首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A temperature-sensitive group II mutant of influenza virus, ts-52, with a presumed defect in viral RNA synthesis, readily produced von Magnus-type defective interfering virus (DI virus) when passed serially (four times) at high multiplicity in MDBK cells. The defective virus (ts-52 DI virus) had a high hemagglutinin and a low infectivity titer, and strongly interfered with the replication of standard infectious viruses (both ts-52 and wild-type ts+) in co-infected cells. Progeny virus particles produced by co-infection of DI virus and infectious virus were also defective and also had low infectivity, high hemagglutinating activity, and a strong interfering property. Infectious viruses ts+ and ts-52 were indistinguishable from ts-52 DI viruses by sucrose velocity or density gradient analysis. Additionally, these viruses all possessed similar morphology. However, when the RNA of DI viruses was analyzed by use of polyacrylamide gels containing 6 M urea, there was a reduction in the amount of large RNA species (V1 to V4), and a number of new smaller RNA species (D1 to D6) with molecular weights ranging from 2.9 X 10(5) to 1.05 X 10(5) appeared. Since these smaller RNA species (D1 to D6) were absent in some clones of infectious viruses, but were consistently associated with DI viruses and increased during undiluted passages and during co-infection of ts-52 with DI virus, they appeared to be a characteristic of DI viruses. Additionally, the UV target size of interfering activity and infectivity of DI virus indicated that interfering activity was 40 times more resistant to UV irradiation than was infectivity, further implicating small RNA molecules in interference. Our data suggest that the loss of infectivity observed among DI viruses may be due to nonspecific loss of a viral RNA segment(s), and the interfering property of DI viruses may be due to interfering RNA segments (DIRNA, D1 to D6). ts-52 DI virus interfered with the replication of standard virus (ts+) at both permissive (34 degrees C) and nonpermissive temperatures. The infectivity of the progeny virus was reduced to 0.2% for ts+ and 0.05% for ts-52 virus without a reduction in hemagglutinin titer. Interference was dependent on the concentration of DI virus. A particle ratio of 1 between DI virus (0.001 PFU/cell) and infectious virus (1.0 PFU/cell) produced a maximal amount of interference. Infectious virus yield was reduced 99.9% without any reduction of the yield of DI viruses Interference was also dependent on the time of addition of DI virus. Interference was most effective within the first 3 h of infection by infectious virus, indicating interference with an early function during viral replication.  相似文献   

2.
3.
Ribonucleoproteins (RNPs) isolated from infectious and defective interfering (DI) influenza virus (WSN) contained three major RNP peaks when analyzed in a glycerol gradient. Peak I RNP was predominant in infectious virus but was greatly reduced in DI virus preparations. Conversely, peak III RNP was elevated in DI virus, suggesting a large increase in DI RNA in this fraction. Labeled [(32)P]RNA was isolated from each RNP region and analyzed by electrophoresis on polyacrylamide gels. Peak I RNP contained primarily the polymerase and some HA genes, peak II contained some HA gene but mostly the NP and NA genes, and peak III contained the M and NS genes. In addition, peak III RNP from DI virus also contained the characteristic DI RNA segments. Interference activity of RNP fractions isolated from infectious and DI virus was tested using infectious center reduction assay. RNP peaks (I, II, and III) from infectious virus did not show any interference activity, whereas the peak III DI RNP caused a reduction in the number of infectious centers as compared to controls. Similar interference was not demonstrable with peak I RNP of DI virus nor with any RNP fractions from infectious virus alone. The interference activity of RNP fractions was RNase sensitive, suggesting that the DI RNA contained in DI RNPs was the interfering agent, and dilution experiments supported the conclusion that a single DI RNP could cause interference. The interfering RNPs were heterogeneous, and the majority migrated slower than viral RNPs containing M and NS genes. These results suggest that DI RNP (or DI RNA) is also responsible for interference in segmented, negative-stranded viruses.  相似文献   

4.
Kim GN  Kang CY 《Journal of virology》2005,79(15):9588-9596
Defective interfering (DI) particles of Indiana serotype of vesicular stomatitis virus (VSV(Ind)) are capable of interfering with the replication of both homotypic VSV(Ind) and heterotypic New Jersey serotype (VSV(NJ)) standard virus. In contrast, DI particles from VSV(NJ) do not interfere with the replication of VSV(Ind) standard virus but do interfere with VSV(NJ) replication. The differences in the interfering activities of VSV(Ind) DI particles and VSV(NJ) DI particles against heterotypic standard virus were investigated. We examined the utilization of homotypic and heterotypic VSV proteins by DI particle genomic RNAs for replication and maturation into infectious DI particles. Here we show that the RNA-nucleocapsid protein (N) complex of one serotype does not utilize the polymerase complex (P and L) of the other serotype for RNA synthesis, while DI particle genomic RNAs of both serotypes can utilize the N, P, and L proteins of either serotype without serotypic restriction but with differing efficiencies as long as all three proteins are derived from the same serotype. The genomic RNAs of VSV(Ind) DI particles assembled and matured into DI particles by using either homotypic or heterotypic viral proteins. In contrast, VSV(NJ) DI particles could assemble only with homotypic VSV(NJ) viral proteins, although the genomic RNAs of VSV(NJ) DI particles could be replicated by using heterotypic VSV(Ind) N, P, and L proteins. Thus, we concluded that both efficient RNA replication and assembly of DI particles are required for the heterotypic interference by VSV DI particles.  相似文献   

5.
Purified defective interfering (DI) particles of vesicular stomatitis virus (VSV) inhibit the replication of a heterologous virus, pseudorabies virus (PSR), in hamster (BHK-21) and rabbit (RC-60) cell lines. In contrast to infectious B particles of VSV, UV irradiation of DI particles does not reduce their ability to inhibit PSR replication. However, UV irradiation progressively reduces the ability of DI particles to cause homologous interference with B particle replication. Pretreatment with interferon does not affect the ability of DI particles to inhibit PSR replication in a rabbit cell line (RC-60) in which RNA, but not DNA, viruses are sensitive to the action of interferon. Under similar conditions of interferon pretreatment, the inhibition of PSR by B particles is blocked. These data suggest that de novo VSV RNA or protein synthesis is not required for the inhibition of PSR replication by DI particles. DI particles that inhibit PSR replication also inhibit host RNA and protein synthesis in BHK-21 and RC-60 cells. Based on the results described and data in the literature, it is proposed that the same component of VSV B and DI particles is responsible for most, if not all, of the inhibitory activities of VSV, except homologous interference.  相似文献   

6.
[3H]uridine-labeled extracellular West Nile virus (WNV) particles produced by cell cultures obtained from genetically resistant C3H/RV and congenic susceptible C3H/HE mice were compared by sucrose density gradient centrifugation as well as by analysis of the particle RNA. Defective interfering (DI) WNV particles were observed among progeny produced during acute infections in both C3H/RV and C3H/HE cells. Although only a partial separation of standard and DI particles was achieved, the DI particles were found to be more dense than the standard virions. Particles containing several species of small RNAs consistently constituted a major proportion of the total population of virus progeny produced by C3H/RV cells, but a minor proportion of the population produced by C3H/HE cells. Decreasing the multiplicity of infection or extensive plaque purification of the WNV inoculum decreased the proportion of small RNAs found in the progeny virus. The ratio of DI particles to standard virus observed in progeny virus was determined by the cell type used to grow the virus. The ratio could be shifted by passaging virus from one cell type to the other. Homologous interference could be demonstrated with WNV produced by C3H/RV cells but not with virus produced by C3H/HE cells. Continued passage of WNV in C3H/HE cells resulted in a cycling of infectivity. However, passage in C3H/RV cells resulted in the complete loss of infectious virus. Four size classes of small viral RNA, with sedimentation coefficients of about 8, 15, 26, and 34S, were observed in the extracellular particles. A preliminary analysis of these RNAs by oligonucleotide fingerprinting indicated that the smaller RNAs were less complex than the 40S RNA and differed from each other. The data are consistent with the conclusion that WNV DI particles interfere more effectively with standard virus replication and are amplified more efficiently in C3H/RV cells than in congenic C3H/HE cells. The relevance of these findings to the further understanding of genetically controlled resistance to flaviviruses is discussed.  相似文献   

7.
A comparison of the ability of vesicular stomatitis virus (VSV) to generate and replicate defective interfering (DI) particles in primary chick embryo (CE) and mouse L cells was investigated as a means of analyzing host control over DI-particle synthesis and interfering capacity. Serial undiluted passage of VSV in CE and L cells indicate that VSV-DI particles are generated and (or) replicate with greater efficiency in CE than in L cells. When DI particles accumulate in L cells, they are able to interfere with infectious particle replication. The DI particles from CE cells interfered to the same extent with infectious particle replication in both CE and L cells. L cells, therefore, are not considered 'low-interference' hosts in which DI particles are produced and do not interfere with infectious virus replication, but rather hosts which restrict the production of DI particles.  相似文献   

8.
W Kang  EC Shin 《PloS one》2012,7(8):e43960
Hepatitis C virus (HCV) infection is the leading cause of liver transplantation in Western countries. Studies of HCV infection using cell culture-produced HCV (HCVcc) in vitro systems require quantification of infectious HCV virions, which has conventionally been performed by immunofluorescence-based focus-forming assay with manual foci counting; however, this is a laborious and time-consuming procedure with potentially biased results. In the present study, we established and optimized a method for convenient and objective quantification of HCV virions by colorimetric focus-forming assay with automated focus counting by image analysis. In testing different enzymes and chromogenic substrates, we obtained superior foci development using alkaline phosphatase-conjugated secondary antibody with BCIP/NBT chromogenic substrate. We additionally found that type I collagen coating minimized cell detachment during vigorous washing of the assay plate. After the colorimetric focus-forming assay, the foci number was determined using an ELISpot reader and image analysis software. The foci number and the calculated viral titer determined by this method strongly correlated with those determined by immunofluorescence-based focus-forming assay and manual foci counting. These results indicate that colorimetric focus-forming assay with automated focus counting by image analysis is applicable as a more-efficient and objective method for quantification of infectious HCV virions.  相似文献   

9.
Sindbis virus generates defective interfering (DI) particles during serial high-multiplicity passage in cultured cells. These DI particles inhibit the replication of infectious virus and can be an important factor in the establishment and maintenance of persistent infection in BHK cells. In an effort to understand how these DI particles are generated and how they interfere with the replication of standard virus, we performed a partial sequence analysis of the RNA obtained from two independently isolated populations of DI particles and from two Sindbis virus variants and compared these with the RNA of the parental wild-type virus. The 3'-terminal regions of the RNAs were sequenced by the dideoxy chain terminating method. Internal regions of the RNA were examined by restriction endonuclease digestion of cDNA's made to the various RNAs and by direct chemical sequencing of 5' end-labeled restriction fragments from cDNA made to the DI RNAs. One of the variant viruses examined was originally derived from cells persistently infected with Sindbis virus for 16 months and is resistant to interference by the DI strains used. In the 3'-terminal region of the RNA from this variant, only two base changes were found; one of these occurs in the 20-nucleotide 3'-terminal sequence which is highly conserved among alphaviruses. The DI RNA sequences were found to have been produced not by a single deletional event, but by multiple deletion steps combined with sequence rearrangements; all sequences examined are derived from the plus strand of Sindbis virion RNA. Both DI RNAs had at least 50 nucleotides of wild-type sequence conserved at the 3' terminus; in addition, they both contained conserved and perhaps amplified sequences derived from the non-26S region of the genome which may be of importance in their replication and interference ability.  相似文献   

10.
D M Von Laer  D Mack    J Kruppa 《Journal of virology》1988,62(4):1323-1329
The time course of defective interfering (DI) particle and B particle release from vesicular stomatitis virus-infected BHK-21 cells was studied at different multiplicities of defective and infective particles. Particle release was progressively delayed in cells infected with an increasing DI-to-B particle ratio. The delayed particle release during interference was found to be connected with a reduced but prolonged synthesis of viral proteins, a slower accumulation of viral proteins, and a delayed shutoff of cellular protein synthesis. The relative synthesis of M and G proteins was reduced during interference, whereas the relative synthesis of N and NS proteins was increased. On the level of genomic RNA replication, we found that DI RNA was replicated more slowly during interference than the standard genomic RNA was during acute infection. The ratio of DI particles to B particles which were released increased throughout the infectious cycle. At a given time in the infectious cycle, this ratio was independent of the multiplicity of infecting DI and B particles. On the basis of the kinetic studies, we argue that cells infected with higher amounts of DI particles compared with B particles synthesize a higher DI-to-B particle ratio and release these progeny particles later than cells infected with a low DI-to-B particle ratio.  相似文献   

11.
Defective interfering (DI) influenza viruses carry a large deletion in a gene segment that interferes with the replication of infectious virus; thus, such viruses have potential for antiviral therapy. However, because DI viruses cannot replicate autonomously without the aid of an infectious helper virus, clonal DI virus stocks that are not contaminated with helper virus have not yet been generated. To overcome this problem, we used reverse genetics to generate a clonal DI virus with a PB2 DI gene, amplified the clonal DI virus using a cell line stably expressing the PB2 protein, and confirmed its ability to interfere with infectious virus replication in vitro. Thus, our approach is suitable for obtaining purely clonal DI viruses, will contribute to the understanding of DI virus interference mechanisms and can be used to develop DI virus‐based antivirals.  相似文献   

12.
Infection of permissive hamster embryo cells with virus preparations enriched for defective interfering (DI) particles of equine herpesvirus type 1 (EHV-1) resulted in persistent infection and oncogenic transformation. Six cell lines, designated DI-5 to -10, exhibited biological properties (immortality, increased saturation density, growth in soft agar, etc.) inherent to transformed cells, but 2 to 18% of the total cells in these cell lines were shown to release virus as judged by electron microscope studies and infectious center assays. The released virus was shown to be standard EHV-1 and not to contain DI particles as determined by density measurements of the viral DNA in the analytical ultracentrifuge and by interference assays using the released virus. Tumorigenicity studies revealed that inoculation of these persistently infected cells into newborn LSH inbred hamsters resulted in a lethal, fulminating hepatitis, whereas inoculation into older immunocompetent hamsters (+4 weeks) led to the development of metastatic fibrous sarcomas. Tumor cell lines (DI-5T to -10T) established from these sarcomas were shown to be transplantable and virus nonproducers. Hybridization analyses of cellular DNAs from DI transformed and tumor cell lines using 32P-labeled genomic EHV-1 DNA as probes indicated that the whole virus genome was detectable in multiple copies (23 to 45) in the transformed cells and that DNA sequences representing only 43.5 to 56.6% of the virus genome were present in amounts of 2 to 4 copies per cell in the DI tumor cells. Expression of these viral DNA sequences as demonstrated by the detection of virus-neutralizing antibodies, 50% neutralizing dose titers ranging from 1:50 to 1:1,000, in the sera of animals inoculated with either the virus-producing transformed cells or the virus-nonproducing tumor cells. Further, EHV-1-specific proteins were detected in the membrane and the perinuclear region of bothDI transformed and tumor cells by indirect immunofluorescent assays using antisera against EHV-1 structural antigens, EHV-1 nonstructural antigens, or preparations of EHV-1 DI particles. The roles of DI particles in mediating persistent infection and cellular transformation are discussed.  相似文献   

13.
Noncytocidal persistent infections at 37 C of mouse L cells (Lvsv) with infective B particles of vesicular stomatitis virus (VSV) could be established only in the presence of large numbers of defective interfering (DI) particles. Under these conditions, there was a rapid spontaneous selection of temperature-sensitive (ts) virus. At 10 days there was an increase to 17.8% in the frequency of ts clones in the virus population; by 17 days this frequency had reached 85.2%, and by 63 days 100% of the clones isolated were ts at 39.5 C, the nonpermissive temperature used. All 34 of the clones isolated from the 84-day fluid had an RNA-phenotype, and 8 clones that were tested all belonged to VSV complementation group I. When tested by an interference assay, Lvsv fluids did not contain significant numbers of DI particles (less than 1 DI/PFU). Furthermore, persistent infection of L cells at 37 C could be initiated under conditions in which few, if any, DI particles were present by using low input multiplicities (10(-4) and 10(-5) of a clonal isolate of an RNA-group I mutant obtained from Lvsv cells. On the basis of these and other results, a mechanism is proposed to explain the role of ts mutants in both the establishment and maintenance of the persistently infected state.  相似文献   

14.
We have studied the unintegrated infectious DNA of Harvey sarcoma virus (Ha-SV) and Moloney leukemia virus (Mo-MuLV). The source of infectious viral DNA was the Hirt supernatant fraction from cells acutely infected with Ha-SV and Mo-MuLV. To obtain a direct quantitative assay for infectious viral DNA, recipient mouse cells were first exposed to calcium phosphate-precipitated viral DNA and then treated with dimethyl sulfoxide. Infectivity was monitored by focus formation for Ha-SV and XC plaque formation for Mo-MuLV. The viral DNA titration pattern followed single-hit kinetics for both foci and plaques, indicating that a single molecule carried information for each function. Focus-forming and plaque-forming activity were present in different molecules, since these two biological activities could be separated from each other by agarose gel electrophoresis. The focus-forming molecule was linear DNA with a molecular weight of about 4 x 10(6) daltons. The focus-forming activity of the viral DNA was sensitive to EcoRI and resistant to XhoI restriction endonucleases, whereas the plaque-forming activity was resistant to EcoRI and sensitive to XhoI. The generation of helper-independent foci indicates that Ha-SV DNA can transform mouse cells in the absence of helper virus or its proteins.  相似文献   

15.
Defective interfering (DI) RNAs are highly deleted forms of the infectious genome that are made by most families of RNA viruses. DI RNAs retain replication and packaging signals, are synthesized preferentially over infectious genomes, and are packaged as DI virus particles which can be transmitted to susceptible cells. Their ability to interfere with the replication of infectious virus in cell culture and their potential as antivirals in the clinic have long been known. However, until now, no realistic formulation has been described. In this review, we consider the early evidence of antiviral activity by DI viruses and, using the example of DI influenza A virus, outline developments that have led to the production of a cloned DI RNA that is highly active in preclinical studies not only against different subtypes of influenza A virus but also against heterologous respiratory viruses. These data suggest the timeliness of reassessing the potential of DI viruses as a novel class of antivirals that may have general applicability.  相似文献   

16.
A method for estimating the number of defective interfering virus particles in a virus sample is presented. It can be used whenever the interference results in the survival of the “interfered” cell. The analysis assumes only that the infectious virus and defective interfering particles are distributed randomly and independently to cells. Thus the proportion of cells receiving X = x virus and Y = y particles is the product of the two independent Poisson distribution terms. The two dimensional matrix (X values × Y values) that can be constructed encompasses all of the possible (cellular) outcomes of viral infection. By comparing the actual number of surviving cells with the number predicted by various models of interference, it is possible to determine whether defective interfering particles are dominant (completely or partially) to infectious virus, and to estimate their number in the virus sample. This is accomplished by determining the experimental survival curve (% survival vs. input infectious virus/cell) and then constructing theoretical curves to fit the data.  相似文献   

17.
We have established a persistent infection of BHK cells with a preparation of Sindbis virus heavily enriched in defective interfering (DI) particles. The small fraction of cells that survived the initial infection grew out to form a stable population of cells [BHK(Sin-1) cells], most of which synthesized viral RNA and viral antigens. The presence of DI particles in this virus stock was required to establish this persistent state. BHK(Sin-1) cells released a small-plaque, temperature-sensitive virus (Sin-1 virus) as well as DI particles containing DI RNAs larger than those present in the original stock used to establish the persistent state. A cloned stock of Sin-1 virus, free of detectable DI particles, was able to initiate a persistent infection more quickly and with greater cell survival than the original stock of Sindbis virus containing DI particles. About 2 weeks after the Sin-1 virus-infected cells were cultured, DI RNAs arose and soon became the dominant viral RNA species produced by these cells.  相似文献   

18.
We describe an assay procedure to quantitate relative DI resistance of a variety of DI particle resistant (Sdi?) mutants of vesicular stomatitis virus (VSV). We show that numerous diverse Sdi? mutants of VSV are selected continuously in a stepwise manner during persistent infections, and also during serial undiluted lytic passages initiated with cloned virus. Concurrently with the successive appearance and disappearance of different Sdi? mutants of infectious VSV, new DI particle types with altered interference properites also appear and disappear, resulting in rapid “coevolution” of virus and DI particle populations. Complementation tests with Sdi? mutants indicate that mutations in at least two different virus factors (presumably associated with replication-encapsidation) can give rise to Sdi? mutants. Interference studies with chimeric DI particles indicate that DI particle template RNA rather than DI particle protein determines the interference properties of DI particles interacting with Sdi? and Sdi+ mutants of helper virus.  相似文献   

19.
Defective interfering particles of poliovirus. 3. Interference and enrichment   总被引:10,自引:0,他引:10  
Interference with standard poliovirus growth resulting from co-infection of cells with standard virus and defective interfering particles has been investigated. At all time following infection, co-infected cells produced less standard progeny than cells infected only by standard virus. The total yield of physical particles and the percentage of standard virus among these particles was a linear function of the percentage of standard virus in the inoculum. The actual yield of standard virus thus varied as the square of the percentage of standard virus in the inoculum. The extent of interference could also be controlled by varying the time interval between initial infection of cells by one type of particle and superinfection by the other.Identical amounts of viral RNA and virus-specific polyribosomes are formed in co-infected or singly infected cells. Interference apparently results from the partitioning of these limited synthetic capacities between standard and defective interfering-specific RNA and protein synthesis. Standard and DI RNA appear to serve equally well as messenger RNAs because standard and DI-specific viral proteins are synthesized in ratios proportional to the ratio of standard to DI particles in the inoculum. Only standard RNA can direct the formation of capsid protein, so co-infected cells contain reduced amounts of the virion protein precursor, the procapsid. Standard and DI RNA are encapsidated with approximately equal efficiency. Thus interference results from equal participation in the intracellular events of the infection cycle by both types of particles.The progeny yield from co-infected cells was always enriched about 5 to 8% in DI particles. Progeny were produced in the enriched ratio throughout the infection cycle.  相似文献   

20.
Nodamura virus (NoV) is a small RNA virus that is infectious for insect and mammalian hosts. We have developed a highly sensitive assay of RNA interference (RNAi) in mammalian cells that shows that the NoV B2 protein functions as an inhibitor of RNAi triggered by either short hairpin RNAs or small interfering RNAs. In the cell, NoV B2 binds to pre-Dicer substrate RNA and RNA-induced silencing complex (RISC)-processed RNAs and inhibits the Dicer cleavage reaction and, potentially, one or more post-Dicer activities. In vitro, NoV B2 inhibits Dicer-mediated RNA cleavage in the absence of any other host factors and specifically binds double-stranded RNAs corresponding in structure to Dicer substrates and products. Its abilities to bind to Dicer precursor and post-Dicer RISC-processed RNAs suggest a mechanism of inhibition that is unique among known viral inhibitors of RNAi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号