首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The seasonal dynamics of leaf litterfall and leaf area index (LAI, all-sided basis), light penetration and the vertical distribution of surface area index, and the feasibility of estimating LAI from radiation transmittance were studied from April 1993 to March 1994 in the canopies of three cypress (Taxodium ascendens) wetlands and their surrounding slash pine (Pinus elliottii) uplands in Florida flatwoods. Annual leaf litterfall ranged from 324 to 359 g m–2 in the wetlands, which was very close to the average for 11 sites throughout Florida of 340±26 g m–2. The seasonal pattern of the normalized LAI obtained for the dominant tree species in the ecosystems could be used to construct the seasonal dynamics of LAI at the ecosystem scale. The vertical distribution of surface area index in the wetlands was significantly different from that in the surrounding pine uplands. The maximum LAI of cypress wetlands in this area was about 8 m2 m–2, which was higher than the maximum of slash pine plantations of 6 m2 m–2. Cypress leaves were strongly erectophile in space. Results showed that the LAI-2000 canopy analyzer could generally be used to estimate forest LAI, whether the forest canopy was closed or not, if an overall clumping index of 2.00 was applied. However, as LAI decreased, the relative error contained in the radiation-based LAI estimates increased. This indicated that foliage clumping at the stand scale was more important than that at the tree or branch scale.  相似文献   

2.
Causes and implications of spatial variability in postfire tree density and understory plant cover for patterns of aboveground net primary production (ANPP) and leaf area index (LAI) were examined in ninety 11-year-old lodgepole pine (Pinus contorta var. latifolia Engelm.) stands across the landscape of Yellowstone National Park (YNP), Wyoming, USA. Field studies and aerial photography were used to address three questions: (1) What is the range and spatial pattern of lodgepole pine sapling density across the burned Yellowstone landscape and what factors best explain this variability? (2) How do ANPP and LAI vary across the landscape and is their variation explained by abiotic factors, sapling density, or both? (3) What is the predicted spatial pattern of ANPP and LAI across the burned Yellowstone landscape? Stand density spanned six orders of magnitude, ranging from zero to 535,000 saplings ha?1, and it decreased with increasing elevation and with increasing distance from unburned forest (r 2?=?0.37). Postfire densities mapped from 1:30,000 aerial photography revealed that 66% of the burned area had densities less than 5000 saplings ha?1 and approximately 25% had densities greater than 10,000 saplings ha?1; stand density varied spatially in a fine-grained mosaic. New allometric equations were developed to predict aboveground biomass, ANPP, and LAI of lodgepole pine saplings and the 25 most common herbaceous and shrub species in the burned forests. These allometrics were then used with field data on sapling size, sapling density, and percent cover of graminoid, forb, and shrub species to compute stand-level ANPP and LAI. Total ANPP averaged 2.8 Mg ha?1y?1 but ranged from 0.04 to 15.12 Mg ha?1y?1. Total LAI averaged 0.80 m2 m?2 and ranged from 0.01 to 6.87 m2 m?2. Variation in ANPP and LAI was explained by both sapling density and abiotic factors (elevation and soil class) (ANOVA, r 2?=?0.80); abiotic variables explained 51%–54% of this variation. The proportion of total ANPP contributed by herbaceous plants and shrubs declined sharply with increasing sapling density (r 2?=?0.72) and increased with elevation (r 2?=?0.36). However, total herbaceous productivity was always less than 2.7 Mg ha?1 y?1, and herbaceous productivity did not compensate for tree production when trees were sparse. When extrapolated to the landscape, 68% of the burned landscape was characterized by ANPP values less than 2.0 Mg ha?1y?1, 22% by values ranging from 2 to 4 Mg ha?1y?1, and the remaining 10% by values greater than 4 Mg ha?1y?1. The spatial patterns of ANPP and LAI were less heterogeneous than patterns of sapling density but still showed fine-grained variation in rates. For some ecosystem processes, postfire spatial heterogeneity within a successional stage may be similar in magnitude to the temporal variation observed through succession.  相似文献   

3.
ABSTRACT

Structural traits of the vegetation types and plantations occurring in a protected area within the caldera of Vico Lake (Italy) were analysed. There were significant correlations among structural traits, at leaf and stand level. Leaf area index (LAI) and specific leaf area (SLA) were the most significantly correlated traits. LAI rose according to stand plant density, tree size and SLA; the highest LAI value monitored in the Fagus sylvatica L. forest was justified by the largest tree size (28.9±2.8 m height and 53±15 cm diameter) and the highest SLA (212±23 cm2 g-1). The main traits determining the variations in leaf structure among species were analysed by Principal Component Analysis (PCA). The LAI values were used to realise a map allowing us to delimit high LAI values (4.1–5.0), corresponding to the F. sylvatica forest and to the F. sylvatica forest with the sporadic presence of Quercus cerris L. and Castanea sativa Miller, mean LAI values (classes 3.1–4.0) corresponding to Corylus avellana L. plantations and to the Phragmites australis (Cav.) Trin. vegetation type, low LAI values (classes 2.6–3.0) corresponding to Q. cerris forests and C. sativa plantations.  相似文献   

4.
Rapid, reliable and meaningful estimates of leaf area index (LAI) are essential to functional characterization of forest ecosystems including biomass and primary productivity studies. Accurate LAI estimates of tropical deciduous forest are required in studies of regional and global change modeling. Tropical deciduous forest due to higher species richness, multiple species association, varied phenophases, irregular stem densities and basal cover, multistoried canopy architecture and different micro-climatic conditions offers dynamism to the understanding of the LAI dynamics of different PFTs in an ecosystem. This investigation reports a new indirect method for measurement of leaf area index (LAI) in a topical moist deciduous forest in Himalayan foothills using LAI-2000 Plant Canopy Analyzer. We measured the LAI in two seasons (summer; leaf senescence stage and post-monsoon; full green stage) in three (dry miscellaneous, sal mixed and teak plantations) plant functional types (PFT) in Katerniaghat Wildlife Sanctuary, India. Ground LAI values ranged between 2.41 and 6.89, 1.17 and 7.71, and 1.92 and 5.19 during post-monsoon season and 1.36–4.49, 0.67–3.1 and 0.37–1.83 during summer season in dry miscellaneous, sal mixed and teak plantation, respectively. We observed strong correlation between LAI and community structural parameters (tree density, basal cover and species richness), with maximum with annual litter fall (R2 > 0.8) and aboveground biomass (AGB) (R2 > 0.75). We provided equations relating LAI with AGB, which can be utilized in future studies for this region and can be reasonably extrapolated to other regions with suitable statistical extrapolations. However, the relations between LAI and other parameters can be further improved with incorporation of data from optimized and seasonal sampling. Our indirect method of LAI estimation using litter fall as a proxy, offers repetitive potential for LAI estimate in other PFTs with relatively time and cost-effective way, thereby generating quicker and reliable data for model run for regional and global change studies.  相似文献   

5.
Reliable and objective estimations of specific leaf area (SLA) and leaf area index (LAI) are essential for accurate estimates of the canopy carbon gain of trees. The variation in SLA with needle age and position in the crown was investigated for a 73-year-old Scots pine (Pinus sylvestris L.) stand in the Belgian Campine region. Allometric equations describing the projected needle area of the entire crown were developed, and used to estimate stand needle area. SLA (cm2 g−1) as significantly influenced by the position in the crown and by needle age (current-year versus 1-year-old needles). SLA increased significantly from the top to the bottom of the crown, and was significantly higher near the interior of the crown as compared to the crown edge. SLA of current-year needles was significantly higher than that of 1-year-old needles. Allometric relationships of projected needle area with different tree characteristics showed that stem diameter at breast height (DBH), tree height and crown depth were reliable predictors of projected needle area at the tree level. The allometric relationships between DBH and projected needle area at the tree level were used to predict stand-level needle area and estimate LAI. The LAI was 1.06 (m2 m−2) for current-year needles and 0.47 for 1-year-old needles, yielding a total stand LAI of 1.53.  相似文献   

6.
Production of fish communities in 15 different-types estuaries was assessed based on the data collected as a result of 90 surveys (860 seine stations) conducted in Primorye in 2002–2015. The main contribution to production was made by semi-anadromous species (the so-iuy mullet Liza haematocheilus, Far Eastern redfins Tribolodon spp., and Japanese smelt Hypomesus nipponensis, etc.). In both external (EP ext) and internal (EP int) polyhaline estuaries (EP) a substantial portion of the production was provided by resident marine species (mainly by the saffron cod Eleginus gracilis, Far Eastern smooth flounder Liopsetta pinnifasciata, and tidepool gunnel Pholis nebulosa) and southern immigrants (flathead grey mullet Mugil cephalus, dotted gizzard shad Konosirus punctatus, Japanese halfbeak Hyporhamphus sajori, and Pacific needlefish Strongylura anastomella). In mesohaline (EM) and oligohaline (EO) estuaries, the proportion of marine residents and southern immigrants was reduced to a minimum, while that of freshwater species (bighead gudgeon Gobio macrocephalus, Prussian carp Carassius gibelio, minnow Phoxinus spp., Amur bitterling Rhodeus sericeus, spiny bitterlings Acanthorhodeus spp., etc.) substantially added to the production of semi-anadromous fish. The mean fish biomass for the vegetation season varied in the 143–1463 mgC/m2 range; the mean annual production was 174–4267 mgC/m2 and the mean P/B ratio was 0.2–3.2. In 2007, the high annual production in the Artemovka River estuary, 9356 mgC/m2, was formed by the juvenile so-iuy mullet of the strong yearclass that hatched in 2006. The lowest mean production and P/B values were typical mainly for the water bodies with a salinity more often close to that of the barrier zones (5–8‰ for α-horohalinicum and 22–26‰ for β-horohalinicum), i.e., for EM and EP ext. This relationship is explained by the features of the osmotic regulation in fish of various origins and its ontogenetic variations. In particularly, the salinity in EM is more frequently close to the critical salinity (5–8‰, α-horohalinicum); thus, the proportion of juveniles of most of the species in the catches decreases (as their resistance to salinity variations is lower). This results in higher mean values of the specific and absolute production of fish communities in EP int and EO as compared to those in EM. The conclusion was made that the estimates of fish production in the estuaries of Primorye are similar to those in the well-studied estuaries of the temperate, subtropical, and tropical zones. Moreover, they are comparable to the fish production estimates for mesotrophic and eutrophic lakes in northwestern Russia, substantially lower than those for large lowland rivers, and higher than those for small rivers. The fish production in seas, including the Japan/East Sea (0.20 gC/m2) and, particularly, Peter the Great Bay (0.28 gC/m2), is mostly lower than that in Primorye estuaries.  相似文献   

7.
The species diversity, abundance, and biomass of zooplankton in the pelagic and coastal zones of Lake Kandrykul were studied in 2007–2012. The community was dominated by large Cladocera. The maximum abundance of zooplankton was observed in the anomalously warm 2010. In July, the highest abundance of zooplankton (1300 thousand ind./m3) was recorded near the southern coast in stands of mare′s-tail Hippurus vulgaris; that of biomass (9 g/m3) was found near the northern shore in stands of narrow-leaved cattail Typha angustifolia. The lowest values of the number and biomass of aquatic invertebrates were observed in the pelagial (32 thousand ind./m3 and 0.1 g/m3) and along the M5 motorway stretching aside the northeastern coast (188 thousand ind./m3 and 0.5 g/m3). The Shannon index value (1.3–2.1) corresponded to the meso-eutrophic type of water bodies. In 2007, according to the Mjaemets trophicity index (E), the lake ecosystem was oligotrophic (E 0.11); in 2010–2012 it was mesotrophic (in the pelagial, E value was 0.54; in the open littoral it was 0.76) or weakly eutrophic (E values of protected littoral were 1.52). The estimates of water trophy as assessed by zooplankton are close to those assessed by the number and biomass of phytoplankton (meso-eutrophic type). The rapid eutrophication of the lake ecosystem was revealed. In 6 years the trophic status of the lake changed from oligo-mesotrophic to meso-eutrophic.  相似文献   

8.
The abundance, biomass, vertical distribution, and taxonomic composition of soil invertebrates (springtails, macrofauna, and termites) were studied in forest formations differing in edaphic and climatic conditions: lowland forests dominated by Lagerstroemia spp. or Dipterocarpus spp. in the Cat Tien National Park and in a mountain pine (Pinus kesiya) forest on the Da Lat Plateau, southern Vietnam. In the lowland forests, springtails had a relatively low density (10000–12000 ind./m2), but their diversity was high (41–43 species in each forest). The density of large soil invertebrates (without ants and termites) reached 500–700 ind./m2 at a biomass of approximately 30 g/m2 (with earthworms accounting for up to 230 ind./m2 and 19–28 g/m2). Among termites, species of the genera Macrotermes and Odontotermes were dominant. Their total biomass in some areas exceeded 15–20 g/m2. In the mountain pine forest, the total biomass of soil macrofauna was approximately 11 g/m2, the abundance and diversity of springtails were low (7500 ind./m2, 28 species), and wood-destroying species of the genera Schedorhinotermes sp. and Coptotermes sp. dominated among termites.  相似文献   

9.
Tartary buckwheat (Fagopyrum tataricum Gaertn) has been praised as one of green foods for humans in the 21st century. Effects of fertilization on leaf photosynthetic characteristics and grain yield of tartary buckwheat has not been yet reported in detail. Our experiment was set as a split-plot factorial. The main plots and subplots were designed by fertilizer ratio and rate as: NPK 1:1:1 (A1), NPK 1:4:2 (A2), NPK 1:2:3 (A3), and 300 (B1), 450 (B2), and 600 (B3) kg (NPK) ha–1. Our results showed that the grain yield was significantly and positively correlated with the net photosynthetic rate (P N), stomatal conductance (g s), transpiration rate (E), PAR, stomatal limitation value (Ls), chlorophyll content (SPAD value), and leaf area index (LAI), while significantly and negatively correlated with intercellular CO2 concentration (C i) and water-use efficiency (WUE). The grain yield, P N, g s, E, PAR, Ls, SPAD, and LAI increased and then decreased with enhanced fertilization, and their maximum values appeared in the A2B2 treatment. The C i and WUE decreased and then increased with enhanced fertilization, and their minimum values appeared in the A2B2 treatment. Our results suggested that fertilization had significant effects on the leaf photosynthetic capacity and grain yield of tartary buckwheat Yunqiao 1, and the best fertilization strategy was 450 kg ha–1 with NPK 1:4:2.  相似文献   

10.
Canopy structure in savannas along a moisture gradient on Kalahari sands   总被引:3,自引:0,他引:3  
Measurements of tree canopy architecture were made at six savanna sites on deep, sandy soils, along a gradient of increasing aridity. There was substantial variation in the leaf area estimated within each site, using the same sample frame, but different measurement techniques. The trends in canopy properties in relation to the aridity gradient were consistent, regardless of the technique used for estimating the properties. The effective plant area index for the tree canopy (the sum of the stem area index and the leaf area index (LAI)) declined from around 2 to around 0.8 m2 m?2 over a gradient of mean annual rainfall from 1000 to 350 mm. Stems contributed 2–5% of the tree canopy plant area index. Since the tree canopy cover decreased from 50% to 20% over this aridity range, the leaf area index within the area covered by tree canopies remained fairly constant at 3–4 m2 m?2. Tree leaves tended from a horizontal orientation to a more random orientation as the aridity increased. On the same gradient, the leaf minor axis dimension decreased from around 30 mm to around 3 mm, and the mean specific leaf area decreased from 14 to 5 m2 kgha?1. There was good agreement between LAI observed in the field using a line ceptometer and the LAI inferred by the MODIS sensor on the Terra satellite platform, 2 months later in the same season.  相似文献   

11.

Key message

We developed the empirical regression models relating the direct LAI and optical LAI from initial leaf out to the leaf fall in different forest types in China.

Abstract

Optical methods have usually been used to estimate the leaf area index (LAI) in a forest stand because of rapidity and reduced labor requirements. However, few studies have reportedly improved the accuracy of the optical LAI estimates for seasonal dynamics using empirical models in different forest types. In the present study, we directly measured the seasonal dynamics of LAI from leaf out to leaf fall based on litter collection (defined as direct LAI) in a mixed evergreen–deciduous forest, an evergreen forest and a deciduous forest. Meanwhile, the effective LAI was estimated using digital hemispherical photography (DHP) and LAI-2000 instruments. Our main objective was to explore the seasonal changes in the relationship between direct LAI and effective LAI values and to find the best LAI empirical estimation model in different forest types. The season-dependent models relating direct LAI and effective LAI in each period were developed through a power function regression model in several forest types. Then, significance tests were applied to compare the different season-dependent models. The analysis showed that the season-dependent models can be merged into different aggregated models depending on forest types and optical methods. We confirm that the seasonal changes in LAI in different forest types can be fully estimated through aggregated models using both DHP and LAI-2000 methods with accuracies of more than 87 and 92 %, respectively. Meanwhile, our results suggest that the forest type (i.e., species composition of forest stand) and optical method should be seriously considered to correctly and quickly estimate the seasonal changes of LAI through the aggregated models.
  相似文献   

12.
This study estimates carbon balance in a mixed mature forest on sod-podzolic sandy-loamy soil (Albeluvisols sandy, the Prioksko-Terrasny Nature Reserve) and in a secondary deciduous forest at the Experimental Field Station of the Institute of Physicochemical and Biological Problems of Soil Sciences, Russian Academy of Sciences (gray forest loamy soil, Luvisols loamy). CO2 emissions from soils have been continuously measured every week since 1998. Net primary production was estimated in 2000–2014 by remote sensing using the normalized difference vegetation index. Long-term weather monitoring has revealed a distinctive trend toward increasing aridity of climate in the southern part of Moscow region in the observation period (1998–2014). Based on long-term ground-based and satellite monitoring data, this study shows that in the growing season, mixed and deciduous forests of the southern part of Moscow region are the sink of carbon with a mean flux of 41–112 g C m–2, depending on the contribution of root respiration. Taking into account the CO2 emissions from soils during the cold season, the forests are very likely to function as sources of atmospheric carbon at an amount of 30–100 g C m–2 yr–1, sometimes reaching very significant values of C flux (170–300 g C m–2 yr–1). In mature forest ecosystems, a significant influence on the quantitative estimate of the C balance is hampered by the CO2 emission activity from coarse woody debris, which can reach up to 14% of the total losses of C during the decomposition of soil organic matter in the mixed forest, which turns it into a persistent source of CO2 to the atmosphere. It is shown that the sink function of the forest ecosystems was more pronounced in dry years, whereas the excessive wetness diminishes their sink potential, turning the forests into sources of carbon dioxide.  相似文献   

13.
The global effort to rehabilitate and restore destroyed mangrove forests is unable to keep up with the high mangrove deforestation rates, which exceed the average pace of global deforestation. Although facilitation theory presents new possibilities for the restoration of heavily degraded mangrove sites, knowledge of tree–tree interactions in stressed mangrove forest ecosystems is too limited to utilize facilitation appropriately. The aim was to determine the mode of local interaction among stressed mangrove trees by investigating the effect of clustering on tree size and crown morphology under contrasting stand densities. The study was conducted in a dwarf Avicennia germinans forest in Northern Brazil, in which tree growth is limited by infrequent inundation and high pore-water salinity. Autoregressive regression, Voronoi tessellation and spatial point pattern statistics were used to address the spatial processes underlying tree interaction. Under low stand density (1.2 trees m?2) dwarf trees which grew in clustered cohorts of A. germinans had a less stunted crown morphology revealing the dominance of a positive neighborhood influence among plants. In contrast, dwarf trees in the denser forest stand (2.7 trees m?2) were interacting competitively as indicated by the more negative effect of neighbors on crown morphology and size. The shift from facilitative to competitive interactions is an important feature of mangrove forest regeneration under harsh environmental conditions. If mangrove trees are unable to regenerate naturally on severely degraded sites, intraspecific facilitation could be used to assist regeneration by planting seedlings in clusters and not evenly spaced.  相似文献   

14.
15.
Interactions between trees and grasses that influence leaf area index (LAI) have important consequences for savanna ecosystem processes through their controls on water, carbon, and energy fluxes as well as fire regimes. We measured LAI, of the groundlayer (herbaceous and woody plants <1-m tall) and shrub and tree layer (woody plants >1-m tall), in the Brazilian cerrado over a range of tree densities from open shrub savanna to closed woodland through the annual cycle. During the dry season, soil water potential was strongly and positively correlated with grass LAI, and less strongly with tree and shrub LAI. By the end of the dry season, LAI of grasses, groundlayer dicots and trees declined to 28, 60, and 68% of mean wet-season values, respectively. We compared the data to remotely sensed vegetation indices, finding that field measurements were more strongly correlated to the enhanced vegetation index (EVI, r 2=0.71) than to the normalized difference vegetation index (NDVI, r 2=0.49). Although the latter has been more widely used in quantifying leaf dynamics of tropical savannas, EVI appears better suited for this purpose. Our ground-based measurements demonstrate that groundlayer LAI declines with increasing tree density across sites, with savanna grasses being excluded at a tree LAI of approximately 3.3. LAI averaged 4.2 in nearby gallery (riparian) forest, so savanna grasses were absent, thereby greatly reducing fire risk and permitting survival of fire-sensitive forest tree species. Although edaphic conditions may partly explain the larger tree LAI of forests, relative to savanna, biological differences between savanna and forest tree species play an important role. Overall, forest tree species had 48% greater LAI than congeneric savanna trees under similar growing conditions. Savanna and forest species play distinct roles in the structure and dynamics of savanna–forest boundaries, contributing to the differences in fire regimes, microclimate, and nutrient cycling between savanna and forest ecosystems.  相似文献   

16.
Spatial and temporal changes in canopy structure were studied in 1988 and 1989 in a Mediterranean Quercus ilex forest in north-eastern Spain. Due to differences in precipitation patterns the 1989 growing season was drier than the 1988 growing season. Sampling was conducted in parallel at two sites which represent endpoints along a slope gradient within a watershed (ridge top at 975 m, and valley bottom at 700 m). At both sites, similar inter-annual changes in canopy structure were observed in response to differences in water availability. Samples harvested in the upper 50 cm of the canopy during 1989 exhibited a decrease in both average leaf size and the ratio of young to old leaf and stem biomass relative to samples obtained in 1988. At the whole canopy level, a decrease in leaf production efficiency and an increase in the stem to leaf biomass ratio was observed in 1989. Temporal changes in canopy leaf area index (LAI) were not statistically significant. Average LAI values of Q. ilex at the two sites were not significantly different despite differences in tree stature and density (4.6 m2 m–2 at the ridge top, and 5.3 m2 m–2 at the valley bottom). Vertical distribution of leaves and stems within the canopy was very similar at the two locations, with more than 60% of the total LAI in the uppermost metre of the canopy. The possible significance of such an LAI distribution on the canopy carbon budget is discussed.  相似文献   

17.
The response of effective quantum yield of photosystem 2 (ΔF/Fm’) to temperature was investigated under field conditions (1 950 m a.s.l.) in three alpine plant species with contrasting leaf temperature climates. The in situ temperature response did not follow an optimum curve but under saturating irradiances [PPFD >800 µìmol(photon) m?2s?1] highest ΔF/Fm’ occurred at leaf temperatures below 10°C. This was comparable to the temperature response of antarctic vascular plants. Leaf temperatures between 0 and 15°C were the most frequently (41 to 56%) experienced by the investigated species. At these temperatures, ΔF/Fm’ was highest in all species (data from all irradiation classes included) but the species differed in the temperature at which ΔF/Fm’ dropped below 50% (Soldanella pusilla >20°C, Loiseleuria procumbens >25°C, and Saxifraga paniculata >40°C). The in situ response of ΔF/Fm’ showed significantly higher ΔF/Fm’ values at saturating PPFD for the species growing in full sunlight (S. paniculata and L. procumbens) than for S. pusilla growing under more moderate PPFD. The effect of increasing PPFD on ΔF/Fm’, for a given leaf temperature, was most pronounced in S. pusilla. Despite the broad diurnal leaf temperature amplitude of alpine environments, only in S. paniculata did saturating PPFD occur over a broad range of leaf temperatures (43 K). In the other two species it was half of that (around 20 K). This indicates that the setting of environmental scenarios (leaf temperature×PPFD) in laboratory experiments often likely exceeds the actual environmental demand in the field.  相似文献   

18.
Earth observing systems are now routinely used to infer leaf area index (LAI) given its significance in spatial aggregation of land surface fluxes. Whether LAI is an appropriate scaling parameter for daytime growing season energy budget, surface conductance (Gs), water‐ and light‐use efficiency and surface–atmosphere coupling of European boreal coniferous forests was explored using eddy‐covariance (EC) energy and CO2 fluxes. The observed scaling relations were then explained using a biophysical multilayer soil–vegetation–atmosphere transfer model as well as by a bulk Gs representation. The LAI variations significantly alter radiation regime, within‐canopy microclimate, sink/source distributions of CO2, H2O and heat, and forest floor fluxes. The contribution of forest floor to ecosystem‐scale energy exchange is shown to decrease asymptotically with increased LAI, as expected. Compared with other energy budget components, dry‐canopy evapotranspiration (ET) was reasonably ‘conservative’ over the studied LAI range 0.5–7.0 m2 m?2. Both ET and Gs experienced a minimum in the LAI range 1–2 m2 m?2 caused by opposing nonproportional response of stomatally controlled transpiration and ‘free’ forest floor evaporation to changes in canopy density. The young forests had strongest coupling with the atmosphere while stomatal control of energy partitioning was strongest in relatively sparse (LAI ~2 m2 m?2) pine stands growing on mineral soils. The data analysis and model results suggest that LAI may be an effective scaling parameter for net radiation and its partitioning but only in sparse stands (LAI <3 m2 m?2). This finding emphasizes the significance of stand‐replacing disturbances on the controls of surface energy exchange. In denser forests, any LAI dependency varies with physiological traits such as light‐saturated water‐use efficiency. The results suggest that incorporating species traits and site conditions are necessary when LAI is used in upscaling energy exchanges of boreal coniferous forests.  相似文献   

19.
Wild Arachis genotypes were analysed for chlorophyll a fluorescence, carbon isotope discrimination (ΔC), specific leaf area (SLA), and SPAD readings. Associations between different traits, i.e., SLA and SPAD readings (r =–0.76), SLA and ΔC (r = 0.42), and ΔC and SPAD readings (r = 0.30) were established. The ratio of maximal quantum yield of PSII photochemistry (Fv/Fm) showed a wider variability under water deficit (WD) than that after irrigation (IR). Genotypes were grouped according to the Fv/Fm ratio as: efficient, values between 0.80 and 0.85; moderately efficient, the values from 0.79 to 0.75; inefficient, the values < 0.74. Selected Selected genotypes were evaluated also for their green fodder yield: the efficient genotypes ranged between 3.0 and 3.8, the moderately efficient were 2.6 and 2.7, the inefficient genotypes were of 2.3 and 2.5 t ha?1 per year in 2008 and 2009, respectively. Leaf water-relation traits studied in WD and IR showed that the efficient genotypes were superior in maintenance of leaf water-relation traits, especially, under WD. Potential genotypes identified in this study may enhance biomass productivity in the semiarid tropic regions.  相似文献   

20.
Nitrogen (N) is the key factor limiting photosynthetic processes and crop yield. Little is known about the response of leaf gas exchange of spring triticale (Triticosecale Wittm.) to N supply. The effect of N fertilizers on different gas exchange variables, i.e., photosynthetic rate (A), transpiration rate (E), stomatal conductance (g s), instantaneous water use efficiency (WUE) and maximum quantum yield of photosystem II (PSII) (F v/F m), chlorophyll index (SPAD, soil–plant analysis development), and the relationship of these variables with yield were studied in spring triticale grown under field conditions. Six treatments of N—0, 90, 180, 90 + 30, 90 + 30 + 30 kg ha?1 (applied as ammonium nitrate, AN) and one treatment of N 90 + 30 + 30 kg ha?1 (applied as urea ammonium nitrate solution, UAN) were compared. The analysis of variance showed that throughout the triticale growing season, N fertilization had significant effects on A, WUE, g s and SPAD. On average, N fertilizer application increased A values by 14–70%. E and F v/F m values were not influenced by N fertilization levels. The effect of growth stage and year on gas exchange variables and F v/F m and SPAD was found to be significant. At different growth stages, A values varied and maximum ones were reached at BBCH 31–33 (decimal code system of growth stages) and BBCH 59. With aging, values of A decreased independently of N fertilization level. The gas exchange variables were equally affected by both fertilizer forms. The interplay among grain yield, leaf gas exchange variables, F v/F m and SPAD of spring triticale was estimated. The statistical analysis showed that grain yield positively and significantly correlated with A and SPAD values throughout the growing season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号