首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single unit responses in nuclei of the vestibular complex to stimulation of the labyrinths and of proprioceptive and autonomic afferents were investigated. Different types of unit responses were obtained to stimulation, including evoked activity consisting of a group of action potentials followed by inhibition of the spike discharge. Unit activity in the vestibular nuclei was shown to depend on extralabyrinthine stimulation. In response to adequate stimulation of the labyrinths by tilting the head, the role of receptors of muscles and joints in the neck was distinguished. The question of the somatotopic organization of the vestibular nuclei and convergence of various afferent flows on neurons giving rise to the vestibulospinal tract is discussed.Institute of Medico-Biological Problems, Ministry of Health of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 8, No. 5, pp. 507–513, September–October, 1976.  相似文献   

2.
Unit responses in the anterior sigmoid gyrus of cats anesthetized with chloralose (70 mg/kg) to vestibular nerve stimulation and their interaction with responses to acoustic and facial nerve stimulation were investigated. The focus of maximal activity of the vestibular projection was shown to lie a little rostrally to the anterior suprasylvian sulcus. The modality specificity of this part of the cortex to vestibular impulses is reflected in the shortest values of latent periods and the distinct phasic character of the responses, and also in the numerical preponderance of neurons with short-latency responses. Although considerable topographic overlapping of the vestibular projection by acoustic and somatosensory (facial zone) projections is found, the vestibular afferent input predominates over the other afferent inputs.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 13, No. 4, pp. 353–358, July–August, 1981.  相似文献   

3.
Summary In the frog, the spontaneous discharges of afferent fibres from the horizontal semicircular canal (HC) and of efferent vestibular units were recorded by means of glass micropipettes filled with 2 mol/l NaCl as well as during acoustic stimulation; pure tones 300–2,000 Hz and clicks 150/s, 80–100 dB re 10–5 N/m2 were used. The activity of 56% of the efferent fibres recorded was increased by such stimulations while the discharge of the others was not modified. In intact preparations the activity of 34.4% of the afferent fibres recorded was either increased or decreased by sound stimulation depending on the unit; the discharge of the others (65.6%) was not modified (Fig. 3). Section of both saccular nerves did not change the percentage of the units modulated by sound showing that the saccules have probably no effect on this modulation (Fig. 4). In preparations where the contralateral auditory papillae were eliminated, 21.1% of the afferent units were facilitated and no unit was inhibited (Fig. 5), while in preparations where the ipsilateral auditory organs were eliminated 21.1% of the afferent units were inhibited and no unit was facilitated (Fig. 6). Therefore, in intact preparations one can assume that decrease and increase of the HC afferent fibre discharges were due to stimulation of the contralateral and the ipsilateral auditory organs, respectively. Such a modulation of canal afferent discharges being mediated by efferent vestibular fibres, it can be postulated that the efferent vestibular system has a double influence upon the hair cells of the vestibular epithelium: one inhibitory and the other facilitatory. Such a double effect is discussed.Abbreviations EVS efferent vestibular system - HC horizontal semicircular canal  相似文献   

4.
Tonic activity of neurons of the superior cervical sympathetic ganglion was recorded by the "sucrose gap" method and in the 4th and 5th lumbar sympathetic ganglia with the aid of focal nonpolarizing electrodes in acute experiments on anesthetized cats and rabbits. The preganglionic fibers of the ganglia were left intact. Stimulation of the depressor nerve not only sharply inhibited the tonic activity of the ganglia but also led to the appearance of electropositive potentials of 0.7 ± 0.2 mV in the superior cervical ganglion and 20–250 µV in the lumbar ganglia. The amplitude of this potential was unchanged by atropine (1 · 10–6M). A similar effect occured without stimulation of the depressor nerve, after division of the preganglionic fibers or blocking of their conduction; it is attributed to the cessation of preganglionic tonic impulses which induce not only spikes, but also many EPSPs in neurons of the ganglion. Their frequency in the lumbar ganglia was 4/sec. Summation of these EPSPs leads to constant electronegativity of the ganglion surface relative to the postganglionic fibers, and its disappearance is recorded as a positive potential. Stimulation of the depressor nerve thus does not induce IPSPs in the ganglion; consequently, the inhibition of synaptic activity observed under these circumstances is located in the CNS and not in the ganglion.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 6, No. 5, pp. 519–524, September–October, 1974.  相似文献   

5.
Analysis of postsynaptic unit responses in the visual center ofRana temporaria showed that optic nerve fibers with high and low conduction velocities usually converge on a single neuron of the tectum opticum (TO). In response to stimulation of the optic nerve a complex depolarization potential consisting of 3 (or possibly 4) EPSPs was recorded in one group of neurons; these EPSPs were probably generated through excitation of several groups of afferent fibers. Either an increase or a decrease in the EPSPs can be observed in the TO neurons in response to repetitive and paired stimulation of the optic nerve. Postsynaptic inhibitory responses of some TO neurons, probably of direct and recurrent origin, are discussed.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 3, No. 6, pp. 637–643, November–December, 1971.  相似文献   

6.
Effects of stimulation of the interstitial nucleus of Cajal and Darkshevich's nucleus on unit activity in the lateral vestibular nucleus of Dieters were investigated in cats anesthetized with pentobarbital. Stimulation of the above-mentioned structures was shown to lead to antidromic and orthodromic activation of Dieters neurons. Axon collateral of vestibular neurons, ascending to the above-mentioned brain-stem structures were discovered electrophysiologically. Stimulation of the nuclei of Cajal and Darkshevich was shown to evoke mono- and polysynaptic EPSPs and IPSPs in neurons of Deiters nucleus. Convergence of influences from both nuclei on the neurons studied was demonstrated. The particular features and functional role of the influences observed are discussed.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 16, No. 6, pp. 822–829, November–December, 1984.  相似文献   

7.
Electrical stimulation of the descending and medial vestibular nuclei produced increased arterial blood pressure and also changes in regional blood flow. On stimulation of the descending vestibular nucleus there was a decrease in blood flow in the hind-limb muscles, which might be a response to stimulation of the ventrolateral parts of the nucleus; when the central parts of the nucleus were stimulated the blood flow decreased both in the hind-limb muscles and in some of the viscera. Stimulation of the medial vestibular nucleus, particularly its ventral parts, caused a decrease in blood flow in the skin of the hind limbs, often accompanied by a decrease in visceral blood flow. On the basis of analysis of the afferent and efferent connections of the descending and medial vestibular nuclei, it is suggested that the cerebellum takes part in the transmission of vasomotor influences.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 2, No. 1, pp. 35–42, January–February, 1970.  相似文献   

8.
In rabbits the depressor nerves and cardiac vagal branches were stimulated. Their actions on heart rate, atrio-ventricular conduction time, myocardial action potential and mean central blood pressure were recorded. The frequency-effect characteristics of the chronotropic, dromotropic and electrotropic actions on the heart, resulting from afferent and efferent nerve stimulation, are compared. The participation of each of the depressor nerves in their total effects on heart rate and blood pressure is studied. Time courses of heart rate and blood pressure decrease by afferent and efferent nerve stimulation with sinusoidally modulated pulse rates are presented. The results are discussed with respect to the different dynamics of blood pressure and heart rate control. It is concluded that at least two mechanisms are involved in blood pressure control by the depressor nerves: 1. Decrease of vascular resistance by lowering the sympathetic tone. 2. Decrease of heart rate by enhancing the cardiac vagal activity. It is suggested that the parasympathetic control unit compensates rapid disturbances, whereas the slow-acting sympathetic vascular mechanism exerts a long-time pressure control of high efficiency.  相似文献   

9.
Combined use of the intraaxonal retrograde transport of the fluorescent marker ‘true blue’ with substance P (SP) immunocytochemistry has been used to trace the nodose ganglion projections of SP-containing neurons of the aortic depressor nerve. It has been found that (1) SP immunoreactive (SP-I) cell bodies are clearly demonstrable in clusters in the rostral part of the nodose ganglion without the aid of colchicine pretreatment; (2) ‘true blue’ is retrogradely transported to the nodose ganglion following its application to the central cut end of the aortic nerve; (3) ‘true blue’ fluorescence and SP fluorescent immunoreactivity can be visualized in the same tissue section and certain cell bodies in the nodose ganglia contain both SP-I and retrogradely transported ‘true blue’. These results indicate that the aortic nerve which projects from the aortic arch baro- and/or chemoreceptors to brainstem vasomotor centers contains SP-I afferent fibers which emanate from the nodose ganglion.  相似文献   

10.
The caudal mesenteric sympathetic ganglion of cats was isolated and perfused, and responses of the preganglionic trunks of the ganglion to electrical stimulation of the central end of the hypogastric nerve were studied. Stimulation of the nerve with single square pulses gives rise to early and late responses. Early responses appear after various latent periods and are the result of excitation of transit fibers of groups A, B, and C, whereas the appearance of late responses is associated with the synaptic transmission of excitation in the sympathetic ganglion from afferent sympathetic neurons at the first level (from the pelvic organs to the caudal ganglion) to afferent sympathetic neurons of the second level (from the caudal ganglion and above). Early responses are not blocked, but late responses are blocked by perfusion of the ganglion with azamethonium bromide and magnesium salts, and also by tetanization of the hypogastric nerve at 10–50 Hz. Other facts indicating the synaptic relaying of visceral sympatho-sympathetic afferent pathways in the ganglion are also described.Institute of Physiology, Academy of Sciences of the Belorussian SSR, Minsk. Translated from Neirofiziologiya, Vol. 2, No. 5, pp. 507–514, September–October, 1970.  相似文献   

11.
Experiments on immobilized, unanesthetized cats showed that interoceptive afferent impulses reaching the brain via the vagus nerves evoke marked responses in, on average, 43% of superior collicular neurons. Both excitatory and inhibitory effects were observed. The latter were found more often during single stimulation of the vagus nerve. In half of the cases the inhibitory responses were characterized by the development of initial inhibition, clearly limited in time to between 180 and 1700 msec. Changes in spike activity of 60% of units were tonic in character. The onset of phasic responses with an initial period of activation was observed in only 9–11% of neurons. The number of these cells and also the total number of responding neurons were greater than when series of stimuli were applied to the vagus nerve. In individual cells during prolonged repetitive stimulation of the nerve gradual weakening of the responses took place. Somatic stimulation evoked mainly the development of phasic responses of excitatory type. Most of the neurons tested were bimodal and often the temporal structure of their responses was determined by the modality of the stimulus applied. The functional role of the changes discovered in spontaneous activity of superior collicular neurons under interoceptive influences and the central mechanisms of realization of such influences on the activity of the neuronal system in this brain structure are discussed.Ivano-Frankovsk Medical Institute, Ministry of Health of the Ukrainian SSR. Translated from Neirofiziologiya, Vol. 10, No. 6, pp. 590–596, November–December, 1978.  相似文献   

12.
Responses of relay neurons of the dorsal lateral geniculate body to stimulation of area 17 of the visual cortex and the optic chiasma were studied in curarized cats. A high degree of correlation was found between the latent periods of antidromic responses of these neurons to stimulation of the visual cortex and orthodromic responses of the same neurons to stimulation of the optic chiasma (r=0.895; P=0.01). In 9% of cases antidromic unit responses were recorded to stimulation of the optic chiasma, evidence that the optic nerve contains centrifugal fibers. The functional role of the temporal dispersion of the afferent flow in the visual system is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 6, pp. 606–612, November–December, 1978.  相似文献   

13.
Serotonin (5-HT) induces a variety of physiological and behavioral effects in crustaceans. However, the mechanisms employed by 5-HT to effect behavorial changes are not fully understood. Among the mechanisms by which these changes might occur are alterations in synaptic drive and efficacy of sensory, interneurons and motor neurons, as well as direct effects on muscles. We investigated these aspects with the use of a defined sensory-motor system, which is entirely contained within a single abdominal segment and consists of a ‘cuticular sensory neurons–segmental ganglia–abdominal superficial flexor motor neurons–muscles’ circuit. Our studies address the role of 5-HT in altering (1) the activity of motor neurons induced by sensory stimulation; (2) the inherent excitability of superficial flexor motor neurons; (3) transmitter release properties of the motor nerve terminal and (4) input resistance of the muscle. Using en passant recordings from the motor nerve, with and without sensory stimulation, and intracellular recordings from the muscle, we show that 5-HT enhances sensory drive and output from the ventral nerve cord resulting in an increase in the firing frequency of the motor neurons. Also, 5-HT increases transmitter release at the neuromuscular junction, and alters input resistance of the muscle fibers  相似文献   

14.
In experiments on decerebrate guinea pigs, the impulse activity of neurons of the lateral vestibular nucleus evoked by tilting the animal about the longitudinal axis was investigated under conditions of spontaneous and mesencephalon stimulation-evoked locomotor activity. In most investigated neurons, locomotor activity led to changes in their responses to adequate vestibular stimulation. The dominant reaction was intensification of such responses, which was observed in almost all vestibulospinal neurons and in 2/3 of cells not having descending projections. Responses were suppressed only in 1/4 of the neurons not projecting to the spinal cord. The changes in the evoked responses had an amplitude character; the lag of the changes in the discharge frequency relative to the acceleration that caused them was constant. It is suggested that intensification of dynamic reactions of vestibular neurons during locomotion provides maintenance of the animal's equilibrium during movements in space by various gaits and along different trajectories.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 5, pp. 541–549, September–October, 1991.  相似文献   

15.
Unit responses of the first (SI) somatosensory area of the cortex to stimulation of the second somatosensory area (SII), the ventral posterior thalamic nucleus, and the contralateral forelimb, and also unit responses in SII evoked by stimulation of SI, the ventral posterior thalamic nucleus, and the contralateral forelimb were investigated in experiments on cats immobilized with D-tubocurarine or Myo-Relaxin (succinylcholine). The results showed a substantially higher percentage of neurons in SII than in SI which responded to an afferent stimulus by excitation brought about through two or more synaptic relays in the cortex. In response to cortical stimulation antidromic and orthodromic responses appeared in SI and SII neurons, confirming the presence of two-way cortico-cortical connections. In both SI and SII intracellular recording revealed in most cases PSPs of similar character and intensity, evoked by stimulation of the cortex and nucleus in the same neuron. Latent periods of orthodromic spike responses to stimulation of nucleus and cortex in 50.5% of SI neurons and 37.1% of SII neurons differed by less than 1.0 msec. In 19.6% of SI and 41.4% of SII neurons the latent period of response to cortical stimulation was 1.6–4.7 msec shorter than the latent period of the response evoked in the same neuron by stimulation of the nucleus. It is concluded from these results that impulses from SI play an important role in the afferent activation of SII neurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 4, pp. 351–357, July–August, 1976.  相似文献   

16.
Responses of nerve cells to puncture, to touching the surface of the mollusk leg, osmotic stimulation, and extracellular microiontophoretic injection of acetylcholine, noradrenalin, serotonin, atropine, and propranolol were recorded intracellularly in the right parietal, left pedal, and visceral ganglia of the unisolated circumpharyngeal ring ofLimnaea stagnalis. Selective sensitivity of the neurons to the biologically active substances was observed. Results indicative of the functional differences between the various ganglia and of their neurochemical organization were obtained. Selective blocking of the unit responses to puncture of the surface of the mollusk leg by atropine or propranolol suggests that different forms of excitation reaching the central neurons evoked different and specific neurochemical processes on their subsynaptic membranes which can retain the essential informativeness of the widely different afferent volleys converging on a single nerve cell.I. M. Sechenov First Moscow Medical Institute. Translated from Neirofiziologiya, Vol. 5, No. 5, pp. 510–518, September–October, 1973.  相似文献   

17.
Spontaneous and evoked unit activity was investigated in the visual cortex of mice with the "ocular retardation" (or/or) mutation, in which the action of the gene is manifested phenotypically by defective development of the optic nerve, with the consequent total blindness of the animals. Control experiments were carried out on inbred C57Br mice. A raised level of spontaneous activity was found in the neurons of the mutant animals and also differences in the distribution of the cells on the basis of the types of their spontaneous activity: A regular type of activity was found 2.5 times more often in the "or/or" mice than in the control group, whereas the proportion of cells with a volley type of discharge was 2.7 times smaller. In addition, visual cortical neurons of the "or/or" mice were more able to respond to acoustic stimulation, when 78% of the responses were tonic in character. Of the unit responses to electrical stimulation of the skin 70% also were tonic, and most were responses of excitation. In 42% of visual cortical neurons of the mutants convergence of heteromodal afferent influences was observed. The functional features described are evidently phenotypical manifestations of the action of the mutant gene on cortical neurons.P. K. Anokhin Institute of Normal Physiology, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 8, No. 6, pp. 568–574, November–December, 1976.  相似文献   

18.
The effects of stimulation of the dorsal funiculus on dorsal surface potentials (DSPs) of the spinal cord evoked by stimulation of a peripheral nerve and on antidromic action potentials (AAPs) evoked by stimulation of terminal branches of primary afferent fibers and recorded from the afferent nerve or dorsal root, were investigated in acute experiments on spinal cats and on cats anesthetized with pentobarbital and chloralose. Stimulation of the dorsal funiculus led to biphasic inhibition of the N1-component of the DSP with maxima at the 15th–30th and 60th–80th milliseconds between the conditioning and testing stimuli. Maximal reinforcement of the AAP was found with these intervals. Bilateral division of the dorsal funiculi between the point of application of the conditioning stimuli and the point of recording the DSP abolished the first wave of inhibition of the DSP and the reinforcement of the AAP. After total transection of the cord above the site of conditioning stimulation the picture was unchanged. It is concluded that the initial changes in DSP and AAP are due to activation of the presynaptic inhibition mechanism by antidromic impulses traveling along nerve fibers running in the dorsal funiculus. Repeated inhibition of the DSP, like reinforcement of the AAP, can possibly be attributed to activation of similar inhibitory mechanisms through the propriospinal neurons of the spinal cord.Dnepropetrovsk State University. Translated from Neirofiziologiya, Vol. 5, No. 4, pp. 401–405, July–August, 1973.  相似文献   

19.
Relations between neurons of the reticular and specific relay nuclei of the thalamus were studied in cats immobilized with tubocurarine. Under the influence of stimulation of the reticular nucleus (RN) unit activity in the thalamic relay nuclei was found to be considerably modulated. Cases of the appearance of IPSPs (possibly of monosynaptic nature), evoked by stimulation of RN, in neurons of the ventroposterolateral nucleus (VPLN) and lateral geniculate body (LGB) are described. During simultaneous recording of unit activity in RN and VPLN or LGB by means of two electrodes interaction of several types was found: inhibition of discharges of VPLN or LGB neurons accompanied by excitation of RN neurons: alternation of excitation-inhibition in neuron pairs in RN and VPLN or RN and LGB during low-frequency afferent or cortical stimulation (in this case excitation of RN neurons is associated with inhibition of VPLN or LGB neurons), and strengthening of the discharge of VPLN or LGB neurons during excitation of RN neurons. The possibility of the existence both of direct monosynaptic inhibition of activity of VPLN or LGB relay neurons under the influence of excitation of RN neurons and of their inhibition by activation of hypothetical interneurons of the relay nuclei themselves is accepted.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 13, No. 1, pp. 24–31, January–February, 1981.  相似文献   

20.
Analysis of afferent activity in unmyelinated fibers of a cutaneous nerve was carried out by the colliding impulses method in cats. The effect of antidromic excitation of the nerve and mechanical stimulation of the receptors on subsequent orthodromic activity during stretching of the skin was investigated. Both these factors were shown to reduce subsequent orthodromic activity evoked by testing stimulation. The reduction in activity was greatest 10–15 sec after stimulation. The duration of the inhibitory effect was greater after mechanical than after antidromic stimulation. Combined mechanical stimulation and antidromic excitation resulted in a greater decrease of afferent activity and an increase in the time of its recovery. An increase in the frequency of antidromic excitation potentiated the inhibitory effect of preliminary stimulation on orthodromic activity in C fibers.Research Institute of Applied Mathematics and Cybernetics, N. I. Lobachevskii Gor'kii State University. Translated from Neirofiziologiya, Vol. 9, No. 3, pp. 307–312, May–June, 1977.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号