首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Two forms (GS1 and GS2) of glutamine synthetase have been isolated, separated by ion exchange chromatography, and partly characterized from cells of the green alga Chlorella kessleri. Both forms are present in cells grown autotrophically or heterotrophically on various nitrogen sources, but under all nutritional conditions GS1 was found to be the major isoenzyme present (60-80%). The activity of both isoenzymes was greatest in cells grown under nitrogen-limiting conditions. Both isoenzymes have molecular weights in the range 340 to 350,000 daltons. GS1 was found to have a greater thermostability than GS2: GS1 was stable at 30°C while GS2 lost 95% of its activity in 30 minutes. GS1 was much less sensitive to thiol reactive reagents than GS2.  相似文献   

2.
It has been shown that the leaves of pumpkin (Cucurbita pepo) contain two molecular forms of glutamine synthetase (GS), one occurring in the cytosol (GS1)and the other in the chloroplasts (GS2). The activities of both forms were greater when ammonium ion was infiltrated into the leaves and this was shown to be due to de novo synthesis. The two synthetases were purified by ammonium sulphate fractionation, ion exchange chromatography on DEAE-cellulose, selective adsorption on calcium phosphate gel, and preparative polyacrylamide gel electrophoresis. The MWs of GS1 and GS2, estimated by gel filtration on Sephacryl S-200, were 480 000 and 370 000 respectively. During polyacrylamide gel electrophoresis in the presence of SDS both GS1 and GS2 were dissociated into polypeptide chains with MWs of 58 000 and 50 000 respectively, suggesting that GS, 1 and GS2 are octamers consisting of identical monomers. The synthetases showed noticeable differences in their amino acid composition. In GS1 and GS2 the proportions of α- helical segments were 34 and 17 % respectively. In the presence of Mg2+, the pH optima for GS1 and GS2 were 7.25 and 7.75 respectively, and Km values toward l-glutamate were 13 and 46 mM respectively. From the experimental data it is inferred that GS1 and GS2 are isoenzymes.  相似文献   

3.
Maize (Zea mays L.) kernel pedicels, including vascular tissues, pedicel parenchyma, placento-chalazal tissue, and the surrounding pericarp, contained two forms of glutamine synthetase (EC 6.3.1.2), separable by anion exchange chromatography under mildly acidic conditions. The earlier-eluting activity (GSp1), but not the later-eluting activity (GSp2), was chromatographically distinct from the maize leaf and root glutamine synthetases. The level of GSp1 activity changed in a developmentally dependent manner while GSp2 activity was constitutive. GSp1 and GSp2 exhibited distinct ratios of transferase to hydroxylamine-dependent synthetase activities (5 and 23, respectively), which did not change with kernel age. Purified pedicel glutamine synthetases had native relative molecular masses of 340,000, while the subunit relative molecular masses differed slightly at 38,900 and 40,500 for GSp1 and GSp2, respectively. Both GS forms required free Mg2+ with apparent Kms = 2.0 and 0.19 millimolar for GSp1 and GSp2, respectively. GSp1 had an apparent Km for glutamate of 35 millimolar and exhibited substrate inhibition at glutamate concentrations greater than 90 millimolar. In contrast, GSp2 exhibited simple Michaelis-Menten kinetics for glutamate with a Km value of 3.4 millimolar. Both isozymes exhibited positive cooperativity for ammonia, with S0.5 values of 100 and 45 micromolar, respectively. GSp1 appears to be a unique, kernel-specific form of plant glutamine synthetase. Possible functions for the pedicel GS isozymes in kernel nitrogen metabolism are discussed.  相似文献   

4.
Two isoenzymes of glutamine synthetase (EC 6.3.1.2), GS1 and GS2, have been purified from cells of Emiliania huxleyi using Cibacron blue dye ligand chromatography and gel filtration, separated by ion-exchange chromatography on Mono-Q and partly characterized. Each enzyme is a homohexamer with a molecular mass of 402 kDa for GS1 and 501 kDa for GS2. The molecular mass of the subunits of GS1 and GS2 was estimated to be 61 and 78 kDa, respectively. As in higher plants, GS1 is slightly more thermostable than GS2 and much less stimulated by thiols than GS2. For these reasons, GS1 was designated as the cytosolic enzyme and GS2 as the chloroplastic one. Although the Kms for NH2OH are about the same, GS2 possesses a much higher affinity for glutamine than GS1. As in bacteria, ATP appears to play an important role in the allosteric regulation of GS2. l-Ala and CTP are potent inhibitors of GS1 activity. CTP, carbamoyl-phosphate and l-Ala exert a cumulative inhibitory effect on GS1 activity. GS2 is also inhibited to some extent by l-Ala and l-His. NH2-terminal sequence analysis of GS2 did not show any homology with bacteria, cyanobacteria or higher plants.  相似文献   

5.
6.
Glutamine synthetase (GS; EC.6.3.1.2.) occurs as cytosolic (GS1) and plastidic (GS2) polypeptides. This paper describes the expression of GS isoenzymes in coleoptile during the anaerobic germination of rice (Oryza sativa L.) and the influence of exogenous nitrate on this. By immunoprecipitation with anti-GS serum, two polypeptides of 41- and 44-kDa were detected of which the former was predominant. After fractionation by ion-exchange chromatography, the 41 and 44 kDa bands were identified as GS1 and GS2, respectively. Northern blot analysis with specific probes showed the presence of mRNA for cytosolic GS but not for the plastidic form. The presence of exogenous nitrate did not alter the activity and expression of GS in the coleoptile. The role of GS during the anaerobic germination of rice seems to induce the re-assimilation of ammonia rather than the assimilation of nitrate.Abbreviations GS glutamine synthetase - GS1 cytosolic glutamine synthetase - GS2 platidic glutamine synthetase We are grateful to Dr. Julie V. Cullimore for providing GS anti-serum and clones. The research was supported by the National Research Council of Italy, special project RAISA, sub-project N. 2 paper N. 1586.  相似文献   

7.
The glutamine synthetase (GS) isozymes in the plant fraction of nodule extracts from 62 cultivars of Phaseolus vulgaris L. and one cultivar of Phaseolus lunatus L. were analyzed by polyacrylamide gel electrophoresis. All P. vulgaris nodule extracts displayed two GS activity bands: a nodule-specific band (GSn1) and a band (GSn2) similar to the single band (GSr) present in root extracts. In nodule extracts of P. lunatus, the GSn1 band was detected, but the GSn2 band was barely detectable. In contrast to P. vulgaris, the GSn2 band and the GSr band of P. lunatus appeared to be different. The electrophoretic mobility of the GSn1 band in P. vulgaris was governed by both the plant cultivar and the development stage of the nodule. In nodule extracts of P. vulgaris and P. lunatus, the zone of GSn1 activity coincided with six to nine distinct protein bands as revealed after treatment of gels, which had previously been stained for GS activity, with Coomassie blue. All these protein bands were shown to consist of polypeptides of identical molecular weight (approximately 47,000 daltons) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Our results indicate that P. vulgaris continuously generates isozymes of GSn1 of increasing electrophoretic mobility during the course of nodule development.  相似文献   

8.
Higher plants assimilate nitrogen in the form of ammonia through the concerted activity of glutamine synthetase (GS) and glutamate synthase (GOGAT). The GS enzyme is either located in the cytoplasm (GS1) or in the chloroplast (GS2). To understand how modulation of GS activity affects plant performance, Lotus japonicus L. plants were transformed with an alfalfa GS1 gene driven by the CaMV 35S promoter. The transformants showed increased GS activity and an increase in GS1 polypeptide level in all the organs tested. GS was analyzed by non-denaturing gel electrophoresis and ion-exchange chromatography. The results showed the presence of multiple GS isoenzymes in the different organs and the presence of a novel isoform in the transgenic plants. The distribution of GS in the different organs was analyzed by immunohistochemical localization. GS was localized in the mesophyll cells of the leaves and in the vasculature of the stem and roots of the transformants. Our results consistently showed higher soluble protein concentration, higher chlorophyll content and a higher biomass accumulation in the transgenic plants. The total amino acid content in the leaves and stems of the transgenic plants was 22–24% more than in the tissues of the non-transformed plants. The relative abundance of individual amino acid was similar except for aspartate/asparagine and proline, which were higher in the transformants.Abbreviations GS Glutamine synthetase - UTR Untranslated region  相似文献   

9.
It is well established that the plastidic isoform of glutamine synthetase (GS2) is the enzyme in charge of photorespiratory ammonium reassimilation in plants. The metabolic events associated to photorespiratory NH4+ accumulation were analyzed in a Lotus japonicus photorespiratory mutant lacking GS2. The mutant plants accumulated high levels of NH4+ when photorespiration was active, followed by a sudden drop in the levels of this compound. In this paper it was examined the possible existence of enzymatic pathways alternative to GS2 that could account for this decline in the photorespiratory ammonium. Induction of genes encoding for cytosolic glutamine synthetase (GS1), glutamate dehydrogenase (GDH) and asparagine synthetase (ASN) was observed in the mutant in correspondence with the diminishment of NH4+. Measurements of gene expression, polypeptide levels, enzyme activity and metabolite levels were carried out in leaf samples from WT and mutant plants after different periods of time under active photorespiratory conditions. In the case of asparagine synthetase it was not possible to determine enzyme activity and polypeptide content; however, an increased asparagine content in parallel with the induction of ASN gene expression was detected in the mutant plants. This increase in asparagine levels took place concomitantly with an increase in glutamine due to the induction of cytosolic GS1 in the mutant, thus revealing a major role of cytosolic GS1 in the reassimilation and detoxification of photorespiratory NH4+ when the plastidic GS2 isoform is lacking. Moreover, a diminishment in glutamate levels was observed, that may be explained by the induction of NAD(H)-dependent GDH activity.  相似文献   

10.
Anion exchange chromatography and immunoprecipitation have been used to demonstrate the presence of two forms (GS1, and GS2) of glutamine synthetase in the leaves of nine species of Panicum representative of C3, C4 and C3-C4 intermediate-type photosynthesis. GS2 from the Panicum species, P. miliaceum and P. maximum was more thermostable than GS1, GS1, and GS2 from P. laxum were equally thermostable but GS2 from all the Panicum species examined was more sensitive to inhibition by N-ethylmaleimide than GS1. GS1, and GS2 were characterised as being cytoplasmic and chloroplastic isoforms respectively by their reaction with N-ethylmaleimide and by immunoprecipitation with antibodies raised against the cytosolic isoform in barley and the chloroplastic form in tobacco. C3 species were found to have higher activity of the chloroplastic isoform of glutamine synthetase than C4 species. C3-C4 intermediate species had total leaf glutamine synthetase activities similar to those in C3 species but were found to have a lower chloroplastic isoform content. The results are consistent with the reassimilation of photorespiratory ammonia by chloroplastic glutamine synthetase.  相似文献   

11.
Current housing conditions for domestic fowl (Gallus gallus domesticus) offer little in the way of environmental features biologically relevant to the birds. More specifically there is a notable absence of protective cover, a fundamental element that influences how domestic fowl use space. The availability of cover could be more relevant to small, as opposed to larger groups, because large groups offer an individual natural protection. In this experiment we investigated the immediate effects of cover panels designed to increase environmental complexity (EC) and compared their effects across three group sizes (n = 8) of five (GS5), 10 (GS10), or 20 (GS20), broilers per group. Birds were tested under two different scenarios representing increasing EC, once with one long panel (single) once with four staggered small panels (quad) and once in an empty control arena (void). Each test lasted for 1 h. Core areas, or activity centers, were not affected by EC. EC had the greatest impact on the inter-individual distances of birds in smaller groups. Minimum and nearest neighbor distances in GS5 increased significantly with EC, whereas those in the GS10 and GS20 were not different across the EC treatments. Because GS were housed together in a home pen and moved from this common home pen into testing arenas, significant differences in minimum, maximum, and nearest neighbor inter-individual distances suggest that birds adjusted their use of space in response to immediate changes in group size and EC. Overall we found a significant impact of EC on the spacing behavior of domestic fowl, however the effects were not equal for all group sizes. As predicted, smaller groups were more affected by environmental features, and thus may experience the greatest benefit from increased EC.  相似文献   

12.
Changes in the levels of cytosolic and chloroplastic isoforms of glutamine synthetase were examined in senescing radish (Raphanus sativus L. cv Comet) cotyledons by immunoblotting analysis using antibodies raised separately against maize glutamine synthetase isoforms. Translatable mRNAs for these isoforms were also examined by analyzing translation products from poly(A)+ RNA in a wheat germ system with the antibodies. The relative content of cytosolic isoform (GS1) increased twofold in the cotyledons that were placed in the dark for 72 hours to accelerate senescence, while that of chloroplastic isoform (GS2) declined to half of its initial level. The dark-treatment also increased the relative level of translatable mRNA for GS1 sevenfold after 72 hours, and decreased rapidly that for GS2 and for other nuclear-coded chloroplast proteins as well. Cotyledons also accumulated GS1 mRNA when they became senescent after a lengthy growth period under continuous light. These observations suggested that GS1 genes were activated, while those for GS2 were repressed, and eventually the population of the enzyme was altered in senescent cotyledonary cells. The role of increased cytosolic enzyme is discussed in relation to the nitrogen metabolism in senescent leaves.  相似文献   

13.
Escherichia coli glutamine synthetase (GS) preparations composed of 12 adenylylated subunits (GS12?) are almost completely precipitated by sheep Anti-AMP immunoglobulin G (IgG), whereas glutamine synthetase preparations containing 6 adenylylated subunits (GS6?) are only partially precipitated by the antibodies (R.J. Hohman, S.G. Rhee, and E.R. Stadtman, 1980, Proc. Nat. Acad. Sci. USA77, 7410–7414). By means of 125I-labeled anti-AMP antibodies and double immunoprecipitation techniques, in which rabbit antiserum to sheep IgG or anti-GS antibodies were used to precipitate soluble immune complexes, it was demonstrated that under optimal conditions, both the soluble and insoluble immune complexes obtained with either GS6? or GS12? contain 0.5 mol antibody/mol adenylylated subunit. In agreement with the lattice theory of immuno-precipitation, soluble immune complexes are formed in antibody excess. Scatchard plots of binding data indicate that under conditions of antibody excess, one antibody molecule is bound to each AMP moiety of GS12?, whereas GS6? binds a maximum of only 0.68 antibody molecule/adenylylated subunit. We propose that with some species of GS6?, the distribution of adenylylated subunits favors monogamous interactions of the bivalent antibody with two subunits within the same GS molecule and thereby leads to the formation of small, soluble, immune complexes. Other explanations are considered. Only 30% of the antibody population that recognizes unconjugated 5′-AMP binds to the AMP moiety of adenylylated GS. Anti-AMP antiserum can be fractionated on a GS12?-Sepharose matrix into two subpopulations of antibody with strikingly different immunoprecipitation characteristics. Conversely, species of GS with various states of adenylylation ranging from 0 to 8 were separated from a GS6? preparation by means of affinity chromatography on an anti-AMP antibody-Sepharose matrix. Under optimal conditions, antibodies purified by affinity chromatography precipitated a smaller fraction of a GS6? preparation than did unfractionated antiserum. Competence of the purified antibody was nearly restored to that of the unfractionated serum by the addition of an enhancement factor present in the IgG fraction of nonimmune serum. The enhancement factor was not required for complete precipitation of GS?12 by purified antibodies. Contrary to most antibody-antigen reactions, immunoprecipitation of GS6? with anti-AMP antibodies is greater at 30 °C than at 4 °C.  相似文献   

14.
15.
Glutamine synthetase (GS) utilizes various substituted glutamic acids as substrates. We have used this information to design herbicidal α- and γ-substituted analogs of phosphinothricin (l-2-amino-4-(hydroxymethylphosphinyl)butanoic acid, PPT), a naturally occurring GS inhibitor and a potent herbicide. The substituted phosphinothricins inhibit cytosolic sorghum GS1 and chloroplastic GS2 competitively versusl-glutamate, with Ki values in the low micromolar range. At higher concentrations, these inhibitors inactivate glutamine synthetase, while dilution restores activity through enzyme-inhibitor dissociation. Herbicidal phosphinothricins exhibit low Ki values and slow enzyme turnover, as described by reactivation characteristics. Both the GS1 and GS2 isoforms of plant glutamine synthetase are similarly inhibited by the phosphinothricins, consistent with the broad-spectrum herbicidal activity observed for PPT itself as well as other active compounds in this series.  相似文献   

16.
Ion-exchange chromatography has been used to separate the isoforms of glutamine synthetase (GS; EC 6.3.1.2) appearing in sunflower (Helianthus annuus L. cv. Peredovic) cotyledons during seedling growth under different light and nitrogen conditions. Both in dry and imbibed seeds, only a single form of GS (GSs) was detected. Upon seed germination, the GSs isoform was gradually replaced by cytosolic (GS1) and plastidic (GS2) isoforms. Light and nitrate decreased the levels of GS1. In contrast, the appearance of GS2 was greatly stimulated by light. Nitrate also had a positive effect, particularly in the light. Light and nitrate acted synergistically on the appearance of GS2. The GS2:GS1 ratio in cotyledons of 9-d-old seedlings ranged from about 2, in darkness and nitrate-deprivation conditions, to 16 under light and nitrate application. The possible physiological roles of the distinct GS isoforms appearing in the epigeal cotyledons of sunflower during germination, and their differential regulation by light and nitrate, are discussed.Abbreviations GS glutamine synthetase - GS1 cytosolic GS - GS2 plastidic GS - GSs GS from seeds This work was supported by a grant from Dirección General de Investigatión Científica y Técnica (PB90-0777) and Plan Andaluz de Investigación (3261), Spain. P.C. gratefully acknowledges receipt of a scholarship from Junta de Andalucía. The valuable technical assistance of Mrs. G. Alcalá is greatly appreciated. We are also grateful to Eurosemillas (Córdoba) for supplying us with sunflower seeds.  相似文献   

17.
The studies were performed on young triticale seedlings grown on a mineral medium containing 5 mM NO 3 as the nitrogen source, with the addition of 0.5 mM CdCl2. It was determined that cadmium ions accumulated mainly in the plant roots. Decreases in nitrate concentrations both in the roots and shoots of seedlings, as well as decreases in soluble protein contents with simultaneous increases in endopeptidase activity were also observed. Both in roots and shoots significant decreases in glutamic acid were noted. Toxic cadmium ion accumulation in seedlings significantly modified activity of primary nitrogen assimilating enzymes, i.e. glutamine synthetase (GS, EC 6.3.1.2) and glutamate dehydrogenase (GDH, EC 1.4.1.2). There was a significant decrease in GS activity both in roots and in shoots of the stressed plants, in comparison to plants grown without cadmium. In shoots of the control plants and plants subjected to stress two GS isoforms were discovered: cytoplasmatic (GS1) and chloroplastic (GS2). Substantial decreases in total glutamine synthetase activity in green parts of seedlings, occurring under stress conditions, result from dramatic decrease in GS2 activity (by 60 % in relation to the control plants); despite simultaneous increases in the cytoplasmatic isoform (GS1) activity by approx. 96 %. Cadmium ions accumulating in roots and shoots of seedlings not only increased GDH activity, but also modified its coenzymatic specificity.  相似文献   

18.
19.
20.
Summary A cDNA clone (pcPvNGS-01) to glutamine synthetase (GS) mRNA from root nodules of Phaseolus vulgaris showed cross-hybridization to GS and mRNA from soybean root nodules, thus allowing its use as a probe to study the expression of GS genes during root nodule development in soybeans. Hybrid-select translation of root and nodule RNA of soybean with DNA from pcPvNGS-01, followed by 2D gel electrophoresis, showed six peptides in the root and an additional four peptides in the nodule which represent nodule-specific glutamine synthetase (GSn) gene products. The GSn gene products appeared for the first time between day 11 and 12 after infection, either concomitant with the onset of nitrogenase activity or immediately following it. The levels of expression of the GSn and leghemoglobin genes were not affected in young Fix- nodules formed by Bradyrhizobium japonicum strains that are defective in nitrogenase activity, suggesting that the induction of these two sets of host genes take place independent of nitrogenase activity. However, in Fix- nodules that are incapable of maintaining the peribacteroid membrane, GSn gene products were not detected while 1ba, 1bc2 and 1bc3 appeared. In both the timing of appearance during root nodule development and the effect of different bacterial mutations on the expression, GSn genes differ from most other nodulin genes examined (30), suggesting different regulatory mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号