首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The effect of the oligopeptide antibiotic distamycin A on human lymphocyte cultures was examined. Distamycin A specifically inhibits the condensation of the Y heterochromatin and induces a fragile site in the chromosome 16 (band q22) in some individuals. The optimal culture conditions under which an undercondensation of the Y heterochromatin and an induction of the fragile site in 16q22 can be achieved by in vitro treatment of lymphocytes were determined. This also permits the use of distamycin A in routine diagnostics of human chromosomes. The use of this technique in the analysis of translocations involving the Y chromosome is presented. The distamycin A-DNA interaction and the different possible explanations for the distamycin A-induced undercondensations of the Y heterochromatin and fragile sites 16q22 are discussed.  相似文献   

2.
A mouse-human hybrid cell panel for mapping human chromosome 16   总被引:21,自引:0,他引:21  
A mouse-human hybrid cell panel for human chromosome 16 was constructed from human cell lines with breakpoints on chromosome 16 at p13.11, q13, q22 and q24. Fusions with the human fibroblast line GM3884, t(X;16)(q26;q24) allowed the isolation of clones with either the derivative X or the derivative 16 as the only human chromosome. This was a consequence of both the genes APRT and HPRT being involved in the translocation. The breakpoints of the line GM3884 were confirmed by aphidicolin induction of the common fragile site at 16q23. The results of the fusions with this line suggest a localisation of the APRT gene at 16q24 and confirm the localisation of HPRT to Xq26 to Xq27.3. These hybrid cell lines enable the localisation of genes and DNA fragments to six clearly defined regions. Further localisation within three of these regions is possible by use of the three fragile sites on chromosome 16. In situ hybridisation with the probe pBLUR confirmed that of three lines tested all contained a single human chromosome.  相似文献   

3.
Fragile chromosome 16(q22) cause a balanced translocation at the same point   总被引:1,自引:1,他引:0  
A father with a fragile 16(q22) has a son with a de novo balanced translocation 1;16. Both the fragile site and the break point at chromosome 16 are similar (q22). The question of whether the fragile site can cause a structural chromosome abnormality at the same point is discussed.  相似文献   

4.
Summary Lymphocyte cultures from man, gorilla, and chimpanzee were treated with 5-azacytidine and 5-azadeoxycytidine. These cytidine analogues induce common fragile sites in the chromosome bands 1q42 and 19q13 of man. A rare fragile site is induced by 5-azadeoxycytidine in the band 1q24. The optimum conditions required for inducing these new fragile sites were determined by a series of experiments. The common fragile site in human chromosome 1q42 also exists in the gorilla and chimpanzee in the homologous band 1q32. The fragile site in human chromosome 19q13 was demonstrated in the gorilla in the homologous chromosome band 20q13. These are the first examples found of evolutionary highly conserved fragile sites in homologous chromosome bands in related primate species. The interaction between 5-azacytidine, 5-azadeoxycytidine, and chromosomal DNA; the evolutionary conservation of genes located within or closely adjacent to the fragile sites in the chromosome 1 of Hominoidea; and the phylogenetic origin of the two new common fragile sites are discussed.  相似文献   

5.
DAPI-inducible common fragile sites   总被引:1,自引:0,他引:1  
DAPI, a compound specific for the AT bases of DNA, causes gaps and breaks in three human chromosome sites, at the 1q41-1q42 interface, 2q31, and 7p22. It also induces undercondensation of a chromosome site at the 13q21-13q22 interface. The first three sites have the characteristics of "common fragile sites" and are present as gaps and breaks on the chromosomes of seven individuals.  相似文献   

6.
Two members of the KOX gene family, ZNF23 (KOX16) and ZNF32 (KOX30), have been mapped by in situ hybridization to chromosome regions 16q22 and 10q23-q24, respectively. The map location of ZNF23 and ZNF32 placed these zinc finger protein genes near to chromosome loci that, under certain in vitro conditions, are expressed as fragile sites (FRA16B, FRA16C) and (FRA10D, FRA10A, FRA10B and FRA10E). Human zinc finger gene ZNF32 maps to a chromosome region on 10q23-24 in which deletions have been observed associated with malignant lymphoma on 10q22-23 and with carcinoma of the prostate on 10q24. ZNF23 is located on 16q22 in a chromosomal region that has been involved in chromosome alterations characteristic of acute myeloid leukemia. A second Kox zinc finger gene (ZNF19/KOX12) was recently mapped to the same chromosome region on human chromosome 16q22. In the analogous murine position, the murine zinc finger genes Zfp-1 and Zfp-4 are found in the syntenic 16q region of mouse chromosome 8. Thus, ZNF19 and ZNF23 might be members of an evolutionarily conserved zinc finger gene cluster located on human chromosome 16q22.  相似文献   

7.
Summary In the lymphocytes of heterozygous carriers of the rare autosomal fragile site (16)(q22) an exceptionally high frequency of sister chromatid exchanges was demonstrated at the induced fragile site by means of simultaneous berenil and BrdU treatment of the cultures. The rate of sister chromatid exchanges at q22 is also increased in the fragile chromosome 16 by treating the cells with BrdU alone. The possible reasons for the preferential occurrence of induced and spontaneous sister chromatid exchanges at fra (16)(q22) are discussed.  相似文献   

8.
The distamycin A-sensitive fragile site fra(16)(q22) is a precisely localized chromosomal marker. When expressed at metaphase, it visibly separates the chromosome material on either side of the fragile site. Using a cDNA probe encoding both the alpha and beta haptoglobin chains, the haptoglobin loci were found by in situ hybridization to be distal to fra(16)(q22).  相似文献   

9.
Summary The significance of the fragile site on 16 (q21q22) has not yet been fully evaluated. New data will contribute to the understanding of this cytogenetic finding. Therefore we report on four families where a chromosome 16 with fragile site was segregating and such problems as infertility, abortions, malformations, and ancuploidy were present. The hypothesis that this fragile site is a site of viral modification (or integration?) is considered.  相似文献   

10.
In this work, five YAC clones have been mapped by fluorescent in situ hybridization (FISH) to human chromosome region 2q31 q32.1 and ordered in relation to each other and to the FRA2G common fragile site. YAC clones that span the fragile site have been identified. Moreover a deleted HOXD 13 gene has been identified on the 942D2 YAC.  相似文献   

11.
From a clone containing the entire locus of human endogenous retroviral element ERV1, we have obtained a DNA probe that is specific for the 3' long terminal repeat (LTR) sequence. This probe was used to map the LTR of ERV1 by in situ hybridization to chromosomes from normal human blood lymphocytes. The LTR was found to be localized to the distal portion of the long arm of human chromosome 18, within bands q22----q23. This chromosome locus is near the constitutive fragile site at band q21.3 on chromosome 18 associated with the 14;18 translocations seen in follicular lymphomas.  相似文献   

12.
Chinese hamster lung (CHL) V79 cells already deficient in hypoxanthine phosphoribosyltransferase were exposed to uv light and selected for mutations causing deficiency of thymidylate synthase (TS) by their resistance to aminopterin in the presence of thymidine and limiting amounts of methyl tetrahydrofolate. Three of seven colonies chosen for initial study were shown to be thymidylate synthase deficient (TS-) by enzyme assay, thymidine auxotrophy, and their inability to incorporate labeled deoxyuridine into their DNA in vivo. Complementation analysis of human X TS- hamster hybrids revealed that TS activity segregated with human chromosome 18. Southern analysis of a panel of 14 human X hamster hybrids probed with complementary DNA from mouse TS confirmed the chromosome assignment of TS to human chromosome 18; quantitative Southern blotting using unbalanced human cell lines further localized the gene to 18q21.31----qter. Another hybrid was generated that contained a human X chromosome with the Xq28 folate-dependent fragile site as its only human chromosome in a hamster TS- background. The fragile site could be easily and reproducibly expressed in this hybrid without the use of antimetabolites simply by removing exogenous thymidine from the medium. These TS-deficient cells are useful for: somatic cell genetics as a unique selectable marker for human chromosome 18, studies on regulation of the TS gene, and analysis of the fragile (X) chromosome and other folate-dependent fragile sites.  相似文献   

13.
Summary The coagulation factor IX gene and two other polymorphic loci corresponding to DNA probes 52 A and St 14 have been previously localized in the q27 to qter region of the human X chromosome. In order to study their localization with respect to the fragile site at Xq27-28, we have hybridized the three DNA probes to metaphase chromosomes of a boy with fragile X mental retardation. We show that probe 52A is located in the proximal part of the Xq27 band, while the coagulation factor IX gene is on the distal part of this band, but proximal to the fragile site. The very polymorphic St 14 probe is located in the distal part of the Xq28 band, on the other side of the fragile site.  相似文献   

14.
Summary The rare fragile site at 16q22 was experimentally induced in lymphocyte cultures with various AT-specific, non-intercalating DNA-ligands. The optimum conditions for the induction of fra (16)(q22) were determined. The best expression of fra (16)(q22) was found with the aromatic diamidine berenil which is recommended for further studies on this fragile site. The results indicate that fra (16)(q22) is a region with AT-rich, late replicating DNA. The simultaneous treatment of lymphocytes with berenil and aphidicolin (inhibitor of DNA polymerase ) induces both the rare fra (16) (q22) and the common fra (16) (q23) within the same chromosome. A population study on 350 unselected individuals showed that fra (16)(q22) is the most common of all rare autosomal fragile sites in man. The frequency of individuals heterozygous for fra (16)(q22) is 5.1% no homozygosity for fra (16) (q22) was detected. Statistical analysis indicates that the population is in Hardy-Weinberg equilibrium with respect to the fragile and non-fragile chromosomes 16.  相似文献   

15.
16.
Segregation analysis of rare autosomal fragile sites   总被引:2,自引:0,他引:2  
Summary Segregation analyses were performed on pedigrees with rare autosomal fragile sites. The results of the analysis of pedigrees with folate sensitive fragile sites, including 2q1, 6p23, 7p11, 8q22, 9q32, 10q23, 11q13, 11q23, 12q13, 16p12, and 20p11, suggested that expression of the gene depended on the carrier parent: it was only 50% penetrant when transmitted by a carrier father, but fully penetrant when transmitted by a carrier mother. Pedigrees with the bromodeoxyuridine (BrdU) fragile site, fra(10)(q25), showed the same trend but the results were not statistically significant. In addition, 38 of the 44 probands with folate sensitive or BrdU-sensitive fragile sites received the gene from their carrier mother and only six received it from their father. In contrast, the analysis of pedigrees with the distamycin A-inducible site, fra(16)(q22), gave the results expected for a simple codominant trait with complete penetrance. Probands with this fragile site received the gene equally from mothers or fathers. The genetic implications of these results are discussed.  相似文献   

17.
A mentally retarded girl with a 46,XX/47, XX+r(1) (p11q22q22p11)/47, XX+r(1) (p11q22) fra(1) (p31) fra(1) (p11) fra(1) (q22) karyotype who inherited the fragile sites from the normal mother was studied. The conicidence of fra(1) (p11) and fra(1) (q22) with the ring chromosome breakpoints strongly suggests a cause-effect relationship. This finding agrees with other reported associations between fragile sites and structural chromosome abnormalities and constitutes the fourth reported of a de novo structurally abnormal chromosome as a consequence of presumed in vivo fragile sites instability. Although risk figures for chromosome anomalies and cancer associated with fragile sites are lacking, carriers of fra (1) (p11) may have a higher risk for abnormalities of chromosome 1 in somatic and gonadal cells than the general population.  相似文献   

18.
The present study reports on the chromosomal expression and localization of aphidicolin-induced fragile sites in the standard karyotype of river buffalo (Bubalus bubalis, 2n = 50) with the aim of establishing a 'fragile site map' of the species. Totally, 400 aphidicolin-induced breakages were analyzed from eight young and clinically healthy animals, four males and four females; these breakages were localized in 106 RBG-negative chromosome bands or at the band-interband regions. The number of breakages per chromosome did not vary statistically 'among' the animals investigated but the differences among individual chromosomes were highly significant thus indicating that the chromosomal distribution of the breakages is not random and appears only partially related to chromosome length. Fragile sites were statistically determined as those chromosomal bands showing three or more breakages. In the river buffalo karyotype, 51 fragile sites were detected and localized on the standardized ideogram of the species. The most fragile bands were as follows: 9q213 with 24 breakages out of 400; 19q21 with 16, 17q21 and inacXq24 with 15, 15q23 with 13 and 13q23 with 12 breaks, respectively. Previous gene mapping analysis in this species has revealed that the closest loci to these fragile sites contain genes such as RASA1 and CAST (9q214), NPR3 and C9 (19q19), PLP and BTK (Xq24-q25), OarCP09 (15q24), and EDNRB (13q22) whose mutations are responsible for severe phenotypic malformations and immunodeficiency in humans as well as in mice and meat quality in pigs. Further cytogenetic and molecular studies are needed to fully exploit the biological significance of the fragile sites in karyotype evolution of domestic animals and their relationships with productive and reproductive efficiency of livestock.  相似文献   

19.
The human adenine phosphoribosyltransferase gene (APRT) was mapped with respect to the haptoglobin gene (HP) and the fragile site at 16q23.2 (FRA16D). A subclone of APRT and a cDNA clone of HP were used for molecular hybridization to DNA from mouse-human hybrid cell lines containing specific chromosome 16 translocations. The APRT subclone was used for in situ hybridization to chromosomes expressing FRA16D. APRT was found to be distal to HP and FRA16D and was localized at 16q24, making the gene order cen-FRA16B-HP-FRA16D-APRT-qter.  相似文献   

20.
Summary Two members of the human zinc finger Krüppel family, ZNF 12 (KOX 3) and ZNF 26 (KOX 20), have been localized by somatic cell hybrid analysis and in situ chromosomal hybridization. The presence of individual human zinc finger genes in mouse-human hybrid DNAs was correlated with the presence of specific human chromosomes or regions of chromosomes in the corresponding cell hybrids. Analysis of such mouse-human hybrid DNAs allowed the assignment of the ZNF 12 (KOX 3) gene to chromosome region 7p. The ZNF 26 (KOX 20) gene segregated with chromosome region 12q13-qter. The zinc finger genes ZNF 12 (KOX 3) and ZNF 26 (KOX 20) were localized by in situ chromosomal hybridization to human chromosome regions 7p22-21 and 12q24.33, respectively. These genes and the previously mapped ZNF 24 (KOX 17) and ZNF 29 (KOX 26) genes, are found near fragile sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号