首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
P2X7-type purinergic receptors are distributed throughout the nervous system where they contribute to physiological and pathological functions. In the retina, this receptor is found in both inner and outer cells including microglia modulating signaling and health of retinal cells. It is involved in retinal neurodegenerative disorders such as retinitis pigmentosa and age-related macular degeneration (AMD). Experimental studies demonstrated that saffron protects photoreceptors from light-induced damage preserving both retinal morphology and visual function and improves retinal flicker sensitivity in AMD patients. To evaluate a possible interaction between saffron and P2X7 receptors (P2X7Rs), different cellular models and experimental approaches were used. We found that saffron positively influences the viability of mouse primary retinal cells and photoreceptor-derived 661W cells exposed to ATP, and reduced the ATP-induced intracellular calcium increase in 661W cells. Similar results were obtained on HEK cells transfected with recombinant rat P2X7R but not on cells transfected with rat P2X2R. Finally, patch-clamp experiments showed that saffron inhibited cationic currents in HEK-P2X7R cells. These results point out a novel mechanism through which saffron may exert its protective role in neurodegeneration and support the idea that P2X7-mediated calcium signaling may be a crucial therapeutic target in the treatment of neurodegenerative diseases.  相似文献   

2.
Leishmania and other parasites display several mechanisms to subvert host immune cell function in order to achieve successful infection. The ATP receptor P2X7, an agonist-gated cation channel widely expressed in macrophages and other cells of the immune system, is also coupled to inflammasome activation, IL-1 beta secretion, production of reactive oxygen species, cell death and the induction of the permeabilization of the plasma membrane to molecules of up to 900 Da. P2X7 receptors can function as an effective microbicidal triggering receptor in macrophages infected with several microorganisms including Mycobacteria tuberculosis, Chlamydia and Leishmania. We have previously shown that its expression is up-regulated in macrophages infected with L. amazonensis and that infected cells also display an increase in P2X7-induced apoptosis and membrane permeabilization to some anionic fluorescent dyes. In an independent study we recently showed that the phenomenon of macrophage membrane permeabilization can involve at least two distinct pathways for cations and anions respectively. Here, we re-addressed the effects of ATP-induced P2X7-associated phenomena in macrophages infected with L. amazonensis and demonstrated that the P2X7-associated dye uptake mechanisms are differentially modulated. While the membrane permeabilization for anionic dyes is up-modulated, as previously described, the uptake of cationic dyes is strongly down-modulated. These results unveil new characteristics of two distinct permeabilization mechanisms associated with P2X7 receptors in macrophages and provide the first evidence indicating that these pathways can be differentially modulated in an immunologically relevant situation. The possible importance of these results to the L. amazonensis escape mechanism is discussed.  相似文献   

3.
P2X7 receptor-mediated apoptosis of human cervical epithelial cells   总被引:1,自引:0,他引:1  
Normal human ectocervical epithelial (hECE) cells undergo apoptosis in culture. Baseline apoptosis could be increased by shifting cells to serum-free medium and blocked by lowering extracellular calcium. Treatment with the ATPase apyrase attenuated baseline apoptosis, suggesting that extracellular ATP and purinergic mechanisms control the apoptosis. Treatment with ATP and the P2X7 receptor analog 2'-3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate (BzATP) increased apoptosis significantly, in a time- and dose-related manner. The threshold of ATP effect was 0.5 µM in hECE cells and 1 µM in CaSki cancer cells. The apoptotic effect of BzATP was additive in part to that of tumor necrosis factor (TNF)-, and it could be attenuated by lowering extracellular calcium and by treatment with the caspase-9 inhibitor Leu-Glu-His-Asp-O-methyl-fluoromethylketone (LEHD-FMK). Treatment with BzATP activated caspase-9, and, in contrast to TNF-, it had only a mild effect on caspase-8. Both BzATP and TNF- activated caspase-3, suggesting that BzATP activates predominantly the mitochondrial apoptotic pathway. Both hECE and CaSki cells secrete ATP into the extracellular fluid, and mean ATP activity in conditioned medium was 0.5 µM, which is in the range of values that suffice to activate the P2X7 receptor. On the basis of these findings we propose a novel autocrine-paracrine mechanism of cervical cell apoptosis that operates by P2X7 receptor control of cytosolic calcium and utilizes the mitochondrial apoptotic pathway. cervix; epithelium; ATP; 2'-3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate  相似文献   

4.
Recruitment of oligodendrocyte precursor cells (OPCs) to the lesions is the most important event for remyelination after central nervous system (CNS) injury or in demyelinating diseases. However, the underlying molecular mechanism is not fully understood. In the present study, we found high concentrations of ATP could increase the number of migrating OPCs in vitro, while after pretreatment with oxidized ATP (a P2X7 receptor antagonist), the promotive effect was attenuated. The promotive effect of 2′(3′)-O-(4-benzoylbenzoyl) adenosine 5′-triphosphate (BzATP) (a P2X7 receptor agonist) was more potent than ATP. After incubation with BzATP, the activity of Fyn, one member of the Src family of kinases, was enhanced. Moreover, the interaction between P2X7 and Fyn was identified by co-immunoprecipitation. After blocking the activity of Fyn or down-regulating the expression of Fyn, the migration of OPCs induced by BzATP was inhibited. These data indicate that P2X7 receptors/Fyn may mediate ATP-induced OPC migration under pathological conditions.

Electronic supplementary material

The online version of this article (doi:10.1007/s11302-015-9458-3) contains supplementary material, which is available to authorized users.  相似文献   

5.
The activity-guided fractionation of the MeOH extract of the rhizomes and roots of Nardostachys chinensis led to the isolation of two new sesquiterpenoids, narchinol B (8) and narchinol C (9), along with 10 known compounds, ursolic acid (1), nardosinone (2), pinoresinol (3), desoxo-narchinol A (4), kanshone B (5), epoxyconiferyl alcohol (6), debilon (7), 4α,5-dimethyl-1,3-dioxo-1,2,3,4,4α,5,6,7-octahydronaphthalene (10), p-coumaric acid (11), and isoferulic acid (12). Their structures were determined using spectroscopic techniques, which included 1D- and 2D-NMR. Among the isolates, compounds 2, 4, 5, 8 and 9 showed inhibitory activity against LPS-induced NO production with IC(50) values of 4.6-21.6 μM.  相似文献   

6.
Establishment of an assay for P2X7 receptor-mediated cell death   总被引:1,自引:0,他引:1  
The P2X7 receptor, an ATP-gated cation channel, induces cell death in immune cells and is involved in neurodegenerative diseases. Although the receptor plays various roles in these diseases, the cellular mechanisms involved are poorly understood and antagonists are limited. Here, the development of a cell-based assay for human P2X7 receptor is reported. We established permanent lines of HEK 293 cells expressing a high level of hP2X7 receptor. Functional activity of the hP2X7 receptor was confirmed by whole-cell patch recording of ATP-induced ion currents. Prolonged exposure to ATP resulted in death of the hP2X7-expressing HEK 293 cells and this cell death could be quantified. Two known P2X7 antagonists, PPADS and KN-62, blocked ATP-induced death in a concentration-dependent manner. Thus, this assay can be used to screen for new antagonists of hP2X7 receptors.  相似文献   

7.
ATP downregulates P2X7 and inhibits osteoclast formation in RAW cells   总被引:1,自引:0,他引:1  
Multinucleated giant cells derive from fusion of precursor cells of the macrophage lineage. It has been proposed that the purinoreceptor P2X7 is involved in this fusion process. Prolonged exposure of macrophages to ATP, the ligand for P2X7, induces the formation of plasma membrane pores and eventual cell death. We took advantage of this cytolytic property to select RAW 264.7 (RAW) cells that lacked P2X7 function by maintaining them in ATP (RAW ATP-R cells). RAW ATP-R cells failed to fuse to form multinucleated osteoclasts in response to receptor activator nuclear factor-B ligand, although they did become positive for the osteoclast marker enzyme tartrate-resistant acid phosphatase, and upregulated expression of other osteoclast marker genes. RAW ATP-R cells and wild-type RAW cells expressed similar amounts of P2X7 protein, but little P2X7 was present on the surface of RAW ATP-R cells. After ATP was removed from the medium of RAW ATP-R cells, the cells reexpressed P2X7 on the cell surface, regained sensitivity to ATP, and formed multinucleated osteoclasts. These results suggest that P2X7 or another protein that is downregulated in concert with P2X7 is involved either in the mechanics of cell fusion to form osteoclasts or in a signaling pathway proximal to this event. These results also suggest that P2X7 may be regulated by ligand-mediated internalization and that extracellular ATP may regulate the formation of osteoclasts and other multinucleated giant cells. macrophage fusion; P2X receptor; purinergic receptor; receptor activator nuclear factor-B  相似文献   

8.
Chrysin (5,7-Dihydroxyflavone) is an active flavonoid isolated from Scutellariae Radix which has been used to treat pneumonia, laryngopharyngitis, jaundice, shigellosis, and breast mass in Korea, China, and Japan. Chrysin has been already reported to inhibit inducible nitric oxide synthase and cyclooxygenase-2 in lipopolysaccharideinduced macrophages. However, the effect of chrysin on virus-induced macrophages is not fully reported. In this study, the anti-inflammatory effect of chrysin on doublestranded RNA (dsRNA)-induced macrophages was examined. Production of Nitric oxide (NO), various cytokines, as well as calcium release and mRNA expression of CHOP and Fas in dsRNA [polyinosinic-polycytidylic acid]-induced RAW 264.7 mouse macrophages were evaluated. Chrysin restored the cell viability in dsRNA [polyinosinicpolycytidylic acid]-induced RAW 264.7 mouse macrophages at concentrations of up to 50 μM. Chrysin significantly inhibited the production of NO, IL-1α, IL-1β, IL-6, IL-10, IP-10, G-CSF, GM-CSF, LIF, LIX/CXCL5, MCP-1, MCSF, MIP-1α, MIP-1β, MIP-2, RANTES, TNF-α, and VEGF as well as calcium release and mRNA expression of CHOP and Fas in dsRNA [polyinosinic-polycytidylic acid]-induced RAW 264.7 mouse macrophages (P< 0.05). These data suggest that chrysin has anti-inflammatory properties related with its inhibition of nitric oxide, cytokines, chemokines, and growth factors in dsRNA-induced macrophages via the ER stress-CHOP pathway.  相似文献   

9.
Interaction of P2X7 receptor with P2X4 receptor has recently been suggested, but it remains unclear whether P2X4 receptor is involved in P2X7 receptor-mediated events, such as cell death of macrophages induced by high concentrations of extracellular ATP. Here, we present evidence that P2X4 receptor does play a role in P2X7 receptor-dependent cell death. Treatment of mouse macrophage RAW264.7 cells with 1mM ATP induced Ca(2+) influx, non-selective large pore formation, activation of extracellular signal-regulated protein kinase (ERK) 1/2 and p38 mitogen-activated protein kinase (MAPK), and cell death via activation of P2X7 receptor. P2X4-knockdown cells, established by transfecting RAW264.7 cells with two short hairpin RNAs (shRNAs) targeting P2X4 receptor, showed a decrease of the initial peak of intracellular Ca(2+) after treatment with ATP, though pore formation and the P2X7-mediated activation of ERK1/2 and p38 MAPK were not affected. Intriguingly, P2X4 knockdown resulted in significant suppression of cell death induced by ATP or P2X7 agonist BzATP. In conclusion, our results suggest that P2X4 receptor is involved in P2X7 receptor-mediated cell death, but not pore formation or MAPK signaling.  相似文献   

10.
Activation of the P2X7 receptor of macrophages plays an important role in inflammation. We recently reported that co-expression of P2X4 receptor with P2X7 receptor facilitates P2X7 receptor-mediated cell death via Ca(2+) influx. However, it remained unclear whether P2X4 receptor is involved in P2X7 receptor-mediated inflammatory responses, such as cytokine production. Here, we present evidence that P2X4 receptor modulates P2X7 receptor-dependent inflammatory functions. Treatment of mouse macrophage RAW264.7 cells with 1mM ATP induced high mobility group box 1 (HMGB1) release and IL-1β production via activation of P2X7 receptor. Knockdown of P2X4 receptor or removal of extracellular Ca(2+) suppressed ATP-induced release of both HMGB1 and IL-1β. On the other hand, knockdown of P2X4 receptor or removal of extracellular Ca(2+) enhanced P2X7-dependent LC3-II expression (an index of autophagy), suggesting that P2X4 receptor suppresses P2X7-mediated autophagy. Since LC3-II expression was inhibited by pretreatment with antioxidant and NADPH oxidase inhibitor, we examined P2X7-mediated production of reactive oxygen species (ROS). We found that activation of P2X7 receptor-mediated production of ROS was significantly facilitated in P2X4-knockdown cells, suggesting that co-expression of P2X4 receptor with P2X7 receptor may suppress anti-inflammatory function-related autophagy via suppression of ROS production. We conclude that co-expression of P2X4 receptor with P2X7 receptor enhances P2X7-mediated inflammation through both facilitation of release of cytokines and suppression of autophagy.  相似文献   

11.
12.
Munoz  Frances M.  Patel  Priya A.  Gao  Xinghua  Mei  Yixiao  Xia  Jingsheng  Gilels  Sofia  Hu  Huijuan 《Purinergic signalling》2020,16(1):97-107
Purinergic Signalling - Astrocytes mediate a remarkable variety of cellular functions, including gliotransmitter release. Under pathological conditions, high concentrations of the purinergic...  相似文献   

13.
Death of murine T cells induced by extracellular ATP is mainly triggered by activation of purinergic P2X7 receptors (P2X7Rs). However, a link between P2X7Rs and pannexin1 (Panx1) channels, which are non-selective, has been recently demonstrated in other cell types. In this work, we characterized the expression and cellular distribution of pannexin family members (Panxs 1, 2 and 3) in isolated T cells. Panx1 was the main pannexin family member clearly detected in both helper (CD4+) and cytotoxic (CD8+) T cells, whereas low levels of Panx2 were found in both T-cell subsets. Using pharmacological and genetic approaches, Panx1 channels were found to mediate most ATP-induced ethidium uptake since this was drastically reduced by Panx1 channel blockers (10Panx1, Probenecid and low carbenoxolone concentration) and absent in T cells derived from Panx1?/? mice. Moreover, electrophysiological measurements in wild-type CD4+ cells treated with ATP unitary current events and pharmacological sensitivity compatible with Panx1 channels were found. In addition, ATP release from T cells treated with 4Br-A23187, a calcium ionophore, was completely blocked with inhibitors of both connexin hemichannels and Panx1 channels. Panx1 channel blockers drastically reduced the ATP-induced T-cell mortality, indicating that Panx1 channels mediate the ATP-induced T-cell death. However, mortality was not reduced in T cells of Panx1?/? mice, in which levels of P2X7Rs and ATP-induced intracellular free Ca2+ responses were enhanced suggesting that P2X7Rs take over Panx1 channels lose-function in mediating the onset of cell death induced by extracellular ATP.  相似文献   

14.
Antioxidant action of Rosmarinic acid (Ros A), a natural phenolic ingredient in many Lamiaceae herbs such as Perilla frutescens, sage, basil and mint, was analyzed in relation to the Ikappa-B activation in RAW264.7 macrophages. Ros A inhibited nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) protein synthesis induced by lipopolysaccharide (LPS), and also effectively suppressed phorbol 12-myristate 13-acetate (PMA)-induced superoxide production in RAW264.7 macrophages in a dose-dependent manner. Peroxynitrite-induced formation of 3-nitrotyrosine in bovine serum albumin and RAW264.7 macrophages were also inhibited by Ros A. Moreover, Western blot analysis demonstrated that LPS-induced phosphorylation of Ikappa-Balpha was abolished by Ros A. Ros A can act as an effective protector against peroxynitrite-mediated damage, and as a potent inhibitor of superoxide and NO synthesis; the inhibition of the formation of reactive oxygen and nitrogen species are partly based on its ability to inhibit the serine phosphorylation of Ikappa-Balpha.  相似文献   

15.
Death of murine T cells induced by extracellular ATP is mainly triggered by activation of purinergic P2X7 receptors (P2X7Rs). However, a link between P2X7Rs and pannexin1 (Panx1) channels, which are non-selective, has been recently demonstrated in other cell types. In this work, we characterized the expression and cellular distribution of pannexin family members (Panxs 1, 2 and 3) in isolated T cells. Panx1 was the main pannexin family member clearly detected in both helper (CD4+) and cytotoxic (CD8+) T cells, whereas low levels of Panx2 were found in both T-cell subsets. Using pharmacological and genetic approaches, Panx1 channels were found to mediate most ATP-induced ethidium uptake since this was drastically reduced by Panx1 channel blockers (10Panx1, Probenecid and low carbenoxolone concentration) and absent in T cells derived from Panx1−/− mice. Moreover, electrophysiological measurements in wild-type CD4+ cells treated with ATP unitary current events and pharmacological sensitivity compatible with Panx1 channels were found. In addition, ATP release from T cells treated with 4Br-A23187, a calcium ionophore, was completely blocked with inhibitors of both connexin hemichannels and Panx1 channels. Panx1 channel blockers drastically reduced the ATP-induced T-cell mortality, indicating that Panx1 channels mediate the ATP-induced T-cell death. However, mortality was not reduced in T cells of Panx1−/− mice, in which levels of P2X7Rs and ATP-induced intracellular free Ca2+ responses were enhanced suggesting that P2X7Rs take over Panx1 channels lose-function in mediating the onset of cell death induced by extracellular ATP.  相似文献   

16.
17.
J. Neurochem. (2012) 122, 1118-1128. ABSTRACT: P2X7 receptor (P2X7R) is known to be a 'death receptor' in immune cells, but its functional expression in non-immune cells such as neurons is controversial. Here, we examined the involvement of P2X7R activation and mitochondrial dysfunction in ATP-induced neuronal death in cultured cortical neurons. In P2X7R- and pannexin-1-expressing neuron cultures, 5 or more mM ATP or 0.1 or more mM BzATP induced neuronal death including apoptosis, and cell death was prevented by oxATP, P2X7R-selective antagonists. ATP-treated neurons exhibited Ca(2+) entry and YO-PRO-1 uptake, the former being inhibited by oxATP and A438079, and the latter by oxATP and carbenoxolone, while P2X7R antagonism with oxATP, but not pannexin-1 blocking with carbenoxolone, prevented the ATP-induced neuronal death. The ATP treatment induced reactive oxygen species generation through activation of NADPH oxidase and activated poly(ADP-ribose) polymerase, but both of them made no or negligible contribution to the neuronal death. Rhodamine123 efflux from neuronal mitochondria was increased by the ATP-treatment and was inhibited by oxATP, and a mitochondrial permeability transition pore inhibitor, cyclosporine A, significantly decreased the ATP-induced neuronal death. In ATP-treated neurons, the cleavage of pro-caspase-3 was increased, and caspase inhibitors, Q-VD-OPh and Z-DEVD-FMK, inhibited the neuronal death. The cleavage of apoptosis-inducing factor was increased, and calpain inhibitors, MDL28170 and PD151746, inhibited the neuronal death. These findings suggested that P2X7R was functionally expressed by cortical neuron cultures, and its activation-triggered Ca(2+) entry and mitochondrial dysfunction played important roles in the ATP-induced neuronal death.  相似文献   

18.
Caffeic acid esters, one of the components of propolis, are known to show a variety of biological effects such as anti-tumor, anti-oxidant, and anti-inflammatory activities. Although, the anti-inflammatory activities of caffeic acid esters have been studied by analyzing their structure, the detailed mechanisms of their activities remain unclear. Thus, in this study, we examined the function of the ester functional group and the alkyl side chain (alcoholic part) and transformed caffeic acid to several derivatives. The inhibitory effect of these derivatives on NO production in murine macrophage RAW264.7 cells was dependent on the length and size of the alkyl moiety, and undecyl caffeate was the most potent inhibitor of NO production. In addition, individual experiments using undecanol, caffeic acid, undecanol plus caffeic acid, and undecyl caffeate showed that the connection between caffeic acid and the alkyl chain is critical for activity. Amide and ketone derivatives showed that not only the ester functional group but also the amide and ketone functional groups exhibit an inhibitory effect on NO production.  相似文献   

19.
In the literature, biological tyrosine nitrations have been reported to depend not only on peroxynitrite but also on nitrite/hydrogen peroxide linked to catalysis by myeloperoxidase. In endotoxin-stimulated RAW 264.7 macrophages, we have detected a major nitrotyrosine positive protein band around 72 kDa and identified it as prostaglandin endoperoxide synthase-2 (PGHS-2). Isolated PGHS-2 in absence of its substrate arachidonate was not only tyrosine-nitrated with peroxynitrite, but also with nitrite/hydrogen peroxide in complete absence of myeloperoxidase. Our data favor an autocatalytic activation of nitrite by PGHS-2 with a subsequent nitration of the essential tyrosine residue in the cyclooxygenase domain. Under inflammatory conditions, nitrite formed via NO-synthase-2 may therefore act as an endogenous regulator for PGHS-2 in stimulated macrophages. Nitration of PGHS-2 by the autocatalytic activation of nitrite further depends on the intracellular concentration of arachidonate since arachidonate reacted competitively with nitrite and could prevent PGHS-2 from nitration when excessively present.  相似文献   

20.
Porphyran, extracted from an edible red alga (Porphyra yezoensis), is a sulphated polysaccharide with a wide variety of biological activities including anti-tumour, antioxidant and immuno-modulating activities. In this study, we examined the effect of porphyran on nitric oxide (NO) production in mouse macrophage cell line RAW264.7 cells. Although no significant activity of porphyran to induce NO or tumour necrosis factor-α (TNF-α) production in RAW264.7 cells was observed at the concentration range tested (10-500 μg/ml), it was found for the first time that porphyran inhibited NO production and expression of inducible nitric oxide synthase (iNOS) in RAW264.7 cells stimulated with lipopolysaccharide (LPS). In the presence of 500 μg/ml porphyran, NO production and expression of iNOS in LPS-treated RAW264.7 cells were completely suppressed. On the other hand, porphyran showed only a marginal effect on the secretion of TNF-α from LPS-stimulated RAW264.7 cells. Electrophoretic mobility shift assay (EMSA) using infrared dye labelled oligonucleotide with nuclear factor-κB (NF-κB) consensus sequence suggested that porphyran inhibited the LPS-induced NF-κB activation. The LPS-inducible nuclear translocation of p65, and the phosphorylation and degradation of IκB-α were also inhibited by the pre-treatment with porphyran. Our results obtained in in vitro analysis suggest that porphyran suppresses NO production in LPS-stimulated macrophages by the blocking of NF-κB activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号