首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Inhibitory Ly49 receptors expressed on NK cells provide a mechanism for tolerance to normal self tissues. The immunoregulatory tyrosine-based inhibitory motifs present in some Ly49s are able to transmit an inhibitory signal upon ligation by MHC class I ligands. In our system, as well as others, mice transgenic for inhibitory Ly49 receptors express these receptors on both NK and T cells. FVB (H2(q)) mice transgenic for the B6 strain Ly49I (Ly49I(B6)) express the inhibitory Ly49 receptor on the surface of both T and NK cells. Although Ly49I functions to prevent NK-mediated rejection of H2(b) donor bone marrow cells in this transgenic mouse strain, the T cells do not appear to be affected by the expression of the Ly49I transgene. FVB.Ly49I T cells have normal proliferative capabilities both in vitro and in vivo in response to the Ly49I ligand, H2(b). In vivo functional T cell assays were also done, showing that transgenic T cells were not functionally affected. T cells in these mice also appear to undergo normal T cell development and activation. Only upon stimulation with suboptimal doses of anti-CD3 in the presence of anti-Ly49I is T cell proliferation inhibited. These data are in contrast with findings in Ly49A, and Ly49G2 receptor transgenic models. Perhaps Ly49I-H2(b) interactions are weaker or of lower avidity than Ly49A-H-2D(d) interactions, especially in T cells.  相似文献   

2.
Inhibitory MHC receptors determine the reactivity and specificity of NK cells. These receptors can also regulate T cells by modulating TCR-induced effector functions such as cytotoxicity, cytokine production, and proliferation. Here we have assessed the capacity of mouse T cells expressing the inhibitory MHC class I receptor Ly49A to respond to a well-defined tumor Ag in vivo using Ly49A transgenic mice. We find that the presence of Ly49A on the vast majority of lymphocytes prevents the development of a significant Ag-specific CD8+ T cell response and, consequently, the rejection of the tumor. Despite minor alterations in the TCR repertoire of CD8+ T cells in the transgenic lines, precursors of functional tumor-specific CD8+ T cells exist but could not be activated most likely due to a lack of appropriate CD4+ T cell help. Surprisingly, all of these effects are observed in the absence of a known ligand for the Ly49A receptor as defined by its ability to regulate NK cell function. Indeed, we found that the above effects on T cells may be based on a weak interaction of Ly49A with Kb or Db class I molecules. Thus, our data demonstrate that enforced expression of a Ly49A receptor on conventional T cells prevents a specific immune response in vivo and suggest that the functions of T and NK cells are differentially sensitive to the presence of inhibitory MHC class I receptors.  相似文献   

3.
This study aims to determine how the interaction of Ly49 receptors with MHC class I molecules shapes the development of the Ly49 repertoire. We have examined the percentage of NK cells that expressed Ly49A, Ly49G2, and Ly49D in single and double Ly49A/C-transgenic mice on four different MHC backgrounds, H-2(b), H-2(d), H-2(b/d), and beta(2)-microglobulin(-/-). The results show that the total numbers of NK cells were not different among the strains. The prior expression of a Ly49 receptor capable of binding to self MHC class I altered the percentage of NK cells expressing endogenous Ly49A, Ly49G2, and Ly49D even in mice in which no MHC ligand was present for the latter receptors. The NK cells in the Ly49-transgenic mice expressed the same level of endogenous Ly49 receptors as wild-type mice of a similar MHC background. In contrast, the number of NK T cells was reduced in mice in which the Ly49 transgene could bind to a MHC class I molecule. The onset of Ly49 receptor expression on NK cells during ontogeny was not altered in the presence of transgenic Ly49 receptors. These data support a sequential model and argue against a selection model for Ly49 repertoire development on NK cells.  相似文献   

4.
Murine natural killer (NK) cells express inhibitory Ly49 receptors for MHC class I molecules, which allows for “missing self” recognition of cells that downregulate MHC class I expression. During murine NK cell development, host MHC class I molecules impose an “educating impact” on the NK cell pool. As a result, mice with different MHC class I expression display different frequency distributions of Ly49 receptor combinations on NK cells. Two models have been put forward to explain this impact. The two-step selection model proposes a stochastic Ly49 receptor expression followed by selection for NK cells expressing appropriate receptor combinations. The sequential model, on the other hand, proposes that each NK cell sequentially expresses Ly49 receptors until an interaction of sufficient magnitude with self-class I MHC is reached for the NK cell to mature. With the aim to clarify which one of these models is most likely to reflect the actual biological process, we simulated the two educational schemes by mathematical modelling, and fitted the results to Ly49 expression patterns, which were analyzed in mice expressing single MHC class I molecules. Our results favour the two-step selection model over the sequential model. Furthermore, the MHC class I environment favoured maturation of NK cells expressing one or a few self receptors, suggesting a possible step of positive selection in NK cell education. Based on the predicted Ly49 binding preferences revealed by the model, we also propose, that Ly49 receptors are more promiscuous than previously thought in their interactions with MHC class I molecules, which was supported by functional studies of NK cell subsets expressing individual Ly49 receptors.  相似文献   

5.
NK cell self-tolerance is maintained by inhibitory receptors specific for MHC class I molecules. Inhibitory NK receptors are also expressed on memory CD8 T cells but their biological relevance on T cells is unclear. In this study, we describe the expression of the Ly49A receptor on a subset of autoreactive T cells which persist in mice double-transgenic for the lymphocytic choriomeningitis virus-derived peptide gp33 and a TCRalphabeta specific for the gp33. No Ly49A-expressing cells are found in TCRalphabeta single-transgenic mice, indicating that the presence of the autoantigen is required for Ly49A induction. Direct evidence for an Ag-specific initiation of Ly49A expression has been obtained in vitro after stimulation of autoreactive TCRalphabeta T cells with the cognate self-Ag. This expression of Ly49A substantially reduces Ag-specific activation of autoreactive T cells. These findings thus suggest that autoantigen-specific induction of inhibitory NK cell receptors on T cells may contribute to peripheral self-tolerance.  相似文献   

6.
Inhibitory receptors specific for alleles of MHC class I proteins play an important role in determining the reactivity and specificity of NK cells. To determine whether these receptors are also able to regulate T cell functions, we have studied anti-viral immune responses in mice transgenic for a class I-specific inhibitory receptor, Ly49A. Although nontransgenic mice express Ly49A primarily on NK cells and some T cells, the Ly49A transgenic mice express Ly49A on all lymphocytes, including T cells. We have assessed the activation, expansion, cytokine production, and cytotoxic activity of CD8 T cells in both transgenic and nontransgenic mice following infection with lymphocytic choriomeningitis virus. As expected, nontransgenic mice made a potent virus-specific CD8 T cell response following virus infection. However, as measured in cytolysis assays and by cytokine production, virus-specific CD8 T cell activity was reduced in Ly49A transgenic mice. This inhibition was largely, but not always exclusively, dependent upon the presence, either in vivo or in vitro, of the Ly49A ligand, H-2Dd. Strikingly Ly49A transgenic mice have reduced capacity to control infection with the virulent lymphocytic choriomeningitis virus variant clone 13. Overall, these studies demonstrate that expression of killer inhibitory receptors can modulate anti-viral T cell responses in vivo and in vitro.  相似文献   

7.

Background

A major group of murine inhibitory receptors on Natural Killer (NK) cells belong to the Ly49 receptor family and recognize MHC class I molecules. Infected or transformed target cells frequently downmodulate MHC class I molecules and can thus avoid CD8+ T cell attack, but may at the same time develop NK cell sensitivity, due to failure to express inhibitory ligands for Ly49 receptors. The extent of MHC class I downregulation needed on normal cells to trigger NK cell effector functions is not known.

Methodology/Principal Findings

In this study, we show that cells expressing MHC class I to levels well below half of the host level are tolerated in an in vivo assay in mice. Hemizygous expression (expression from only one allele) of MHC class I was sufficient to induce Ly49 receptor downmodulation on NK cells to a similar degree as homozygous expression, despite a strongly reduced cell surface level of MHC class I. Co-expression of weaker MHC class I ligands in the host did not have any further effect on the degree of Ly49 downmodulation. Furthermore, a single MHC class I allele could downmodulate up to three Ly49 receptors on individual NK cells. Only when NK cells simultaneously expressed several Ly49 receptors and hemizygous MHC class I levels, a putative threshold for Ly49 downmodulation was reached.

Conclusion

Collectively, our findings suggest that in interactions between NK cells and normal untransformed cells, MHC class I molecules are in most cases expressed in excess compared to what is functionally needed to ensure self tolerance and to induce maximal Ly49 downmodulation. We speculate that the reason for this is to maintain a safety margin for otherwise normal, autologous cells over a range of MHC class I expression levels, in order to ensure robustness in NK cell tolerance.  相似文献   

8.
MHC class I molecules strongly influence the phenotype and function of mouse NK cells. NK cell-mediated lysis is prevented through the interaction of Ly49 receptors on the effector cell with appropriate MHC class I ligands on the target cell. In addition, host MHC class I molecules have been shown to modulate the in vivo expression of Ly49 receptors. We have previously reported that H-2Dd and H-2Dp MHC class I molecules are able to protect (at the target cell level) from NK cell-mediated lysis and alter the NK cell specificity (at the host level) in a similar manner, although the mechanism behind this was not clear. In this study, we demonstrate that the expression of both H-2Dd and H-2Dp class I molecules in target cells leads to inhibition of B6 (H-2b)-derived Ly49A+ NK cells. This inhibition could in both cases be reversed by anti-Ly49A Abs. Cellular conjugate assays showed that Ly49A-expressing cells indeed bind to cells expressing H-2Dp. The expression of Ly49A and Ly49G2 receptors on NK cells was down-regulated in H-2Dp-transgenic (B6DP) mice compared with nontransgenic B6 mice. However, B6DP mice expressed significantly higher levels of Ly49A compared with H-2Dd-transgenic (D8) mice. We propose that both H-2Dd and H-2Dp MHC class I molecules can act as ligands for Ly49A.  相似文献   

9.
NK cells become functionally competent to be triggered by their activation receptors through the interaction of NK cell inhibitory receptors with their cognate self-MHC ligands, an MHC-dependent educational process termed "licensing." For example, Ly49A(+) NK cells become licensed by the interaction of the Ly49A inhibitory receptor with its MHC class I ligand, H2D(d), whereas Ly49C(+) NK cells are licensed by H2K(b). Structural studies indicate that the Ly49A inhibitory receptor may interact with two sites, termed site 1 and site 2, on its H2D(d) ligand. Site 2 encompasses the α1/α2/α3 domains of the H2D(d) H chain and β(2)-microglobulin (β2m) and is the functional binding site for Ly49A in effector inhibition. Ly49C functionally interacts with a similar site in H2K(b). However, it is currently unknown whether this same site is involved in Ly49A- or Ly49C-dependent licensing. In this study, we produced transgenic C57BL/6 mice expressing wild-type or site 2 mutant H2D(d) molecules and studied whether Ly49A(+) NK cells are licensed. We also investigated Ly49A- and Ly49C-dependent NK licensing in murine β2m-deficient mice that are transgenic for human β2m, which has species-specific amino acid substitutions in β2m. Our data from these transgenic mice indicate that site 2 on self-MHC is critical for Ly49A- and Ly49C-dependent NK cell licensing. Thus, NK cell licensing through Ly49 involves specific interactions with its MHC ligand that are similar to those involved in effector inhibition.  相似文献   

10.
The immune response to influenza virus infection comprises both innate and adaptive defenses. NK cells play an early role in the destruction of tumors and virally-infected cells. NK cells express a variety of inhibitory receptors, including those of the Ly49 family, which are functional homologs of human killer-cell immunoglobulin-like receptors (KIR). Like human KIR, Ly49 receptors inhibit NK cell-mediated lysis by binding to major histocompatibility complex class I (MHC-I) molecules that are expressed on normal cells. During NK cell maturation, the interaction of NK cell inhibitory Ly49 receptors with their MHC-I ligands results in two types of NK cells: licensed (“functional”), or unlicensed (“hypofunctional”). Despite being completely dysfunctional with regard to rejecting MHC-I-deficient cells, unlicensed NK cells represent up to half of the mature NK cell pool in rodents and humans, suggesting an alternative role for these cells in host defense. Here, we demonstrate that after influenza infection, MHC-I expression on lung epithelial cells is upregulated, and mice bearing unlicensed NK cells (Ly49-deficient NKCKD and MHC-I-deficient B2m-/- mice) survive the infection better than WT mice. Importantly, transgenic expression of an inhibitory self-MHC-I-specific Ly49 receptor in NKCKD mice restores WT influenza susceptibility, confirming a direct role for Ly49. Conversely, F(ab’)2-mediated blockade of self-MHC-I-specific Ly49 inhibitory receptors protects WT mice from influenza virus infection. Mechanistically, perforin-deficient NKCKD mice succumb to influenza infection rapidly, indicating that direct cytotoxicity is necessary for unlicensed NK cell-mediated protection. Our findings demonstrate that Ly49:MHC-I interactions play a critical role in influenza virus pathogenesis. We suggest a similar role may be conserved in human KIR, and their blockade may be protective in humans.  相似文献   

11.
Activating and inhibitory NK receptors regulate the development and effector functions of NK cells via their ITAM and ITIM motifs, which recruit protein tyrosine kinases and phosphatases, respectively. In the T cell lineage, inhibitory Ly49 receptors are expressed by a subset of activated T cells and by CD1d-restricted NKT cells, but virtually no expression of activating Ly49 receptors is observed. Using mice transgenic for the activating receptor Ly49D and its associated ITAM signaling DAP12 chain, we show in this article that Ly49D-mediated ITAM signaling in immature thymocytes impairs development due to a block in maturation from the double negative (DN) to double positive (DP) stages. A large proportion of Ly49D/DAP12 transgenic thymocytes were able to bypass the pre-TCR checkpoint at the DN3 stage, leading to the appearance of unusual populations of DN4 and DP cells that lacked expression of intracellular (ic) TCRβ-chain. High levels of CD5 were expressed on ic TCRβ(-) DN and DP thymocytes from Ly49D/DAP12 transgenic mice, further suggesting that Ly49D-mediated ITAM signaling mimics physiological ITAM signaling via the pre-TCR. We also observed unusual ic TCRβ(-) single positive thymocytes with an immature CD24(high) phenotype that were not found in the periphery. Importantly, thymocyte development was completely rescued by expression of an Ly49A transgene in Ly49D/DAP12 transgenic mice, indicating that Ly49A-mediated ITIM signaling can fully counteract ITAM signaling via Ly49D/DAP12. Collectively, our data indicate that inappropriate ITAM signaling by activating NK receptors on immature thymocytes can subvert T cell development by bypassing the pre-TCR checkpoint.  相似文献   

12.
TCRalphabeta(+)NK1.1(+) (NKT) cells are known to express various NK cell-associated molecules including the Ly49 family of receptors for MHC class I, but its functional significance has been unclear. Here, we examined the expression of Ly49A, C/I and G2 on various NKT cell populations from normal and MHC class I-deficient C57BL/6 mice as well as their responsiveness to alpha-galactosylceramide (alpha-GalCer), a potent stimulator of CD1d-restricted NKT cells. The frequency and the level of Ly49 expression varied among NKT cells from different tissues, and were regulated by the expression of MHC class I and CD1d in the host. Stimulation of various NKT cells with alpha-GalCer suggested that Ly49 expression inversely correlates with the responsiveness of NKT cells to alpha-GalCer. Moreover, alpha-GalCer presented by normal dendritic cells stimulated purified Ly49(-), but not Ly49(+), splenic NKT cells, whereas MHC class I-deficient dendritic cells presented alpha-GalCer to both Ly49(+) and Ly49(-) NKT cells equally well. Therefore, MHC class I on APCs seems to inhibit activation of NKT cells expressing Ly49. To further characterize CD1d-restricted NKT cells, we generated an alpha-GalCer-responsive NKT cell line from thymocytes. The line could only be generated from Ly49(-)NK1.1(+)CD4(+) thymocytes but not from other NKT cell subsets, and it lost expression of NK1.1 and CD4 during culture. Together, these results indicate the functional significance of Ly49 expression on NKT cells.  相似文献   

13.
The Ly49A NK cell receptor interacts with MHC class I (MHC-I) molecules on target cells and negatively regulates NK cell-mediated target cell lysis. We have recently shown that the MHC-I ligand-binding capacity of the Ly49A NK cell receptor is controlled by the NK cells' own MHC-I. To see whether this property was unique to Ly49A, we have investigated the binding of soluble MHC-I multimers to the Ly49 family receptors expressed in MHC-I-deficient and -sufficient C57BL/6 mice. In this study, we confirm the binding of classical MHC-I to the inhibitory Ly49A, C and I receptors, and demonstrate that detectable MHC-I binding to MHC-I-deficient NK cells is exclusively mediated by these three receptors. We did not detect significant multimer binding to stably transfected or NK cell-expressed Ly49D, E, F, G, and H receptors. Yet, we identified the more distantly related Ly49B and Ly49Q, which are not expressed by NK cells, as two novel MHC-I receptors in mice. Furthermore, we show using MHC-I-sufficient mice that the NK cells' own MHC-I significantly masks the Ly49A and Ly49C, but not the Ly49I receptor. Nevertheless, Ly49I was partly masked on transfected tumor cells, suggesting that the structure of Ly49I is compatible in principal with cis binding of MHC-I. Finally, masking of Ly49Q by cis MHC-I was minor, whereas masking of Ly49B was not detected. These data significantly extend the MHC-I specificity of Ly49 family receptors and show that the accessibility of most, but not all, MHC-I-binding Ly49 receptors is modulated by the expression of MHC-I in cis.  相似文献   

14.
Natural Killer (NK) cells are crucial in early resistance to murine cytomegalovirus (MCMV) infection. In B6 mice, the activating Ly49H receptor recognizes the viral m157 glycoprotein on infected cells. We previously identified a mutant strain (MCMVG1F) whose variant m157 also binds the inhibitory Ly49C receptor. Here we show that simultaneous binding of m157 to the two receptors hampers Ly49H-dependent NK cell activation as Ly49C-mediated inhibition destabilizes NK cell conjugation with their targets and prevents the cytoskeleton reorganization that precedes killing. In B6 mice, as most Ly49H+ NK cells do not co-express Ly49C, the overall NK cell response remains able to control MCMVm157G1F infection. However, in B6 Ly49C transgenic mice where all NK cells express the inhibitory receptor, MCMV infection results in altered NK cell activation associated with increased viral replication. Ly49C-mediated inhibition also regulates Ly49H-independent NK cell activation. Most interestingly, MHC class I regulates Ly49C function through cis-interactions that mask the receptor and restricts m157 binding. B6 Ly49C Tg, β2m ko mice, whose Ly49C receptors are unmasked due to MHC class I deficient expression, are highly susceptible to MCMVm157G1F and are unable to control a low-dose infection. Our study provides novel insights into the mechanisms that regulate NK cell activation during viral infection.  相似文献   

15.
Natural killer (NK) cells play a crucial role in the detection and destruction of virally infected and tumor cells during innate immune responses. The cytolytic activity of NK cells is regulated through a balance of inhibitory and stimulatory signals delivered by NK receptors that recognize classical major histocompatabilty complex class I (MHC-I) molecules, or MHC-I homologs such as MICA, on target cells. The Ly49 family of NK receptors (Ly49A through W), which includes both inhibitory and activating receptors, are homodimeric type II transmembrane glycoproteins, with each subunit composed of a C-type lectin-like domain tethered to the membrane by a stalk region. We have determined the crystal structure, at 3.0 A resolution, of the murine inhibitory NK receptor Ly49I. The Ly49I monomer adopts a fold similar to that of other C-type lectin-like NK receptors, including Ly49A, NKG2D and CD69. However, the Ly49I monomers associate in a manner distinct from that of these other NK receptors, forming a more open dimer. As a result, the putative MHC-binding surfaces of the Ly49I dimer are spatially more distant than the corresponding surfaces of Ly49A or NKG2D. These structural differences probably reflect the fundamentally different ways in which Ly49 and NKG2D receptors recognize their respective ligands: whereas the single MICA binding site of NKG2D is formed by the precise juxtaposition of two monomers, each Ly49 monomer contains an independent binding site for MHC-I. Hence, the structural constraints on dimerization geometry may be relatively relaxed within the Ly49 family. Such variability may enable certain Ly49 receptors, like Ly49I, to bind MHC-I molecules bivalently, thereby stabilizing receptor-ligand interactions and enhancing signal transmission to the NK cell.  相似文献   

16.
The Ly49H activating receptor on C57BL/6 (B6) NK cells plays a key role in early resistance to murine cytomegalovirus (MCMV) infection through specific recognition of the MCMV-encoded MHC class I-like molecule m157 expressed on infected cells. The m157 molecule is also recognized by the Ly49I inhibitory receptor from the 129/J mouse strain. The m157 gene is highly sequence variable among MCMV isolates, with many m157 variants unable to bind Ly49H(B6). In this study, we have sought to define if m157 variability leads to a wider spectrum of interactions with other Ly49 molecules and if this modifies host susceptibility to MCMV. We have identified novel m157-Ly49 receptor interactions, involving Ly49C inhibitory receptors from B6, BALB/c, and NZB mice, as well as the Ly49H(NZB) activation receptor. Using an MCMV recombinant virus in which m157(K181) was replaced with m157(G1F), which interacts with both Ly49H(B6) and Ly49C(B6), we show that the m157(G1F)-Ly49C interactions cause no apparent attenuating effect on viral clearance in B6 mice. Hence, when m157 can bind both inhibitory and activation NK cell receptors, the outcome is still activation. Thus, these data indicate that whereas m157 variants predominately interact with inhibitory Ly49 receptors, these interactions do not profoundly interfere with early NK cell responses.  相似文献   

17.
NK cells can kill MHC-different or MHC-deficient but not syngeneic MHC-expressing target cells. This MHC class I-specific tolerance is acquired during NK cell development. MHC recognition by murine NK cells largely depends on clonally distributed Ly49 family receptors, which inhibit NK cell function upon ligand engagement. We investigated whether these receptors play a role for the development of NK cells and provide evidence that the expression of a Ly49 receptor transgene on developing NK cells endowed these cells with a significant developmental advantage over NK cells lacking such a receptor, but only if the relevant MHC ligand was present in the environment. The data suggest that the transgenic Ly49 receptor accelerates and/or rescues the development of NK cells which would otherwise fail to acquire sufficient numbers of self-MHC-specific receptors. Interestingly, the positive effect on NK cell development is most prominent when the MHC ligand is simultaneously present on both hemopoietic and nonhemopoietic cells. These findings correlate with functional data showing that MHC class I ligand on all cells is required to generate functionally mature NK cells capable of reacting to cells lacking the respective MHC ligand. We conclude that the engagement of inhibitory MHC receptors during NK cell development provides signals that are important for further NK cell differentiation and/or maturation.  相似文献   

18.
Natural killer cells are part of the first line of innate immune defence against virus-infected cells and cancer cells in the vertebrate immune system. They are called 'natural' killers because, unlike cytotoxic T cells, they do not require a previous challenge and preactivation to become active. The Ly49 NK receptors are type II transmembrane glycoproteins, structurally characterized as disulphide-linked homodimers. They share extensive homology with C-type lectins, and they are encoded by a multigene family that in mice maps on chromosome 6. A fine balance between inhibitory and activating signals regulates the function of NK cells. Inhibitory Ly49 molecules bind primarily MHC class I ligands, whereas the ligands for activating Ly49 molecules may include MHC class I, but also interestingly MHC class I-like molecules expressed by viruses, as is the case for Ly49H, which binds the m157 gene product of murine cytomegalovirus. In this study, we review the function and X-ray crystal structure of the Ly49 NK cell receptors hitherto determined (Ly49A, Ly49C and Ly49I), and the structural features of the Ly49/MHC class I interaction as revealed by the X-ray crystal structures of Ly49A/H-2Dd and the recently determined Ly49C/H-2Kb.  相似文献   

19.
The proximal region of the NK gene complex encodes the NKR-P1 family of killer cell lectin-like receptors which in mice bind members of the genetically linked C-type lectin-related family, while the distal region encodes Ly49 receptors for polymorphic MHC class I molecules. Although certain members of the NKR-P1 family are expressed by all NK cells, we have identified a novel inhibitory rat NKR-P1 molecule termed NKR-P1C that is selectively expressed by a Ly49-negative NK subset with unique functional characteristics. NKR-P1C(+) NK cells efficiently lyse certain tumor target cells, secrete cytokines upon stimulation, and functionally recognize a nonpolymorphic ligand on Con A-activated lymphoblasts. However, they specifically fail to kill MHC-mismatched lymphoblast target cells. The NKR-P1C(+) NK cell subset also appears earlier during development and shows a tissue distribution distinct from its complementary Ly49s3(+) subset, which expresses a wide range of Ly49 receptors. These data suggest the existence of two major, functionally distinct populations of rat NK cells possessing very different killer cell lectin-like receptor repertoires.  相似文献   

20.
Background NK cell activity is regulated in part by inhibitory receptors that bind to MHC class I molecules. It is possible to enhance NK cell cytotoxicity against tumor cells by preventing the interaction of these inhibitory receptors with their MHC class I ligands. Results In this study, we determined that Ly49G2 is an inhibitory receptor in AKR mice for self-MHC class I, and AKR Ly49G2 has an identical sequence to BALB/c Ly49G2. Blockade of Ly49G2 receptors in vivo resulted in decreased growth of BW-Sp3 lymphoma cells when the tumor cells were given i.v. but not when the tumor cells were inoculated into the flank forming a solid tumor. However, NK cells were involved in inhibiting the growth of BW-Sp3 tumor cells in the flank. Conclusion These data demonstrate that the effectiveness of inhibitory receptor blockade depends upon the tissue location of the tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号