyrazine (TMP) and ferulic acid (FA) was studied using fluorescence, synchronous fluorescence, UV–vis absorption, circular dichroism (CD) and three‐dimensional (3D) fluorescence spectra techniques. Using fluorescence quenching calculations, the bimolecular quenching constant (kq), apparent quenching constant (KSV), effective binding constant (Ka) and binding site number (n) were obtained. The distance r between donor and acceptor was found to be 2.049 and 1.281 nm for TMP–trypsin and FA–trypsin complexes. TMP and FA can quench the fluorescence intensity of trypsin by a static quenching procedure. Thermodynamic parameters calculated on the basis of different temperatures revealed that the binding of trypsin to TMP/FA mainly depended on van der Waals' forces and hydrogen bonds. The effect of TMP and FA on the conformation of trypsin was analyzed using synchronous fluorescence, CD, 3D fluorescence spectra and molecular docking studies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
α-Tocopherol is a required nutrient for a variety of biological functions. In this study, the binding of α-tocopherol to trypsin and pepsin was investigated using isothermal titration calorimetry (ITC), steady-state and time-resolved fluorescence measurements, circular dichroism (CD) spectroscopy, and molecular modeling methods. Thermodynamic investigations reveal that α-tocopherol binds to trypsin/pepsin is synergistically driven by enthalpy and entropy. The fluorescence experimental results indicate that α-tocopherol can quench the fluorescence of trypsin/pepsin through a static quenching mechanism. The binding ability of α-tocopherol with trypsin/pepsin is in the intermediate range, and one molecule of α-tocopherol combines with one molecule of trypsin/pepsin. As shown by circular dichroism (CD) spectroscopy, α-tocopherol may induce conformational changes of trypsin/pepsin. Molecular modeling displays the specific binding site and gives information about binding forces and α-tocopherol-tryptophan (Trp)/tyrosine (Tyr) distances. In addition, the inhibition rate of α-tocopherol on trypsin and pepsin was studied. The study provides a basic data set for clarifying the binding mechanisms of α-tocopherol with trypsin and pepsin and is helpful for understanding its biological activity in vivo.  相似文献   

7.
n‐Butanol has been widely used and its residue exists extensively in the environment. It could lead to conformational and functional changes of trypsin by forming a complex with it. Docking method and spectrographic technique were employed to the study of the complex of trypsin and n‐butanol. The fluorescence results indicated that n‐butanol can form a complex with trypsin and change the distance between tryptophan and fluorescence quenchers. The conformational changes of trypsin were proved by UV–visible absorption and synchronous fluorescence spectroscopy indicating that n‐butanol had little effect on the conformation of trypsin at a low concentration while denatured and coagulated the trypsin at a high concentration. The binding site was displayed by molecular modeling, which gave information about distances and binding forces between n‐butanol and trypsin. The results were in accordance with spectroscopic experiments. Besides, enzyme activity assay gave the dose‐response relationship of n‐butanol with trypsin.  相似文献   

8.
Abstract

The interaction of trypsin with Gensenoside-Rg1 (G-Rg1) was studied using fluorescence, ultraviolet–visible (UV–vis), and circular dichroism (CD) spectroscopies along with enzyme activity assay and molecular docking. The enzyme activity assays showed that G-Rg1 inhibited the activity of trypsin effectively. The fluorescence experiments indicated that a complex of G-Rg1–trypsin was formed and that the fluorescence of trypsin was quenched by G-Rg1 via a mixed-quenching mechanism (both static and dynamic quenching). The thermodynamic analysis suggested that hydrophobic interaction and hydrogen bond were the major forces between G-Rg1 and trypsin. According to the theory of Förster’s non-radiation energy transfer, the binding distance between trypsin and G-Rg1 was calculated to be 2.01?nm, which implies that energy transfer occurred within the complex. The experimental results obtained from UV–vis absorption spectra, synchronous fluorescence spectra, and CD spectra indicated that G-Rg1 was mainly located on tryptophan moiety and that the interaction between G-Rg1 and trypsin led to conformational changes of trypsin with some α-helix and unordered coil structures being transformed into β-sheet structures. In addition, docking results supported the above experimental findings and suggested the possible binding location of G-Rg1 on trypsin along with the possible hydrogen bonds and hydrophobic interactions between G-Rg1 and trypsin. The experimental results from this study should be useful to minimize the antinutritional effects and make full use of Genseng extracts in the food industry and also be helpful to the design of the drugs for the diseases related to overexpression of trypsin.

Communicated by Ramaswamy H. Sarma  相似文献   

9.
Being able to rapidly and sensitively detect specific enzymatic products is important when screening biological samples for enzymatic activity. We present a simple method for assaying protease activity in the presence of protease inhibitors (PIs) by measuring tryptic peptide accumulation on copolymer pMALDI target chips using a dual fluorescence/MALDI‐TOF‐MS read‐out. The small platform of the chip accommodates microliter amounts of sample and allows for rapid protein digestion. Fluorescamine labeling of tryptic peptides is used to indicate the proteolytic activity and is shown to be an affordable, simple process, yielding a strong fluorescence signal with a low background. Subsequent MALDI‐TOF‐MS analysis, performed in the same sample well, or in a parallel well without adding fluorescamine, detects the specific tryptic peptides and provides confidence in the assay. The dual read‐out method was applied to screen the inhibition activity of plant PIs, components of plant defense against herbivores and pathogens. Extracts of PIs from Solanum nigrum and trypsin were applied together to a pMALDI chip on which a suitable substrate was adsorbed. The fluorescence and MALDI‐TOF‐MS signal decrease were associated with the inhibitory effect of the PIs on trypsin. The developed platform can be modified to screen novel protease inhibitors, namely, those potentially useful for treating or preventing infection by viruses, including HIV and hepatitis C.  相似文献   

10.
The pressure denaturation of trypsin from bovine pancreas was investigated by fluorescence spectroscopy in the pressure range 0. 1-700 MPa and by FTIR spectroscopy up to 1000 MPa. The tryptophan fluorescence measurements indicated that at pH 3.0 and 0 degrees C the pressure denaturation of trypsin is reversible but with a large hysteresis in the renaturation profile. The standard volume changes upon denaturation and renaturation are -78 mL.mol-1 and +73 mL.mol-1, respectively. However, the free energy calculated from the data in the compression and decompression directions are quite different in absolute values with + 36.6 kJ.mol-1 for the denaturation and -5 kJ. mol-1 for the renaturation. For the pressure denaturation at pH 7.3 the tryptophan fluorescence measurement and enzymatic activity assays indicated that the pressure denaturation of trypsin is irreversible. Interestingly, the study on 8-anilinonaphthalene-1-sulfonate (ANS) binding to trypsin under pressure leads to the opposite conclusion that the denaturation is reversible. FTIR spectroscopy was used to follow the changes in secondary structure. The pressure stability data found by fluorescence measurements are confirmed but the denaturation was irreversible at low and high pH in the FTIR investigation. These findings confirm that the trypsin molecule has two domains: one is related to the enzyme active site and the tryptophan residues; the other is related to the ANS binding. This is in agreement with the study on urea unfolding of trypsin and the knowledge of the molecular structure of trypsin.  相似文献   

11.
Fluorescence protease assays were investigated with peptide substrates containing a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine (Dbo) as a fluorescent amino acid. The special characteristic of the fluorophore Dbo is its exceedingly long fluorescence lifetime (ca. 300 ns in water under air), which allows the use of nanosecond time-resolved fluorescence (Nano-TRF) detection to efficiently suppress shorter-lived background emission. In addition, the natural amino acids tryptophan and tyrosine can be employed as intramolecular fluorescence quenchers, which facilitates substrate design. Fourteen synthetic peptide substrates (composed of 2-19 amino acids) and five enzymes (trypsin, pepsin, carboxypeptidase A, leucine aminopeptidase, and chymotrypsin) were investigated and, in all 28 examined combinations, enzymatic activity was detected by monitoring the increase in steady state fluorescence with time and determining the reaction rates as kcat/Km values, which ranged from 0.2 to 80x10(6) M-1 min-1. The results suggest an excellent compatibility of the very small and hydrophilic fluorescent probe Dbo with solid-phase peptide synthesis and the investigated proteases. For all 14 peptides the fluorescence lifetimes before and after enzymatic cleavage were measured and Nano-TRF measurements were performed in 384-well microplates. The fluorescence lifetimes of the different peptides provide the basis for the rational design of Dbo-based fluorescent substrates for protease assays. Measurements in Nano-TRF mode revealed, in addition to efficient suppression of background fluorescence, an increased differentiation between cleaved and uncleaved substrate. The Dbo-based assays can be adapted for high-throughput screening.  相似文献   

12.
The preparation of fluorescence labeled acyl enzymes (Streptomyces griseus trypsin) was successfully carried out using specific trypsin substrates, 'inverse substrates'. The topographical analysis of the structures of the area around the active site was carried out by measuring the fluorescence spectra of the acyl enzyme preparations and these results were compared with those of bovine trypsin. It was found that the polarity of the active site vicinity at pH 5 was similar to that of bovine trypsin, whereas considerable differences were noticed at lower pH as a result of pH-induced transformation. Conformational changes of the active site induced by the interaction with the specific ligand were analyzed from the fluorescence spectra. In these responses the two enzymes were quite distinguishable. The two enzymes active sites were also different in the energy transfer experiments. The spatial arrangements of the catalytic residues relative to the intrinsic tryptophan residues were suggested to be substantially different for the two enzymes.  相似文献   

13.
In order to study the relationship between Mg++-induced fluorescence and membrane stacking, trypsin was used as a probe. Trypsin treatment diminished to a high degree the light-induced variable fluorescence and membrane stacking. Mg++ markedly increased the fluorescence yield near 680 nm and membrane stacking. Pretreatment of chloroplasts with Mg++ eliminates the effect of trypsin on cation-induced fluorescence change but not on the membrane stacking. The results presented in this contribution support the evidence that the cation-induced membrane stacking and the fluorescence yield are not linked  相似文献   

14.
C A Ghiron  J W Longworth 《Biochemistry》1979,18(17):3828-3832
Transfers of singlet energy within trypsin were investigated by measuring the fluorescence absorption anisotropy of its tryptophan residues. A ratio of the anisotropy of trypsin to that for N-acetyl-L-tryptophanamide was determined between 306 and 250 nm. The ratio had an average value of 0.7, whether the trypsin anisotropy was measured at 228 of 296 K. However, trypsin dissolved in 5 M guanidine hydrochloride showed little fluorescence depolarization at 228 K (the anisotropy ratio was approximately equal to 0.9). Thus, there is an extensive conformation-dependent energy transfer between tryptophans in trypsin. The ratio of anisotropies of tyrpsin at 304--270 nm was used to estimate energy transfer from tyrosine to tryptophan. Ratios of 1.8 and 1.7 were obtained at 296 K for the native and guanidinium-unfolded enzyme, respectively. The comparable value for N-acetyl-L-tryptophanamide was 1.7. This indicates that there is little transfer from tyrosine to tryptophan in trypsin at 296 K. As confirmation, the excitation wavelength dependencies of the indole fluorescence quantum yield were the same for native and unfolded trypsin. When experiments were performed at 228 K, the 304--270-nm anisotropy ratios were 2.6 for native and 2.1 for unfolded trypsin at pH2. This indicates that the efficiency of energy transfer from tyrosine to tryptophan increases at low temperatures. A photochemical source of error in the quantitation of the efficiency of energy transfer from tyrosine to tryptophan is also described.  相似文献   

15.
It has been shown that fluorescence yield of chloroplasts at wavelength near 684 nm can be regulated by Mg+2. But on the other hand trypsin abolishes this Mg+2-induced fluorescence change. Pretreatment of chloroplasts with Mg+2 protects the Mg+2 induced chlorophyll a fluorescence change from trypsin. It is found that the protective effect of Mg+2 pretreatment of chloroplasts against trypsin is concentration dependent (at the range btween 1.5-12 mM Mg+2). At a 12 mM MgCl2 concentration it appears that trypsin has no effect on Mg+2-induced fluorescence change. Similar results were obtained with the determination of chlorophyll contents in the chloroplasts. Plants grown at different temperature produce chloroplasts which show similar characteristics. But lower fluorescence and chlorophyll change are found in the Low temperature grown plants. The above results support the evidence that pretreating the chloroplasts with Mg+2 causes a conformafional change in LHCPs and protecting the functional group that acts as regulator to the fluorescence change against trypsin. It is also proposed that pretreatment of chloroplasts with Mg+2 also protects the connection of chlorophyll molecule with protein against trypsin in thylakoid membrane.  相似文献   

16.
In this work, the interaction between nano-TiO2 and trypsin was investigated, and the mechanisms of the interaction were explored by the methods of UV–vis detection, circular dichroism (CD), and fluorescence. The results clearly demonstrated that nano-TiO2 had an inhibitory effect on the enzyme activity. The activity was decreased to 64% of the untreated trypsin in the presence of 300 μg/ml nano-TiO2. UV spectrometry proved that nano-TiO2 had a strong physical absorption effect on trypsin, and the CD spectra revealed that the secondary structure of trypsin was partly destroyed while bound together with nano-TiO2. The ratio of α-helix increased from 7.9% to 12.8% in the presence of 100 μg/ml TiO2 while the ratio of β-sheet decreased from 48.7% to 36.4%. Furthermore, the fluorescence spectrometry indicated that nano-TiO2 could quench the intrinsic fluorescence of trypsin through static quenching. Meanwhile, the binding constant was calculated to be 1, and the process of binding of trypsin on nano-TiO2 was a spontaneous molecular interaction procedure in which electrostatic interaction plays a major role. Our study was to provide a useful approach for evaluating the health risk of nanomaterials on level of proteins.  相似文献   

17.
The conformation of the monomeric enzyme trypsin has been studied in supercritical carbon dioxide. Steady-state fluorescence spectroscopy is used to follow the conformation of trypsin in situ as a function of CO2 density. Our results show for the first time that protein denaturation can occur during the fluid compression step and that the native trypsin is only slightly more stable (1.2 kcal/mol) than the unfolded form. These results demonstrate the power of fluorescence spectroscopy as a tool for studying protein conformation and dynamics in supercritical fluids.  相似文献   

18.
β‐Carotene and astaxanthin are two carotenoids with powerful antioxidant properties, but the binding mechanisms of β‐carotene/astaxanthin to proteases remain unclear. In this study, the interaction of these two carotenoids with trypsin and pepsin was investigated using steady‐state and time‐resolved fluorescence measurements, synchronous fluorescence spectroscopy, UV–vis absorption spectroscopy and circular dichroism (CD) spectroscopy. The experimental results indicated that the quenching mechanisms of trypsin/pepsin by the two carotenoids are static processes. The binding constants of trypsin and pepsin with these two carotenoids are in the following order: astaxanthin–trypsin > astaxanthin–pepsin > β‐carotene–trypsin > β‐carotene–pepsin, respectively. Thermodynamic investigations revealed that the interaction between the two carotenoids and trypsin/pepsin is synergistically driven by enthalpy and entropy, and hydrophobic forces and electrostatic attraction have a significant role in the reactions. In addition, as shown by synchronous fluorescence spectroscopy, UV–vis absorption spectroscopy and CD, the two carotenoids may induce conformational and microenvironmental changes in trypsin/pepsin. The study provides an accurate and full basic data for clarifying the binding mechanisms of the two carotenoids with trypsin/pepsin and is helpful in understanding their effect on protein function and their biological activity in vivo. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
We have investigated the effect of limited trypsin digestion of chymotryptic myosin Subfragment-1 (S-1) on its kinetic properties. We find that Vmax (i.e., the extrapolated maximal ATPase activity at infinite actin) remains approximately constant, independent of the period of digestion. We also find that the apparent actin activation constant, KATPase, and the apparent dissociation constant, Kbinding, are both significantly weakened by trypsin digestion of S-1, and that these kinetic parameters change in concert. In addition, we investigated the effect of limited trypsin digestion on the initial phosphate burst. We find that trypsin digestion has no effect on the rate of the tryptophan fluorescence enhancement that occurs after ATP binds to digested S-1, but that the magnitude of the fluorescence enhancement falls approximately 40% with digestion. Digested S-1 also showed anomalous behavior in that the fluorescence magnitude increased and the fluorescence rate dropped in the presence of actin. Trypsin digestion also decreased the magnitude of the chemically measured Pi burst approximately 35%, but this magnitude was essentially unaffected by actin. A possible explanation for this behavior is discussed.  相似文献   

20.
用胰蛋白酶水解结合聚丙烯酰胺凝胶电泳以及纳秒内源荧光衰减谱分析对鸡心脱血红素细胞色素c在透析复性过程的自发折叠现象作进一步确定。结果显示随着透析复性时间的增加,鸡心脱血红素细胞色素c对胰蛋白酶的水解敏感性逐渐下降,内源荧光寿命值增大,与此对应的马心脱血红素细胞色素c没有发生变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号