首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reexpansion of a collapsed lung increases the microvascular permeability and causes reexpansion pulmonary edema. Neutrophils and their products have been implicated in the development of this phenomenon. The small GTP-binding proteins Rho and its target Rho-kinase (ROCK) regulate endothelial permeability, although their roles in reexpansion pulmonary edema remain unclear. We studied the contribution of ROCK to pulmonary endothelial and epithelial permeability in a rabbit model of this disorder. Endothelial and epithelial permeability was assessed by measuring the tissue-to-plasma (T/P) and bronchoalveolar lavage (BAL) fluid-to-plasma (B/P) ratios with (125)I-labeled albumin. After intratracheal instillation of (125)I-albumin, epithelial permeability was also assessed from the plasma leak (PL) index, the ratio of (125)I-albumin in plasma/total amount of instilled (125)I-albumin. T/P, B/P, and PL index were significantly increased in the reexpanded lung. These increases were attenuated by pretreatment with Y-27632, a specific ROCK inhibitor. However, neutrophil influx, neutrophil elastase activity, and malondialdehyde concentrations in BAL fluid collected from the reexpanded lung were not changed by Y-27632. In endothelial monolayers, Y-27632 significantly attenuated the H(2)O(2)-induced increase in permeability and mitigated the morphological changes in the actin microfilament cytoskeleton of endothelial cells. These in vivo and in vitro observations suggest that the Rho/ROCK pathway contributes to the increase in alveolar barrier permeability associated with reexpansion pulmonary edema.  相似文献   

2.
Bronchial inflammation in allergic asthma is associated with active exudation from the bronchial tree into the interstitial space of both mucosa and submucosa. The aim of this study was to evaluate epithelial and endothelial permeability as well as alveolar fluid movement in a model of chronic allergic inflammation in Brown-Norway rats sensitized and challenged with ovalbumin (OA). Control groups were challenged with saline solution (C), and rats were immunized by OA but not challenged (Se). Lung sections showed a marked inflammatory infiltrate associated with perivascular and peribronchiolar edema in OA. To measure alveolar liquid clearance, a 5% bovine albumin solution with 1 microCi of (125)I-labeled human albumin was instilled into the air spaces. Alveolar-capillary barrier permeability was evaluated by intravascular injection of 1 microCi of (131)I-labeled albumin. Endothelial permeability was significantly increased in OA, from 0.08 +/- 0.01 in the C group to 0.19 +/- 0.03 in OA group (P < 0.05). Final-to-initial protein ratio was also statistically higher in OA (1.6 +/- 0.05) compared with C (1.38 +/- 0.03, P = 0.01) and Se groups (1.42 +/- 0.03, P = 0.04). Administration of anti-tumor necrosis factor-alpha antibodies within the instillate significantly decreased this ratio (1.32 +/- 0.08, P = 0.003 vs. OA). To conclude, we demonstrated a tumor necrosis factor-alpha-dependent increase in alveolar fluid movement in a model of severe bronchial allergic inflammation associated with endothelial and epithelial leakage.  相似文献   

3.
Lung protein leaks in ventilated lambs: effects of gestational age   总被引:3,自引:0,他引:3  
To study the protein permeability properties of the ventilated premature lung, we delivered groups of eight lambs at 122 and 135 days gestational age and ventilated the lambs equivalently. The lambs at 122 days gestational age had been treated with natural sheep surfactant at birth, and both groups of lambs had similar pH and blood gas values to 3 h of age. Three groups of lambs at 146 days gestational age also were studied for comparison; four lambs were ventilated to normalized PCO2 values, four lambs were ventilated equivalently to the premature lambs with supplemental CO2 used to normalize PCO2 values, and four lambs were treated with natural surfactant and ventilated similarly to the preterm lambs. The percent recovery into an alveolar wash and lung tissue of 131I-albumin given by intravascular injection and of 125I-albumin given into the airways was measured in each animal after killing at 3 h of age. Full-term lambs had a small bidirectional leak of albumin to and from the alveoli and lung tissue. The recovery of intravascular 131I-albumin in the alveolar wash was 5.8- and 4.1-fold higher in lambs at 122 and 135 days gestational age, respectively, than in full-term lambs. The loss of 125I-albumin from the airways and alveoli also increased as gestational age decreased. The bidirectional flux of albumin to and from the alveoli increased as gestational age decreased in the prematurely delivered and ventilated lambs.  相似文献   

4.
Investigation of the clearance of proteins from the air spaces is important for an understanding of the resolution of pulmonary edema and also because of current interest in delivery of therapeutic peptides via the distal air spaces. Few experimental studies have examined the size dependence for alveolar clearance of large macromolecules; there have been no human studies. In anesthetized rabbits, we measured clearance of cyanocobalamin and different-sized human proteins instilled into the air spaces. After 8 h, the amounts of instilled tracer recovered in the lungs were [57Co]cyanocobalamin, 19.4 +/- 3.0% (Stokes radius 0.65 nm); 125I-labeled insulin, 64.6 +/- 3.9% (1.2 nm); 131I-labeled albumin, 87.0 +/- 4.0% (3.5 nm); and 125I-labeled immunoglobulin G, 91.8 +/- 3.3% (5.5 nm) (P < 0.05). Sieving of different-sized proteins occurred across the alveolar epithelial barrier because tracer concentrations in air space lavage fluid after 8 h were decreased more for the smaller tracers than the larger ones. Size selectivity for alveolar protein clearance in humans with resolving alveolar edema was investigated by measuring the changes in albumin and total protein concentration. The fraction of total protein concentration made up of albumin was greater in the edema fluid than in the plasma initially. The albumin fraction decreased with time in 9 of 10 patients with resolving edema, from 0.62 +/- 0.2 to 0.58 +/- 0.10 (P < 0.05) after 10 +/- 5 h. Thus both rabbit studies and human studies provide evidence for size-dependent clearance of protein from the air spaces of the lung.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We studied the incidence of electron microscopic pathological patterns of the alveolar septum observed 30 min after induction of pulmonary edema by dextran-70 infusion (6 dogs, dextran group) and by alloxan injection (6 dogs, alloxan group). For comparable amounts of extravascular lung water in both dextran and alloxan groups, which were twice as much as control group (6 dogs), we characterized the pathological changes. The incidence of the electron microscopic pathological patterns that appeared in dextran group compared with that in control group was significantly high in terms of the widening of the interstitial space, dispersion and disarray of collagen fibrils, and erythrocytes in the interstitial space. The incidence in alloxan group compared with that in control group was significantly high in terms of the swelling of epithelial cells and endothelial cells as well as the widening of the interstitial space, and dispersion and disarray of collagen fibrils. We conclude that dextran causes interstitial changes exclusively and alloxan causes cellular changes primarily coupled with secondary interstitial changes in acute pulmonary edema.  相似文献   

6.
"Closing volume" (CV) was measured by the single-breath oxygen (SBO2) test in six dogs (alloxan group) before and after alloxan 100-200 mg/kg iv) was injected. CV increased significantly (P less than 0.05) from 32 +/- 3.2% (base line) to 45 +/- 3.5 % in period 1 (0-30 min after alloxan), but vital capacity (VC), respiratory system pressure volume (PV) curves, and alveolar plateau slopes did not change. No radiologic evidence of pulmonary edema was demonstrated in two dogs studied in period 1. CV decreased to 20 +/- 3.9% during period 2 (30-80 min after alloxan) and was associated with tracheal frothing, decreased VC, changes in the PV curve, and alveolar plateau slope, as well as histologic evidence of severe pulmonary edema. CV was 29 +/- 3.0%, and there were no changes in VC, PV curves, or alveolar plateau slopes in 6 other dogs studied for 2 h (control group). CV increased during period 1 before pulmonary edema could be demonstrated by changes in VC, PV curves, or radiography, but in period 2 lung function was so altered that CV by the SBO2 technique gave no useful information.  相似文献   

7.
Acute lung injury (ALI) is characterized by the flooding of the alveolar airspaces with protein-rich edema fluid and diffuse alveolar damage. We have previously reported that transforming growth factor-beta1 (TGF-beta1) is a critical mediator of ALI after intratracheal administration of bleomycin or Escherichia coli endotoxin, at least in part due to effects on lung endothelial and alveolar epithelial permeability. In the present study, we hypothesized that TGF-beta1 would also decrease vectorial ion and water transport across the distal lung epithelium. Therefore, we studied the effect of active TGF-beta1 on 22Na+ uptake across monolayers of primary rat and human alveolar type II (ATII) cells. TGF-beta1 significantly reduced the amiloride-sensitive fraction of 22Na+ uptake and fluid transport across monolayers of both rat and human ATII cells. TGF-beta1 also significantly decreased alphaENaC mRNA and protein expression and inhibited expression of a luciferase reporter downstream of the alphaENaC promoter in lung epithelial cells. The inhibitory effect of TGF-beta1 on sodium uptake and alphaENaC expression in ATII cells was mediated by activation of the MAPK, ERK1/2. Consistent with the in vitro results, TGF-beta1 inhibited the amiloride-sensitive fraction of the distal airway epithelial fluid transport in an in vivo rat model at a dose that was not associated with any change in epithelial protein permeability. These data indicate that increased TGF-beta1 activity in the distal airspaces during ALI promotes alveolar edema by reducing distal airway epithelial sodium and fluid clearance. This reduction in sodium and fluid transport is attributable in large part to a reduction in apical membrane alphaENaC expression mediated through an ERK1/2-dependent inhibition of the alphaENaC promoter activity.  相似文献   

8.
Previous studies have used fluid-instilled lungs to measure net alveolar fluid transport in intact animal and human lungs. However, intact lung studies have two limitations: the contribution of different distal lung epithelial cells cannot be studied separately, and the surface area for fluid absorption can only be approximated. Therefore, we developed a method to measure net vectorial fluid transport in cultured rat alveolar type II cells using an air-liquid interface. The cells were seeded on 0.4-microm microporous inserts in a Transwell system. At 96 h, the transmembrane electrical resistance reached a peak level (1,530 +/- 115 Omega.cm(2)) with morphological evidence of tight junctions. We measured net fluid transport by placing 150 microl of culture medium containing 0.5 microCi of (131)I-albumin on the apical side of the polarized cells. Protein permeability across the cell monolayer, as measured by labeled albumin, was 1.17 +/- 0.34% over 24 h. The change in concentration of (131)I-albumin in the apical fluid was used to determine the net fluid transported across the monolayer over 12 and 24 h. The net basal fluid transport was 0.84 microl.cm(-2).h(-1). cAMP stimulation with forskolin and IBMX increased fluid transport by 96%. Amiloride inhibited both the basal and stimulated fluid transport. Ouabain inhibited basal fluid transport by 93%. The cultured cells retained alveolar type II-like features based on morphologic studies, including ultrastructural imaging. In conclusion, this novel in vitro system can be used to measure net vectorial fluid transport across cultured, polarized alveolar epithelial cells.  相似文献   

9.
The transvascular leakage of albumin in various organs and tissues was studied with a double isotope technique in rats anesthetized with sodium pentobarbital, given intraperitoneally or intravenously, and in unanesthetized (conscious) rats. 125I-labeled albumin and 131I-labeled albumin were injected into the tail vein 1 hr apart. The albumin permeability index in tissues and organs is indicated by the local ratio (Xa/Ya)/(Xb/Yb), where (Xa/Ya) is the ratio of 125I/131I-albumin activities per g of tissue and (Xb/Yb) is the ratio of 125I/131I-albumin activities per g of blood. If there is no passage of albumin across the capillary membrane over the 1-hr period of study, the permeability index will be equal to one. In unanesthetized rats, the liver, lung, kidney, femoral muscle, and femoral skin were regions with a high albumin permeability index (above 2). In these organs, intraperitoneal and intravenous anesthesia caused a decrease or no significant change of the albumin permeability index. There was no significant albumin leakage over 1-hr period (index not significantly different from 1) in the mesentery, abdominal muscle, abdominal skin, cremaster, heart, and brain of unanesthetized rats. Intraperitoneal anesthesia caused the albumin permeability index to increase to approximately 4 in the mesentery, abdominal muscle, and the abdominal skin, but not in the cremaster, heart, or brain. These results demonstrate that pentobarbital anesthesia when given into the peritoneal cavity causes a significant increase in albumin leakage in the abdominal region.  相似文献   

10.
We have previously reported that keratinocyte growth factor (KGF) attenuates alpha-naphthylthiourea-induced lung injury by upregulating alveolar fluid transport. The objective of this study was to determine the effect of KGF pretreatment in Pseudomonas aeruginosa pneumonia. A 5% bovine albumin solution with 1 microCi of (125)I-labeled human albumin was instilled into the air spaces 4 or 24 h after intratracheal instillation of P. aeruginosa, and the concentration of unlabeled and labeled proteins in the distal air spaces over 1 h was used as an index of net alveolar fluid clearance. Alveolocapillary barrier permeability was evaluated with an intravascular injection of 1 microCi of (131)I-albumin. In early pneumonia, KGF increased lung liquid clearance (LLC) compared with that in nonpretreated animals. In late pneumonia, LLC was significantly reduced in the absence of KGF but increased above the control value with KGF. KGF pretreatment increased the number of polymorphonuclear cells recovered in the bronchoalveolar lavage fluid and decreased bacterial pulmonary translocation. In conclusion, KGF restores normal alveolar epithelial fluid transport during the acute phase of P. aeruginosa pneumonia and LLC in early and late pneumonia. Host response is also improved as shown by the increase in the alveolar cellular response and the decrease in pulmonary translocation of bacteria.  相似文献   

11.
Microvascular membrane permeability in high surface tension pulmonary edema   总被引:2,自引:0,他引:2  
Pulmonary edema was induced in dogs by an aerosol of detergent dioctyl sodium sulfosuccinate. The permeability of the pulmonary microvascular membrane was assessed by cannulating an afferent tracheobronchial lymphatic and comparing the lymph-to-plasma total protein concentration (CL/CP) during high lymph flows induced by increasing left atrial (LA) pressure after detergent aerosol. Base-line CL/CP of 0.69 +/- 0.02 fell to 0.55 +/- 0.03 with increased LA pressure alone. CL/CP fell to 0.47 +/- 0.02 when LA pressure was increased following detergent, 0.51 +/- 0.04 following an aerosol of the vehicle in which the detergent was dissolved, and 0.73 +/- 0.10 following intravenous alloxan. In additional animals protein concentration of the airway edema fluid was compared with that of plasma. The ration of protein concentration of airway fluid to plasma was 0.63 +/- 0.08 following detergent aerosol, 0.64 +/- 0.10 following increased LA pressure, and 0.94 +/- 0.09 following administration of alloxan. These data indicate no major increase in pulmonary microvascular permeability following detergent aerosol and support the concept that pulmonary edema is the consequence of reduced interstitial perimicrovascular hydrostatic pressure caused by increased alveolar surface tension.  相似文献   

12.
Acute lung injury is characterized by injury to the lung epithelium that leads to impaired resolution of pulmonary edema and also facilitates accumulation of protein-rich edema fluid and inflammatory cells in the distal airspaces of the lung. Recent in vivo and in vitro studies suggest that mesenchymal stem cells (MSC) may have therapeutic value for the treatment of acute lung injury. Here we tested the ability of human allogeneic mesenchymal stem cells to restore epithelial permeability to protein across primary cultures of polarized human alveolar epithelial type II cells after an inflammatory insult. Alveolar epithelial type II cells were grown on a Transwell plate with an air-liquid interface and injured by cytomix, a combination of IL-1β, TNFα, and IFNγ. Protein permeability measured by 131I-labeled albumin flux was increased by 5-fold over 24 h after cytokine-induced injury. Co-culture of human MSC restored type II cell epithelial permeability to protein to control levels. Using siRNA knockdown of potential paracrine soluble factors, we found that angiopoietin-1 secretion was responsible for this beneficial effect in part by preventing actin stress fiber formation and claudin 18 disorganization through suppression of NFκB activity. This study provides novel evidence for a beneficial effect of MSC on alveolar epithelial permeability to protein.  相似文献   

13.
Fluid-free alveolar space is critical for normal gas exchange. Influenza virus alters fluid transport across respiratory epithelia producing rhinorrhea, middle ear effusions, and alveolar flooding. However, the mechanism of fluid retention remains unclear. We investigated influenza virus strain A/PR/8/34, which can attach and enter mammalian cells but is incapable of viral replication and productive infection in mammalian epithelia, on epithelial sodium channels (ENaC) in rat alveolar type II (ATII) cells. In parallel, we determined the effects of virus on amiloride-sensitive (i.e., ENaC-mediated) fluid clearance in rat lungs in vivo. Although influenza virus did not change the inulin permeability of ATII monolayers, it rapidly reduced the net volume transport across monolayers. Virus reduced the open probability of single ENaC channels in apical cell-attached patches. U-73122, a phospholipase C (PLC) inhibitor, and PP2, a Src inhibitor, blocked the effect of virus on ENaC. GF-109203X, a protein kinase C (PKC) inhibitor, also blocked the effect, suggesting a PKC-mediated mechanism. In parallel, intratracheal administration of influenza virus produced a rapid inhibition of amiloride-sensitive (i.e., ENaC-dependent) lung fluid transport. Together, these results show that influenza virus rapidly inhibits ENaC in ATII cells via a PLC- and Src-mediated activation of PKC but does not increase epithelial permeability in this same rapid time course. We speculate that this rapid inhibition of ENaC and formation of edema when the virus first attaches to the alveolar epithelium might facilitate subsequent influenza infection and may exacerbate influenza-mediated alveolar flooding that can lead to acute respiratory failure and death.  相似文献   

14.
The objective of this study was to determine the effect of tumor necrosis factor (TNF)-alpha on the efflux of protein from the central nervous system to blood based on assessing the clearance of radiolabeled albumin from the cerebrospinal fluid (CSF) to blood in rats. (125)I-labeled human serum albumin ((125)I-HSA) was injected into a lateral ventricle, and venous blood was sampled hourly to determine the basal CSF protein clearance into the blood. After this, rats were intraventricularly infused with 10 microliter TNF-alpha and 10 microliter (131)I-HSA (n = 6) or 10 microliter saline and 10 microliter (131)I-HSA (n = 6). Venous blood was sampled hourly for 3 h. (131)I-HSA tracer recovery increased threefold in the venous blood and was significantly higher in the spleen, muscles, and skin in animals treated with TNF-alpha. No significant changes were observed in control animals treated with saline. The data suggest that TNF-alpha promotes the clearance of protein macromolecules from the CSF to the venous blood.  相似文献   

15.
Smoke inhalation causes most of the deaths in fire-related injuries, with pulmonary edema as a major determinant in the outcome of smoke-inhalation injury. The pathophysiology of pulmonary edema is thought to be related to the products of incomplete combustion. Damage to the integrity of the alveolar epithelium is one of the determinants of the development of smoke-induced pulmonary edema. In recent studies using lung clearance of aerosolized pentetic acid (DTPA [diethylenetriaminepentaacetic acid]) labeled with technetium Tc 99m to assess the permeability of the alveolar epithelium, several factors were identified that may increase a person''s susceptibility to smoke-induced acute lung injury. These are increased initial alveolar permeability and alterations in the number and activity of alveolar macrophages. Clinical measurement of 99mTcDTPA clearance may provide a sensitive and convenient method for the early detection and serial assessment of smoke-induced alveolar epithelial permeability changes.  相似文献   

16.
Rabbits exposed to hyperoxia develop surfactant deficiency, abnormal lung mechanics, and increased permeability to solute. We investigated whether replenishment of depleted alveolar surfactant by the intratracheal instillation of calf lung surfactant extract (CLSE) would mitigate the increase in alveolar permeability to solute. Twenty-eight rabbits were exposed to 100% O2 for 72 h and received intratracheal instillations of 125 mg CLSE (approximately 170 mumol dipalmitoyl phosphatidylcholine) at 24 and 48 h. The interlobar and intralobar distribution of CLSE was quantified by adding [14C]dipalmitoyl phosphatidylcholine liposes into the instillate and measuring the levels of activity in lung tissue. CLSE was nonuniformly distributed in the different lung lobes, the right lower lobe receiving more CLSE than the rest. Alveolar epithelial permeability to solute was assessed by instilling 10 ml isotonic saline, which contained a trace amount of [57Co]cyanocobalamin, in the right lower lobe and measuring the disappearance of the tracer from the alveolar saline and its appearance in the arterial blood during a 1-h period. CLSE treatment was associated with significantly increased 72-h survival in hyperoxia compared with saline-treated controls (number of survivors: 16/17 vs. 5/11, P less than 0.01). CLSE treatment significantly reduced the rate constant for the movement of cyanocobalamin out of the alveolar space (24 +/- 5 vs. 42 +/- 6 min-1 x 10(-3), P less than 0.01) and tracer appearance in the blood at the end of the study (7 +/- 1 vs. 34 +/- 13%, P less than 0.01) when compared with values in saline controls.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Effects of hyperoxia on alveolar permeability of neutropenic rabbits   总被引:2,自引:0,他引:2  
We investigated whether neutrophil suppression would prevent the early hyperoxic injury to the rabbit alveolar epithelium. Rabbits received a single intravenous injection of either nitrogen mustard (2 mg/kg) or saline and were exposed to 100% C2 for 64 h. At the end of the hyperoxic exposure, there were 20 +/- 7 neutrophils/ml blood in the nitrogen mustard group vs. 5,935 +/- 1,174 in the control group (means +/- SE; P less than 0.05). The corresponding numbers in lung extravascular tissue, expressed per high-power field, were 0.37 +/- 7 and 5.9 +/- 0.35, respectively (P less than 0.05). At this time, the rate constants of solute flux for 57Co-vitamin B12 (r = 6.5 A) and 131I-cytochrome c (r = 17 A), across the alveolar epithelium, were 33 +/- 5 (min-1) and 7 +/- 2 for the nitrogen mustard and 29 +/- 5 and 6 +/- 1 for the saline group, respectively. These variables were ninefold higher than their corresponding values in animals breathing air. We concluded that neutrophils do not play a significant role during the early stages of sublethal hyperoxic injury to rabbit alveolar epithelium.  相似文献   

18.
Chronic alcohol abuse increases the risk of developing acute lung injury approximately threefold in septic patients, and ethanol ingestion for 6 wk in rats impairs alveolar epithelial barrier function both in vitro and in vivo. Granulocyte/macrophage colony-stimulating factor (GM-CSF) is a trophic factor for the alveolar epithelium, and a recent phase II clinical study suggests that GM-CSF therapy decreases sepsis-mediated lung injury. Therefore, we hypothesized that GM-CSF treatment could improve ethanol-mediated defects in the alveolar epithelium during acute stresses such as endotoxemia. In this study, we determined that recombinant rat GM-CSF improved lung liquid clearance (as reflected by lung tissue wet:dry ratios) in ethanol-fed rats anesthetized and then challenged with 2 ml of saline via a tracheostomy tube. Furthermore, GM-CSF treatment improved lung liquid clearance and decreased epithelial protein leak in both control-fed and ethanol-fed rats after 6 h of endotoxemia induced by Salmonella typhimurium lipopolysaccharide given intraperitoneally, but with the greater net effect seen in the ethanol-fed rats. Our previous studies indicate that chronic ethanol ingestion decreases lung liquid clearance by increasing intercellular permeability. Consistent with this, GM-CSF treatment in vitro decreased permeability of alveolar epithelial monolayers derived from both control-fed and ethanol-fed rats. As in the endotoxemia model in vivo, the effect of GM-CSF was most dramatic in the ethanol group. Together, these results indicate that GM-CSF treatment has previously unrecognized effects in promoting alveolar epithelial barrier integrity and that these salutary effects may be particularly relevant in the setting of chronic alcohol abuse.  相似文献   

19.
Acute lung injury (ALI) is a devastating syndrome characterized by diffuse alveolar damage, elevated airspace levels of pro-inflammatory cytokines, and flooding of the alveolar spaces with protein-rich edema fluid. Interleukin-1beta (IL-1beta) is one of the most biologically active cytokines in the distal airspaces of patients with ALI. IL-1beta has been shown to increase lung epithelial and endothelial permeability. In this study, we hypothesized that IL-1beta would decrease vectorial ion and water transport across the distal lung epithelium. Therefore, we measured the effects of IL-1beta on transepithelial current, resistance, and sodium transport in primary cultures of alveolar epithelial type II (ATII) cells. IL-1beta significantly reduced the amiloride-sensitive fraction of the transepithelial current and sodium transport across rat ATII cell monolayers. Moreover, IL-1beta decreased basal and dexamethasone-induced epithelial sodium channel alpha-subunit (alpha ENaC) mRNA levels and total and cell-surface protein expression. The inhibitory effect of IL-1beta on alpha ENaC expression was mediated by the activation of p38 MAPK in both rat and human ATII cells and was independent of the activation of alpha v beta6 integrin and transforming growth factor-beta. These results indicate that IL-1beta may contribute to alveolar edema in ALI by reducing distal lung epithelial sodium absorption. This reduction in ion and water transport across the lung epithelium is in large part due to a decrease in alpha ENaC expression through p38 MAPK-dependent inhibition of alpha ENaC promoter activity and to an alteration in ENaC trafficking to the apical membrane of ATII cells.  相似文献   

20.
Intracisternal administration of veratrine (40 micrograms/kg) in the alpha-chloralose-anesthetized dog produces fulminant neurogenic pulmonary edema (NPE). To determine whether the edema resulted from increased microvascular pressure or from increased permeability, the airway fluid-to-plasma protein (A/P) concentration ratios were compared for both total proteins and endogenous protein fractions of known molecular radii (37-114 A) from dogs with edema produced by either veratrine, alloxan (permeability edema), or combined left atrial pressure and volume overload (hemodynamic edema). High A/P ratios (0.98 +/- 0.05) were observed after alloxan administration, whereas lower values (0.54 +/- 0.04) were observed in hemodynamic edema. A/P ratios were observed after veratrine administration that formed a continuum (0.48-0.84) between these extremes. Veratrine animals with high overall A/P ratios exhibited elevated A/P ratios for all protein fractions, whereas animals with lower overall A/P ratios exhibited A/P protein fraction ratios similar to those observed in the hemodynamic group. These data indicate that both hemodynamic and increased permeability mechanisms may play a role to varying degrees in the development of this form of NPE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号