首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dominant canopy tree species have strong effects on the composition and function of understory species, particularly bryophytes. In boreal forests, bryophytes and their associated microbes are a primary source of ecosystem nitrogen (N) inputs, and an important process regulating ecosystem productivity. We investigated how feather moss-associated N2-fixation rates and contribution to N budgets vary in time and space among coniferous and broadleaf deciduous forests. We measured N2-fixation rates using stable isotope (15N2) labeling in two moss species (Pleurozium schreberi and Hylocomium splendens) in broadleaf deciduous (Alaska paper birch—Betula neoalaskana) and coniferous (black spruce—Picea mariana) stands near Fairbanks, interior Alaska, from 2013 to 2015. N2-fixation rates showed substantial inter-annual variation among the 3 years. High N2-fixation was more strongly associated with high precipitation than air temperature or light availability. Overall, contribution of N2-fixation to N budgets was greater in spruce than in birch stands. Our results enhance the knowledge of the processes that drive N2-fixation in boreal forests, which is important for predicting ecosystem consequences of changing forest composition.  相似文献   

2.
In order to study the responses of dominant species to different land uses in the semiarid temperate grassland of Inner Mongolia, we tested the physiological responses of Stipa grandis, Leymus chinensis, and Artemisia frigida to mowing, grazing exclusion, and grazing land uses at the leaf and ecosystem levels. The grazing-exclusion and mowing sites released CO2, but the grazing site was a net carbon sink. L. chinensis and S. grandis contributed more to the ecosystem CO2 exchange than A. frigida. At the grazing-exclusion and mowing sites, Leymus chinensis and Stipa grandis both exhibited a higher light-saturation point and higher maximum photosynthetic rate than that at the grazing site, which increased photosynthesis and growth compared to those at the grazing site. In contrast, A. frigida possessed a higher nitrogen content than the other species, and more of the light energy used for photosynthesis, particularly at the grazing site.  相似文献   

3.
The present study aims to monitor the long-term changes in forest structure, productivity, nutrient cycling, and to accumulate ecological information on forest ecosystem in Korea. There are six long-term ecological research sites and seven flux measurement sites in Korea. The Gwangneung experimental forest (GEF) located in the central cool-temperate forest sub zone is known as a model site where many interdisciplinary researches have been ongoing actively since mid-1990s over all other Korea long-term ecological research sites (KLTER). Collected data and information through monitoring and investigation of changes in forest ecosystem have been stored in a database for analyses. The relative importance of tree species (%) of GEF was in the order Quercus serrata (20)?=?Euonymus oxyphyllus (20)?>?Carpinus laxiflora (12). The total biomass and basal area were 249.53 t ha?1 and 26.66 m2 ha?1, respectively. There were 136 taxa with 49 families, with 97 genera, 11 varieties, 3 forma, and 1 subspecies in 1 ha permanent plot. The increase in temperature has been estimated to have negative effects on tree growth. The litter decomposition rate was in the order Cornus controversa?<?C. cordata?<?C. laxiflora?<?Q. serrata. The average litterfall and soil respiration were 5803 kg ha?1 and 8600 kg C ha?1, respectively. Further, the GEF, a KLTER site tended to be almost carbon neutral with an annual growth average of 51,000?±?78,000 kg ha?1. The data from six LTER sites are digitalized and classified to build data catalogs on the ecological information system. The information on stand dynamics and materials and energy budget in the forest ecosystem is utilized for impact assessment and the study of adaptation strategy for forest ecosystem to climate change.  相似文献   

4.
This study estimates carbon balance in a mixed mature forest on sod-podzolic sandy-loamy soil (Albeluvisols sandy, the Prioksko-Terrasny Nature Reserve) and in a secondary deciduous forest at the Experimental Field Station of the Institute of Physicochemical and Biological Problems of Soil Sciences, Russian Academy of Sciences (gray forest loamy soil, Luvisols loamy). CO2 emissions from soils have been continuously measured every week since 1998. Net primary production was estimated in 2000–2014 by remote sensing using the normalized difference vegetation index. Long-term weather monitoring has revealed a distinctive trend toward increasing aridity of climate in the southern part of Moscow region in the observation period (1998–2014). Based on long-term ground-based and satellite monitoring data, this study shows that in the growing season, mixed and deciduous forests of the southern part of Moscow region are the sink of carbon with a mean flux of 41–112 g C m–2, depending on the contribution of root respiration. Taking into account the CO2 emissions from soils during the cold season, the forests are very likely to function as sources of atmospheric carbon at an amount of 30–100 g C m–2 yr–1, sometimes reaching very significant values of C flux (170–300 g C m–2 yr–1). In mature forest ecosystems, a significant influence on the quantitative estimate of the C balance is hampered by the CO2 emission activity from coarse woody debris, which can reach up to 14% of the total losses of C during the decomposition of soil organic matter in the mixed forest, which turns it into a persistent source of CO2 to the atmosphere. It is shown that the sink function of the forest ecosystems was more pronounced in dry years, whereas the excessive wetness diminishes their sink potential, turning the forests into sources of carbon dioxide.  相似文献   

5.
Odoria (Meruliaceae, Basidiomycota) is described as a new genus established for the threatened old-growth forest polypore Phaeolus alborubescens that was previously discussed in Aurantiporus or Tyromyces. It is characterized by the annual pinkish white spongy basidiocarp with strong sweetish smell, turning pale brown when drying, and has a positive reaction with KOH solution, the lack of cystidia, and the monomitic hyphal system with clamped generative hyphae often covered with fine orange crystals. Multigene phylogenetic analyses based on a combined (5.8S–nucLSU–rpb1rpb2) and a single locus (nrITS) dataset place Odoria in Meruliaceae (Phlebioid clade), close to Crustodontia, Sarcodontia, Luteoporia, and Phlebiporia. Molecular as well as anatomical study of the old type specimen of P. alborubescens is also provided.  相似文献   

6.
Coarse woody debris (CWD) plays an important role in long-term carbon storage in forest ecosystems. However, few studies have examined CWD in mangrove forests. A secondary mangrove forest on an estuary of the Trat River showed different structures along vegetation zones ranging from the river’s edge to inland parts of the forest (the SonneratiaAvicennia, Avicennia, Rhizophora, and Xylocarpus zones, respectively). The mass distribution of CWD stock in downed wood and standing dead trees along these vegetation zones was evaluated. Most of the CWD stock in the SonneratiaAvicennia and Avicennia zones was found in downed wood, while it mainly accumulated in standing dead trees in the Rhizophora and Xylocarpus zones. The total mass of CWD stock that accumulated in each zone ranged from 1.56–8.39 t ha?1, depending on the forest structure and inundation regimes. The annual woody debris flux in each zone was calculated by summing the necromass (excluding foliage) of dead trees and coarse litter from 2010 to 2013. The average woody debris flux was 5.4 t ha?1 year?1, and its zonal variation principally depended on the necromass production that resulted from forest succession, high tree-density, and lightning. Over all the zones, the above- and below-ground net primary production (ANPP and BNPP, respectively) was estimated at 18.0 and 3.6 t ha?1 year?1, respectively. The magnitude of BNPP and its contribution to the NPP was markedly increased when fine root production was taken into consideration. The contribution of the woody debris flux without root necromass to the ANPP ranged from 12 to 28%.  相似文献   

7.
Forest soils and canopies are major components of ecosystem CO2 and CH4 fluxes. In contrast, less is known about coarse woody debris and living tree stems, both of which function as active surfaces for CO2 and CH4 fluxes. We measured CO2 and CH4 fluxes from soils, coarse woody debris, and tree stems over the growing season in an upland temperate forest. Soils were CO2 sources (4.58 ± 2.46 µmol m?2 s?1, mean ± 1 SD) and net sinks of CH4 (?2.17 ± 1.60 nmol m?2 s?1). Coarse woody debris was a CO2 source (4.23 ± 3.42 µmol m?2 s?1) and net CH4 sink, but with large uncertainty (?0.27 ± 1.04 nmol m?2 s?1) and with substantial differences depending on wood decay status. Stems were CO2 sources (1.93 ± 1.63 µmol m?2 s?1), but also net CH4 sources (up to 0.98 nmol m?2 s?1), with a mean of 0.11 ± 0.21 nmol m?2 s?1 and significant differences depending on tree species. Stems of N. sylvatica, F. grandifolia, and L. tulipifera consistently emitted CH4, whereas stems of A. rubrum, B. lenta, and Q. spp. were intermittent sources. Coarse woody debris and stems accounted for 35% of total measured CO2 fluxes, whereas CH4 emissions from living stems offset net soil and CWD CH4 uptake by 3.5%. Our results demonstrate the importance of CH4 emissions from living stems in upland forests and the need to consider multiple forest components to understand and interpret ecosystem CO2 and CH4 dynamics.  相似文献   

8.
How global warming will affect soil respiration (R S) and its source components is poorly understood despite its importance for accurate prediction of global carbon (C) cycles. We examined the responses of R S, heterotrophic respiration (R H), autotrophic respiration (R A), nitrogen (N) availability, and fine-root biomass to increased temperature in an open-field soil warming experiment. The experiment was conducted in a cool-temperate deciduous forest ecosystem in northern Japan. As this forest is subjected to strong temporal variation in temperature, on scales ranging from daily to seasonal, we also investigated the temporal variation in the effects of soil warming on R S, R H, and R A. Soil temperature was continuously elevated by about 4.0°C from 2007 to 2014 using heating wires buried in the soil, and we measured soil respiratory processes in all four seasons from 2012 to 2014. Soil warming increased annual R S by 32–45%, but the magnitude of the increase was different between the components: R H and R A were also stimulated, and increased by 39–41 and 17–18%, respectively. Soil N availability during the growing season and fine-root biomass were not remarkably affected by the warming treatment. We found that the warming effects varied seasonally. R H increased significantly throughout the year, but the warming effect showed remarkable seasonal differences, with the maximum stimulation in the spring. This suggests that warmer spring temperature will produce a greater increase in CO2 release than warmer summer temperatures. In addition, we found that soil warming reduced the temperature sensitivity (Q 10) of R S. Although the Q 10 of both R H and R A tended to be reduced, the decrease in the Q 10 of R S was caused mainly by a decrease in the response of R A to warming. These long-term results indicate that a balance between the rapid and large response of soil microbes and the acclimation of plant roots both play important roles in determining the response of R S to soil warming, and must be carefully considered to predict the responses of soil C dynamics under future temperature conditions.  相似文献   

9.
The eastern hive bee Apis cerana is a major honeybee species in Asia providing numerous ecosystem services. Understanding how much the honeybees depend on natural and human-influenced plants and landscapes in different climates is important could contribute to evaluate how wild honeybees use food resources and to measure the ecosystem services. We investigated the effects of land use and climate changes on stable nitrogen and carbon isotope ratios in wild populations of A. cerana. In populations from 139 individual sites throughout Japan, we measured nitrogen (δ15N) and carbon (δ13C) stable isotope ratios and analyzed the effects of land use and climate. Our results showed that forested areas and annual precipitation had significant effects on δ15N, and that paddy fields and urban areas had significant effects on δ13C. These results suggest that A. cerana sensibly uses available food resources in the various environments and that stable nitrogen and carbon isotope ratios clearly reflect the effects of land use and climate changes on the populations of A. cerana. Thus, stable nitrogen and carbon isotope ratios in A. cerana, which widely distributes in Asia, can be used as indicators of the environments, such as land use and climate, of an area within its foraging range.  相似文献   

10.
Posidonia oceanica is a seagrass endemic to the Mediterranean Sea. Most of the primary production of the P. oceanica meadow is not directly consumed by herbivores and plays a role as dead rhizomes and roots, dead leaves and drift epibionts (hereafter necromass). The fate of this necromass is (i) sequestration within the matte, (ii) consumption by detritus-feeders within the meadow, (iii) export towards other marine ecosystems, where it constitutes a source for food webs, (iv) export towards beaches, where it constitutes banquettes, reduces the impact of waves and contributes to the beach ecosystem, and (v) export towards the terrestrial dune ecosystem. These five stocks can exchange necromass. The ecosystem services of the P. oceanica necromass are pivotal. For example, the role of P. oceanica banquettes is fundamental in protecting beaches from erosion, and the carbon sequestration within the matte contributes to the mitigation of emissions of CO2. Human impact on each of these stocks can affect the other stocks and their ecosystem services. The removal of banquettes from beaches can have a dramatic negative impact on P. oceanica ecosystem services, including the sustaining of beaches. The erosion of matte due to trawling and anchoring can remobilize the sequestrated carbon stock.  相似文献   

11.
The impact of land management actions such as prescribed fire remains a key uncertainty in understanding the spatiotemporal patterns of carbon cycling in the Western USA. We therefore quantified carbon exchange and aboveground carbon stocks following a prescribed fire in a mountain big sagebrush ecosystem located in the northern Great Basin, USA. Specifically, we examined the changes in plant functional type, leaf area index, standing aboveground carbon stocks, net ecosystem production (NEP), gross ecosystem production (GEP), and ecosystem-level respiration (Reco) for 2 years before and 7 of 9 years after a prescribed fire. Post-burn GEP and Reco exceeded pre-burn GEP and Reco within 2 years and remained elevated. The variation in GEP and Reco provided no evidence of a large and prolonged net efflux of carbon in the 9 years after the fire. Rather, NEP indicated the site was a sink before and after the fire, with little change in sink strength associated with the burn. Re-sprouting and recruitment of grasses and forbs drove the post-burn increase in GEP. Woody shrub growth was the dominant control on aboveground biomass accumulation after fire, with shrub aboveground biomass reaching ~ 11% of pre-burn biomass after 5 years. The rapid recovery of GEP and the growth of mid-successional shrubs suggest ecosystem-level carbon fluxes and stocks can recover rapidly after fire in mesic mountain big sagebrush ecosystems.  相似文献   

12.
Forest management with N-fixing trees can improve soil fertility and tree productivity, but have little information regarding belowground carbon processes and microbial properties. We aimed to evaluate the effects of three forest management regimes, which were Erythrophleum fordii (N-fixing tree), Pinus massoniana (non-N-fixing tree), and their mixed forest, on soil respiration and microbial community composition in subtropical China, using Barometric Process Separation and phospholipid fatty acid profiles, respectively. We found that the inclusions of N-fixing species in forests significantly increased the soil respiration, but have no effects on SOC and ecosystem total C stock. In addition, soil microbial communities were obviously different among the three forest management regimes. For instance, total and bacterial PLFAs were higher in the E. fordii and mixed forest than in the P. massoniana forest. Conversely, fungal PLFAs in the P. massoniana forest were elevated versus the other two forests. Soil total N, nitrate-N and pH were the key determinants shaping the microbial community composition. Our study suggests that variations in soil respiration in the studied forests could be primarily explained by the differences of root biomass and soil microbial biomass, but not soil organic carbon. Although soil fertility and microbial biomass were promoted, N-fixing plantings also brought on increased CO2 emissions in laboratory assays. The future decision of tree species selection for forest management in subtropical China therefore needs to consider the potential influences of tree species on CO2 emissions.  相似文献   

13.
Peatlands are a critical carbon store comprising 30% of the Earth’s terrestrial soil carbon. Sphagnum mosses comprise up to 90% of peat in the northern hemisphere but impacts of climate change on Sphagnum mosses are poorly understood, limiting development of sustainable peatland management and restoration. This study investigates the effects of elevated atmospheric CO2 (eCO2) (800 ppm) and hydrology on the growth of Sphagnum fallax, Sphagnum capillifolium and Sphagnum papillosum and greenhouse gas fluxes from moss–peat mesocosms. Elevated CO2 levels increased Sphagnum height and dry weight but the magnitude of the response differed among species. The most responsive species, S. fallax, yielded the most biomass compared to S. papillosum and S. capillifolium. Water levels and the CO2 treatment were found to interact, with the highest water level (1 cm below the surface) seeing the largest increase in dry weight under eCO2 compared to ambient (400 ppm) concentrations. Initially, CO2 flux rates were similar between CO2 treatments. After week 9 there was a consistent three-fold increase of the CO2 sink strength under eCO2. At the end of the experiment, S. papillosum and S. fallax were greater sinks of CO2 than S. capillifolium and the ? 7 cm water level treatment showed the strongest CO2 sink strength. The mesocosms were net sources of CH4 but the source strength varied with species, specifically S. fallax produced more CH4 than S. papillosum and S. capillifolium. Our findings demonstrate the importance of species selection on the outcomes of peatland restoration with regards to Sphagnum’s growth and GHG exchange.  相似文献   

14.
Distributions of lucidophyllous species are limited due to the fragmentation of laurel forest. On Komayama Hill in central Japan, we evaluated the colonization of typical lucidophyllous vascular plants from a 350-year-old laurel forest into adjacent abandoned secondary forest for conservation and restoration purposes. A total of 14 consecutive subplots were established along the vegetation border between the two forests (length, 30 m; width, 5 m), extending 70 m into the secondary forest; 18 quadrats of old-growth forest were surveyed. Edge effects of old-growth forest were found to play an important role in re-establishing lucidophyllous saplings and seedlings in the secondary forest. In particular, the abundances of the four dominant canopy species of the old-growth forest significantly decreased with increasing distance. Hence, they are expected to colonize further into the secondary forest and, ultimately, to dominate the canopy. However, the number of lucidophyllous species did not change with distance. Species such as Ficus nipponica, Damnacanthus indicus, Ilex integra, and Lemmaphyllum microphyllum were near-completely or completely limited to the old-growth forest. They are known to be negatively affected by forest fragmentation and were observed to be struggling to colonize the exterior of the old-growth forest even after 60 years of abandonment. Their absence highlighted the limited colonization capacities of some old-growth forest species and underlined the time required for habitat restoration following human disturbance. We conclude that it is important to consider the population dynamics of dominant canopy species and the colonization of these interior species when assessing the habitat expansion of lucidophyllous species and hence the restoration of degraded lands.  相似文献   

15.
There are two close empirical scalings, namely, the T-11 and neo-Alcator ones, that provide correct estimates for the energy confinement time in tokamaks in ohmic heating regimes in the linear part of the dependence τ E (\(\bar n_e \)) in the range of low values of \(\bar n_e \) and 〈ν e * 〉 ≤ 1. The similar character of electron energy confinement in this range, which expands with increasing magnetic field B 0, has stimulated the search for dimensionless parameters and simple physical models that would explain the experimentally observed dependences χ e ~ 1/n e and τ Ee \(\bar n_e \). In 1987, T. Okhawa showed that the experimental data were satisfactorily described by the formula χe = (c 2 pe 2 )ν e /qR, in deriving of which the random spatial leap along the radius r on the electron trajectory was assumed to be the same as that in the coefficient of the poloidal field diffusion, while the repetition rate of these leaps was assumed to be ν e /qR. In 2004, J. Callen took into account the decrease in the fraction of transient electrons with increasing toroidal ratio ? = r/R and corrected the coefficient c 2 pe 2 in Okhawa equation by the factor σ Sp neo . If one takes into account this correction and assumes that the frequency of the stochastic process is equal to the reciprocal of the half-period of rotation of a trapped electron along its banana trajectory, then the resulting expression for χe will coincide with the T-11 scaling: χ e an ∞ ?1.75(T e /A i )0.5/(n e qR) at A i = 1. If the same stochastic process also involves ions, it may result in the opening of the orbit of a trapped ion at the distance ~(c pe )(m i /m e )1/4. In this case, the calculated coefficient of electron and ion diffusion D is close to D an ≈ χ e an /2.  相似文献   

16.
The purpose of this study was to investigate the short-term effects of maize (Zea mays)-fallow rotation, residue management, and soil water on carbon mineralization in a tropical cropping system in Ghana. After 15 months of the trial, maize–legume rotation treatments had significantly (P?C 0 (μg CO2–C g?1) than maize–elephant grass (Pennisetum purpureum) rotations. The C 0 for maize–grass rotation treatments was significantly related to the biomass input (r?=?0.95; P?=?0.05), but that for the maize–legume rotation was not. The soil carbon mineralization rate constant, k (per day), was also significantly related to the rotation treatments (P?k values for maize–grass and maize–legume rotation treatments were 0.025 and 0.036 day?1 respectively. The initial carbon mineralization rate, m 0 (μg CO2–C g?1 day ?1), was significantly (P?θ. The m 0 ranged from 3.88 to 18.67 and from 2.30 to 15.35 μg CO2–C g?1 day?1 for maize–legume and maize–grass rotation treatments, respectively, when the soil water varied from 28% to 95% field capacity (FC). A simple soil water content (θ)-based factor, f w, formulated as: \(f_{\text{w}} = \left[ {\frac{{\theta - \theta _{\text{d}} }}{{\theta _{{\text{FC}}} - \theta _{\text{d}} }}} \right]\), where θ d and θ FC were the air-dry and field capacity soil water content, respectively, adequately described the variation of the m 0 with respect to soil water (R 2?=?0.91; RMSE?=?1.6). Such a simple relationship could be useful for SOC modeling under variable soil water conditions.  相似文献   

17.
Carbon balancing within the plant species is an important feature for climatic adaptability. Photosynthesis and respiration traits are directly linked with carbon balance. These features were studied in 20 wild rice accessions Oryza spp., and cultivars. Wide variation was observed within the wild rice accessions for photosynthetic oxygen evolution or photosynthetic rate (A), dark (R d), and light induced respiration (LIR) rates, as well as stomatal density and number. The mean rate of A varied from 10.49 μmol O2 m?2 s?1 in cultivated species and 13.09 μmol O2 m?2 s?1 in wild spp., The mean R d is 2.09 μmol O2 m?2 s?1 and 2.31 μmol O2 m?2 s?1 in cultivated and wild spp., respectively. Light induced Respiration (LIR) was found to be almost twice in wild rice spp., (16.75 μmol O2 m?2 s?1) compared to cultivated Oryza spp., Among the various parameters, this study reveals LIR and A as the key factors for positive carbon balance. Stomatal contribution towards carbon balance appears to be more dependent on abaxial surface where several number of stomata are situated. Correlation analysis indicates that R d and LIR increase with the increase in A. In this study, O. nivara (CR 100100, CR 100097), O. rufipogon (IR 103404) and O. glumaepatula (IR104387) were identified as potential donors which could be used in rice breeding program. Co-ordination between gas exchange and patchiness in stomatal behaviour appears to be important for carbon balance and environmental adaptation of wild rice accessions, therefore, survival under harsh environment.  相似文献   

18.
The population of earthworms has been studied in the main types of old-growth dark coniferous forests of Pechora-Ilych Nature Reserve (Komi Republic) that have not been subject to anthropogeniс impact for a long time. Ten species of earthworms have been identified. The greatest diversity (7 species), abundance, and biomass of earthworms has been revealed in the tall-grass fir–spruce forests. P. diplotetratheca had the greatest abundance. E. nordenskioldi nordenskioldi and E. atlavinyteae had the greatest biomass. The lowest species diversity (3 species), abundance, and biomass of earthworms have been found in the largefern, blueberry–green moss, and sphagnum–horsetail fir–spruce forests. The role of deadwood in maintaining the species diversity of Lumbricidae in dark coniferous forests has been demonstrated. The complexes of Lumbricidae have been considered in anthropogenically disturbed territories, where the following species with a habitat range to the south of the northern and middle taiga have been identified: L. rubellus, A. rosea, A. caliginosa caliginosa, and E. fetida.  相似文献   

19.
The source-sink relationship is one of major determinants of plant performance. The influence of reproductive sink demand on light-saturated photosynthesis (Pmax), dark respiration (RD), stomatal conductance (gs), intrinsic water-use efficiency (WUEi), contents of soluble sugar (SSC), nitrogen, carbon, and photosynthetic pigments was examined in blueberry (Vaccinium corymbosum L. cv. ‘Brigitta’) during the final stage of rapid fruit growth. Measurements were performed three times per day on developed, sun-exposed leaves of girdled shoots with 0.1, 1, and 10 fruit per leaf (0.1F:L, 1F:L, and 10F:L, respectively) and nongirdled shoots bearing one fruit per leaf (NG). Girdling and lower fruit amount induced lower Pmax, gs, N, and total chlorophyll (Chl) and higher WUEi, SSC, RD, Chl a/b ratio and carotenoids-to-chlorophylls ratio (Car/Chl) for the 1F:L and 0.1F:L treatments. The impact of girdling was counterbalanced by 10F:L, with NG and 10F:L having similar values. Variables other than Pmax, RD, gs, WUEi, and SSC were unaffected throughout the course of the day. Pmax and gs decreased during the course of the day, but gs decreased more than Pmax in the afternoon, while WUEi was increasing in almost all treatments. SSC increased from the morning until afternoon, whereas RD peaked at noon regardless of the treatment. Generally, Pmax was closely and negatively correlated to SSC, indicating that sugar-sensing mechanisms played an important role in regulation of blueberry leaf photosynthesis. With respect to treatments, Pmax and N content were positively related, while RD was not associated to substrate availability. The enhanced Car/Chl ratio showed a higher photoprotection under the lower sink demand. Changes in the source-sink relationship in ‘Brigitta’ blueberry led to a rearrangement of physiological and structural leaf traits which allowed adjusting the daily balance between carbon assimilation and absorbed light energy.  相似文献   

20.
Potassium (K+) plays a pivotal role in fruit quality improvement. Four K2O levels of 0 (K0), 150 (K1), 300 (K2), and 450 (K3) kg ha?1 were applied to pear (Pyrus bretschneideri Rehd) trees at different growth stages. The results showed that K increased individual fruit weight and yield, leading to a higher yield (16.7% on average) than K0. The leaf K concentration and sorbitol concentration in leaves and fruit were significantly increased by all four K2O levels. At all stages of development, the expression of sorbitol-6-phosphate dehydrogenase (PbS6PDH1), sorbitol dehydrogenase (PbSDH4 and PbSDH14), and sorbitol transporter (PbSOT9) genes in leaves was up-regulated by K, whereas PbS6PDH3, PbSDH2, PbSDH13, and PbSOT22 were down-regulated. During the young fruit stage, the expression of PbSDH2 and PbSDH4 in fruit was up-regulated by K, whereas at maturity, it was the opposite. Meanwhile, the up-regulation of PbS6PDH3, PbSDH12, PbSDH13, PbSDH14, and PbSOT22 in fruit was promoted by K from the enlargement stage II to the maturity stage, indicating that sorbitol assimilation and transport between source (leaf) and sink (fruit) were regulated by K. In conclusion, K regulated expression of key genes involved in sorbitol metabolism in both source and sink, leading to sugar accumulation for the improvement of fruit quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号