首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The neurotrophins influence survival and maintenance of vertebrate neurons in the embryonic, early post-natal and post-developmental stages of the nervous system. Binding of neurotrophins to receptors encoded by the gene family trk initiates signal transduction into the cell. trkA interacts preferably with nerve growth factor (NGF), trkB with brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT-4/5) and trkC with neurotrophin-3 (NT-3). By constructing 17 different chimeras and domain deletions of the human trk receptors and analyzing their binding affinities to the neurotrophins we have shown that an immunoglobulin-like domain located adjacent to the transmembrane domain is the structural element that determines the interaction of neurotrophins with their receptors. Chimeras of trkC where this domain was exchanged for the homologous sequences from trkB or trkA gained high affinity binding to BDNF or NGF respectively, while deletion of this domain in trkC or trkA abolished binding to NT-3 or NGF respectively. This domain alone retained affinities to neurotrophins similar to the full-length receptors and when expressed on NIH 3T3 cells in fusion with the kinase domain showed neurotrophin-dependent activation.  相似文献   

2.
3.
Despite their sympathetic neuroblast origin, highly malignant neuroblastoma tumors and derived cell lines have no or low expression of the neurotrophin receptor genes, trkA and trkC. Expression of exogenous trkA in neuroblastoma cells restores their ability to differentiate in response to nerve growth factor (NGF). Here we show that stable expression of trkC in SH-SY5Y neuroblastoma cells resulted in morphological and biochemical differentiation upon treatment with neurotrophin-3 (NT-3). To some extent, trkA- and trkC-transfected SH-SY5Y (SH-SY5Y/trkA and SH-SY5Y/trkC) cells resembled one another in terms of early signaling events and neuronal marker gene expression, but important differences were observed. Although induced Erk 1/2 and Akt/PKB phosphorylation was stronger in NT-3-stimulated SH-Y5Y/trkC cells, activation of the immediate-early genes tested was more prominent in NGF-treated SH-SY5Y/ trkA cells. In particular, c-fos was not induced in the SH-SY5Y/trkC cells. There were also phenotypic differences. The concentrations of norepinephrine, the major sympathetic neurotransmitter, and growth cone-located synaptophysin, a neurosecretory granule protein, were increased in NGF-treated SH-SY5Y/trkA but not in NT-3-treated SH-SY5Y/trkC cells. Our data suggest that NT-3/p145trkC and NGF/p140trkA signaling differ in some aspects in neuroblasoma cells, and that this may explain the phenotypic differences seen in the long-term neurotrophin-treated cells.  相似文献   

4.
M Bibel  E Hoppe    Y A Barde 《The EMBO journal》1999,18(3):616-622
Neurotrophins bind to two structurally unrelated receptors, the trk tyrosine kinases and the neurotrophin receptor p75(NTR). Ligand activation of these two types of receptor can lead to opposite actions, in particular the prevention or activation of programmed cell death. Many cells co-express trk receptors and p75(NTR), and we found that p75(NTR) was co-precipitated with trkA, trkB and trkC in cells transfected with both receptor types. Co-precipitation of p75(NTR) was not observed with the epidermal growth factor receptor. Experiments with deletion constructs of trkB (the most abundant trk receptor in the brain) and p75(NTR) revealed that both the extracellular and intracellular domains of trkB and p75(NTR) contribute to the interaction. Blocking autophosphorylation of trkB substantially reduced the interactions between p75(NTR) and trkB constructs containing the intracellular, but not the extracellular, domains. We also found that co-expression of p75(NTR) with trkB resulted in a clear increase in the specificity of trkB activation by brain-derived neurotrophic factor, compared with neurotrophin-3 and neurotrophin-4/5. These results indicate a close proximity of the two neurotrophin receptors within cell membranes, and suggest that the signalling pathways they initiate may interact soon after their activation.  相似文献   

5.
trkB is a tyrosine protein kinase gene highly related to trk, a proto-oncogene that encodes a receptor for nerve growth factor (NGF) and neurotrophin-3 (NT-3). trkB expression is confined to structures of the central and peripheral nervous systems, suggesting it also encodes a receptor for neurotrophic factors. Here we show that brain-derived neurotrophic factor (BDNF) and NT-3, but not NGF, can induce rapid phosphorylation on tyrosine of gp145trkB, one of the receptors encoded by trkB. BDNF and NT-3 can induce DNA synthesis in quiescent NIH 3T3 cells that express gp145trkB. Cotransfection of plasmids encoding gp145trkB and BDNF or NT-3 leads to transformation of recipient NIH 3T3 cells. In these assays, BDNF elicits a response at least two orders of magnitude higher than NT-3. Finally, 125I-NT-3 binds to NIH 3T3 cells expressing gp145trkB; binding can be competed by NT-3 and BDNF but not by NGF. These findings indicate that gp145trkB may function as a neurotrophic receptor for BDNF and NT-3.  相似文献   

6.
Survival and maintenance of vertebrate neurons are influenced by neurotrophic factors which mediate their signal by binding to specific cell surface receptors. We determined the binding sites of human neurotrophin-3 (NT-3) to its receptors trkC and gp75 by mutational analysis and compared them to the analogous interactions of nerve growth factor (NGF) with trkA and gp75. The trkC binding site extends around the central beta-strand bundle and in contrast to NGF does not make use of non-conserved loops and the six N-terminal residues. The gp75 epitope is dominated by loop residues and the C-terminus of NT-3. A novel rapid biological screening procedure allowed the identification of NT-3 mutants that are able to signal efficiently through the non-preferred receptors trkA and trkB, which are specific for NGF and BDNF respectively. Mutation of only seven residues in NT-3 resulted in a human neurotrophin variant which bound to all receptors of the trk family with high affinity and efficiently supported the survival of NGF-, BDNF- and NT-3-dependent neurons. Our results suggest that the specificity among neurotrophic factors is not solely encoded in sequence diversity, but rather in the way each neurotrophin interacts with its preferred receptor.  相似文献   

7.
Neurotrophins and their trk receptors constitute major classes of signaling molecules with important actions in the developing and adult nervous system. With regard to the sympathoadrenal cell lineage, which gives rise to sympathetic neurons and chromaffin cells, neurotrophin-3 (NT-3) and nerve growth factor (NGF) are thought to influence developing sympathetic neurons. Neurotrophin requirements of chromaffin cells of the adrenal medulla are less well understood than those for NGF. In order to provide the bases for understanding of putative functions of neurotrophins for the development and maintenance of chromaffin cells and their preganglionic innervation, in situ hybridization has been used to study the expression of brain-derived neurotrophic factor (BDNF) and NT-3, together with their cognate receptors trkB and trkC, in the adrenal gland and in the intermediolateral column (IML) of the spinal cord. BDNF is highly expressed in the embryonic adrenal cortex and later in cells of the cortical reticularis zone. Adrenal medullary chromaffin cells fail to express detectable levels of mRNAs for BDNF, NT-3, and their cognate receptors trkB and trkC. Neurons in the IML express BDNF and trkB, and low levels of NT-3 and trkC. Our data make it unlikely that BDNF and NT-3 serve as retrograde trophic factors for IML neurons but suggest roles of BDNF and NT-3 locally within the spinal cord and possibly for sensory nerves of the adrenal cortex.  相似文献   

8.
Neurotrophins, such as neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF), are potent regulators of neuronal functions. Here we show that human immune cells also produce NT-3 mRNA, secrete BDNF, and express their specific receptors trkB and trkC. The truncated trkB receptor, usually expressed in sensory neurons of the central nervous system, was also constitutively expressed in unstimulated Th cells. Full-length trkB was detectable in stimulated PBMC, B cell lines, and Th1, but not in Th2 and Th0 cell clones. Clonally restricted expression was also observed for trkC, until now not detected on blood cells. The Th1 cytokine IL-2 stimulated production of trkB mRNA but not of trkC, whereas the Th2 cytokine IL-4 enhanced NT-3 but not BDNF mRNA expression. Microbial Ags, which influence the Th1/Th2 balance, could therefore modulate the neurotrophic system and thereby affect neuronal synaptic activity of the central nervous system.  相似文献   

9.
The neurotrophin family includes NGF, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). Previous studies have demonstrated that expression of NGF and its low-affinity receptor is induced in nonneuronal cells of the distal segment of the transected sciatic nerve suggesting a role for NGF during axonal regeneration (Johnson, E. M., M. Taniuchi, and P. S. DeStefano. 1988. Trends Neurosci. 11:299-304). To assess the role of the other neurotrophins and the members of the family of Trk signaling neurotrophin receptors, we have here quantified the levels of mRNAs for BDNF, NT-3, and NT-4 as well as mRNAs for trkA, trkB, and trkC at different times after transection of the sciatic nerve in adult rats. A marked increase of BDNF and NT-4 mRNAs in the distal segment of the sciatic nerve was seen 2 wk after the lesion. The increase in BDNF mRNA was mediated by a selective activation of the BDNF exon IV promoter and adrenalectomy attenuated this increase by 50%. NT-3 mRNA, on the other hand, decreased shortly after the transection but returned to control levels 2 wk later. In Schwann cells ensheathing the sciatic nerve, only trkB mRNA encoding truncated TrkB receptors was detected with reduced levels in the distal part of the lesioned nerve. Similar results were seen using a probe that detects all forms of trkC mRNA. In the denervated gastrocnemius muscle, the level of BDNF mRNA increased, NT-3 mRNA did not change, while NT-4 mRNA decreased. In the spinal cord, only small changes were seen in the levels of neutrophin and trk mRNAs. These results show that expression of mRNAs for neurotrophins and their Trk receptors is differentially regulated after a peripheral nerve injury. Based on these results a model is presented for how the different neurotrophins could cooperate to promote regeneration of injured peripheral nerves.  相似文献   

10.
Abstract: Monoamine-activated α2-macroglobulin (α2M) was shown to reduce the dopamine concentration in corpus striatum of adult rat brains and inhibit other neuronal functions in vivo and in vitro. As brain-derived neurotrophic factor, neurotrophin-4, and neurotrophin-3 are important neurotrophic factors for dopaminergic neurons, the effect of monoamine-activated α2M on signal transduction by trkB and trkC was investigated. The results show that monoamine-activated α2M binds to trkB and inhibits brain-derived neurotrophic factor/neurotrophin-4-promoted autophosphorylation of trkB in a dose-dependent manner in both trkB-expressing NIH3T3 (NIH3T3-trkB) and human neuroblastoma SH-SY5Y cells. Monoamine-activated α2M also blocks tyrosine phosphorylation of phospholipase C-γ1 and extracellular signal-regulated protein kinase (ERK)-1, which are key intracellular proteins involved in trkB signal transduction. Similarly, monoamine-activated α2M inhibits tyrosine phosphorylation of neurotrophin-3-induced trkC and its signal transduction in a dose-dependent manner in NIH3T3 cells expressing trkC (NIH3T3-trkC). In contrast to monoamine-activated α2M, normal α2M has little or no significant inhibitory effect on the phosphorylation of trkB and trkC. In addition, the retinoic acid-promoted tyrosine phosphorylation of phospholipase C-γ1, ERK-1, and/or ERK-2 in SH-SY5Y cells was unaffected by monoamine-activated α2M; this suggests that the inhibitory effect of activated α2M on the neurotrophin-stimulated phosphorylation of intracellular signalling proteins may be specific. Taken together, the data indicate that activated α2M is a pan-trk inhibitor, which by virtue of its binding to trk receptors may block trk-mediated signal transduction in dopaminergic neurons and lead to reduction of dopamine concentration in corpus striatum.  相似文献   

11.
Abstract: Phospholipase Cγ1 (PLC-γ1) is involved at an early step in signal transduction of many hormones and growth factors and catalyzes the hydrolysis of phosphatidylinositol (PI) 4,5-bisphosphate to diacylglycerol and inositol trisphosphate, two potent intracellular second messenger molecules. The transformation of PC12 cells into neuron-like cells induced by nerve growth factor is preceded by a rapid stimulation of PLC-γ1 phosphorylation and PI hydrolysis. The present study analyzed the effects of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) on phosphorylation of PLC-γ1 in primary cultures of embryonic rat brain cells. BDNF and NT-3 stimulated the phosphorylation of PLC-γ1, followed by hydrolysis of PI. The stimulation of PLC-γ1 phosphorylation occurred within 20 s after addition of BDNF or NT-3 and lasted up to 30 min, with a peak after 4 min. ED50 values were similar for BDNF and NT-3, with τ25 ng/ml. Phosphorylation of PLC-γ1 by BDNF and NT-3 was found in cultures from all major brain areas. K-252b, a compound known to inhibit selectively neurotrophin actions by interfering with the phosphorylation of trk -type neurotrophin receptors, prevented the BDNF- and NT-3-stimulated phosphorylation of PLC-γ1. Receptors of the trk type were coprecipitated with anti-PLC-γ1 antibodies. The presence of trkB mRNA in the cultures was substantiated by northern blot analysis. The action of BDNF and NT-3 seems to be neuron specific because no phosphorylation of PLC-γ1 was observed in cultures of nonneuronal brain cells. The results provide evidence that developing neurons of the cerebral cortex and other brain areas are responsive to BDNF and NT-3, and they indicate that the transduction mechanism of BDNF and NT-3 in the brain involves rapid phosphorylation of PLC-γ1 followed by PI hydrolysis.  相似文献   

12.
K-252b, a protein kinase inhibitor, has been shown earlier to inhibit nerve growth factor actions on cholinergic neurons of the basal forebrain. In the present study, K-252b was found to prevent trophic actions of two other neurotrophins, brain-derived neurotrophic factor, and neurotrophin-3, on central cholinergic and dopaminergic neurons, peripheral sensory neurons, and PC12 pheochromocytoma cells, when used at greater than 2 microM concentration. Comparable actions of nonneurotrophin growth factors were not affected. Surprisingly, at 0.1-100 nM, K-252b selectively enhanced the trophic action of neurotrophin-3 on central cholinergic neurons, peripheral sensory neurons, and PC12 cells. In PC12 cells, K-252b potentiated the neurotrophin-3-induced tyrosine phosphorylation of trk, a protein kinase responsible for transmitting neurotrophin signals. Of the three structurally related nerve growth factor inhibitors, K-252a, K-252b, and staurosporine, only the first two also mediated neurotrophin-3 potentiation. These findings indicate that K-252b generally and selectively potentiates the neurotrophic action of neurotrophin-3 and suggest that this action involves trk-type neurotrophin receptors.  相似文献   

13.
Neurotrophic factors are essential for neuronal survival and function. Recent data have demonstrated that the product of the tyrosine kinase trk proto-oncogene binds NGF and is a component of the high affinity NGF receptor. Analysis of the trkB gene product, gp145trkB, in NIH 3T3 cells indicates that this tyrosine kinase receptor is rapidly phosphorylated on tyrosine residues upon exposure to the NGF-related neurotrophic factors BDNF and NT-3. Furthermore, gp145trkB specifically binds BDNF and NT-3 in NIH 3T3 cells and in hippocampal cells, but does not bind NGF. Thus, the trk family of receptors are likely to be important signal transducers of NGF-related trophic signals in the formation and maintenance of neuronal circuits.  相似文献   

14.
A rapid, sensitive, and high-capacity assay has been developed to quantify ligand-induced receptor tyrosine kinase activation in terms of receptor phosphorylation. The assay, termed a “kinase receptor activation” or KIRA-ELISA, utilizes two separate microtiter plates, one for cell culture and ligand stimulation, and the other for receptor capture and phosphotyrosine ELISA. The assay was developed for analysis of neurotrophin-induced trkA, trkB, or trkC activation. It utilizes a trkA, trkB, or trkC receptor fused with a 26-amino-acid polypeptide flag derived from HSV glycoprotein D (gD.trkA, B, or C, respectively) on the amino-terminus, stably transfected into CHO cells. Stimulated receptors were solubilized with Triton X-100 buffer and then captured in ELISA wells coated with gD-specific mAb. The degree of receptor autophosphorylation was quantified by anti-phosphotyrosine ELISA. Reproducible standard curves were generated with an EC50of approximately 16 ng/ml NGF for gD.trkA KIRA, 11 ng/ml for NT4/5 and 20 ng/ml for BDNF in gD.trkB KIRA, and 9.4 ng/ml for NT3 in gD.trkC KIRA. When the gD.trkA KIRA assay was used to quantify serum NGF or NT3 following administration to rats, the assay agreed well with currently existing ELISA assays. When the gD.trkA KIRA assay was used to test several NGF variants, as well as NGF stability samples, the capacity of the assay to quantify ligand bioactivity compared well with the more widely used radioreceptor binding and PC 12 cell survival assays. The gD.trk KIRA assays show great potential as rapid bioassays, capable of quantitative, consistent, and stability indicating analyses.  相似文献   

15.
Neurotrophins play an essential role in nerve systems. Recent reports indicated that neurotrophins [nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5)] have numerous effects on non-neural cells, especially on immune cells. However, whether lung cells express neurotrophins and/or their receptors (TrkA for NGF, TrkB for BDNF and NT-4/5, and TrkC for NT-3) has never been systematically investigated. We investigated constitutive expression of neurotrophin family and their Trk receptor family in alveolar macrophages and other peripheral lung cells of mice. New findings were: (1) RT-PCR for neurotrophins and their receptors detected NT-3 and NT-4/5 in alveolar macrophages, BDNF, NT-4/5, trkA, the truncated form of trkB, and trkC in lung homogenate, but no trks in alveolar macrophages, (2) immunohistochemistry for neurotrophin receptors detected TrkA in capillary cells, the truncated form of TrkB, and TrkC in interstitial macrophages, (3) immunoelectron microscopy for TrkC revealed expression of TrkC on the surface of interstitial macrophages, and (4) in situ hybridization for neurotrophins detected BDNF in interstitial macrophages and alveolar type I cells, NT-3 in alveolar macrophages, and NT-4/5 in alveolar and interstitial macrophages. These findings indicate that a previously unknown signal trafficking occurs through neurotrophins in peripheral lung.  相似文献   

16.
17.
Abstract: Exposure of human neuroblastoma cells (IMR-32) to a peptide mimic of the cytoplasmic amphiphilic domain of the common neurotrophin receptor (p75NTR 367–379) resulted in enhanced nerve growth factor (NGF)-mediated inhibition of cell invasion in vitro. The peptide also enhanced NGF-mediated neurite extension and GAP-43 gene expression but had no effect on NGF-mediated cell survival. These latter functional effects mimicked influences on NGF-mediated neurite growth in other trkA-positive cells as reported previously. NGF-dependent trkA phosphorylation was significantly enhanced by the presence of the peptide, whereas high-affinity binding of 125I-NGF, both NGF receptors mRNA and protein expression, and trkA dimer/monomer ratios were not influenced. The studies suggest that ligand-mediated trkA activation has differential effects on cell motility phenomena and that the amphiphilic domain of p75NTR has a role in this differential signaling.  相似文献   

18.
《The Journal of cell biology》1993,122(5):1053-1065
We examined the expression of the neurotrophins (NTFs) and their receptor mRNAs in the rat trigeminal ganglion and the first branchial arch before and at the time of maxillary nerve growth. The maxillary nerve appears first at embryonic day (E)10 and reaches the epithelium of the first branchial arch at E12, as revealed by anti-L1 immunohistochemistry. In situ hybridization demonstrates, that at E10- E11, neurotrophin-3 (NT-3) mRNA is expressed mainly in the mesenchyme, but neurotrophin-4 (NT-4) mRNA in the epithelium of the first branchial arch. NGF and brain-derived neurotrophic factor (BDNF) mRNAs start to be expressed in the distal part of the first brachial arch shortly before its innervation by the maxillary nerve. Trigeminal ganglia strongly express the mRNA of trkA at E10 and thereafter. The expression of mRNAs for low-affinity neurotrophin receptor (LANR), trkB, and trkC in trigeminal ganglia is weak at E10, but increases by E11-E12. NT-3, NT-4, and more prominently BDNF, induce neurite outgrowth from explant cultures of the E10 trigeminal ganglia but no neurites are induced by NGF, despite the expression of trkA. By E12, the neuritogenic potency of NGF also appears. The expression of NT-3 and NT-4 and their receptors in the trigeminal system prior to target field innervation suggests that these NTFs have also other functions than being the target-derived trophic factors.  相似文献   

19.
Abstract. We have studied carcinoma NT, a transplantable mouse adenocarcinoma of spontaneous origin. Cells labelled with [3H]thymidine ([3H]TdR) were restricted to a narrow zone around the periphery of this tumour and were also found in rings up to 50 μ m wide, around isolated blood vessels in the central necrotic area. Labelling with [3H]deoxyuridine ([3H]UdR), another DNA synthesis precursor, produced a very different pattern. The labelled zone around the periphery was much wider than with [3H]TdR, and [3H]UdR labelled cells were found up to 110 μ m from isolated vessels. [3H]iododeoxyuridine ([3H]IUdR) gave the same pattern of labelling as [3H]UdR. In the heavily labelled zone, within 1 mm of the tumour periphery, the labelling index (LI) was 51% after [3H]UdR or [3H]IUdR injection, and only 36% with [3H]TdR.
The data show that at least half of the DNA-synthesizing cells in this tumour did not incorporate [3H]TdR. Previous workers reported cell loss factors for carcinoma NT of 60% calculated from [3H]TdR labelling data and 30% from the rate of loss of [125I]UdR. The present work suggests that calculations based on [125I]UdR data are more likely to be accurate for carcinoma NT than those using [3H]TdR data.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号