首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The following parameters related to oxygen free radicals (OFR) were determined in erythrocytes and the epidermis of hairless rats: catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), reduced (GSH) and oxidized (GSSG) glutathione, glutathione S-transferase (GST), superoxide dismutase (SOD) and thiobarbituric acid reactive substances (TBARS). GSH, GSSG and TBARS were also analyzed in plasma. In erythrocytes, the Pearson correlation coefficients (r) were significant (p < 0.001) between glutathione and other parameters as follows: GSH correlated negatively with GSSG (r = -0.665) and TBARS (r = -0.669); GSSG correlated positively with SOD (r = 0.709) and TBARS (r = 0.752). Plasma GSSG correlated negatively with erythrocytic thermostable GST activity (r = -0.608; p=0.001) and with erythrocytic total GST activity (r = -0.677; p < 0.001). In epidermis (p < 0.001 in all cases), GSH content correlated with GSSG (r = 0.682) and with GPx (r = 0.663); GSSG correlated with GPx (r = 0.731) and with GR (r = 0.794). By multiple linear regression analysis some predictor variables (R(2)) were found: in erythrocytes, thermostable GST was predicted by total GST activity and GSSG, GSSG content was predicted by GSH and by the GSH/GSSG ratio and GPx activity was predicted by GST, CAT and SOD activities; in epidermis, GSSG was predicted by GR and SOD activities and GR was predicted by GSSG, TBARS and GPx. It is concluded that the hairless rat is a good model for studying OFR-related parameters simultaneously in blood and skin, and that it may provide valuable information about other animals under oxidative stress.  相似文献   

2.
To compare the effects of alpha-ketoglutarate (alpha-KG) and melatonin on 24-h rhythmicity of oxidative stress in N-nitrosodiethylamine (NDEA)-injected Wistar male rats, melatonin (5 mg/kg i.p.) or alpha-KG (2 g/kg through an intragastric tube) was given daily for 20 weeks. In blood collected at 6 time points during a 24-h period, serum activity of aspartate transaminase (AST) and alanine transaminase (ALT) and the levels of alpha-fetoprotein (alpha-FP) were measured as markers of liver function. To assess lipid peroxidation and the antioxidant status, plasma levels of thiobarbituric acid reactive substances (TBARS) and of reduced glutathione (GSH) were measured, together with the activity of erythrocyte superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST). NDEA augmented mesor and amplitude of rhythms in AST and ALT activity and plasma alpha-FP levels and mesor values of plasma TBARS, while decreasing mesor values of plasma GSH and erythrocyte SOD, CAT, GPx and GST. Acrophases were delayed by NDEA in all cases except for alpha-FP rhythm, which became phase-advanced. Co-administration of melatonin or alpha-KG partially counteracted the effects of NDEA. Melatonin decreased mesor of plasma TBARS and augmented mesor of SOD activity. The results indicate that melatonin and alpha-KG are effective in protecting from NDEA-induced perturbation of 24-h rhythms in oxidative stress. Melatonin augmented antioxidant defense in rats.  相似文献   

3.
The aim of this work was to investigate as to how neurons and glial cells separated from the brain cortex respond to oxidative stress induced by aluminum. Female SD rats were exposed to aluminum at the dose level of 100 mg/kg b.w. for 8 weeks. Neuronal and glial cell-enriched fractions were obtained from rat cerebral cortex by sieving the trypsinated homogenate through a series of nylon meshes, followed by centrifugation on ficoll density gradient. Total glutathione content, glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-s-transferase (GST) along with antioxidant enzymes superoxide dismutase (SOD), catalase were estimated in neuronal and glial-enriched fractions in both control (N-c and G-c) and aluminum exposed animals (N-a and G-a). Secondary products of lipid peroxidation that is MDA levels were estimated by measuring the (TBARS) levels. Our results indicate that TBARS levels were significantly higher in glial cell fraction of unexposed controls (Gc) than the neuronal cells (Nc). Correspondingly the glial cells had higher levels of GSH, GSSG, GPx and GST where as neurons had higher levels of catalase, SOD and GR. Following aluminum exposures significant increase in the TBARS levels was observed in neurons as compared to glial cells which also showed a significant decrease in SOD and catalase activity. The decrease in the TBARS levels in the glial cells could be related to the increase in the GSH levels, GR activity, and GST activity which were found to be increased in glial enriched fractions following aluminum exposure. The increase in activity of various enzymes viz GR, GST in glial cells as compared to neurons suggests that glial cells are actively involved in glutathione homeostasis. Our conclusion is that glial and neurons isolated from rat cerebral cortex show a varied pattern of important antioxidant enzymes and glial cells are more capable of handling the oxidative stress conditions.  相似文献   

4.
Analysis of hematological and biochemical parameters, including oxidative stress indicators, is an invaluable tool in wildlife health assessment, particularly for threatened or endangered species. This study was aimed at obtaining baseline information of oxidative stress indicators in eastern Pacific green turtles (Chelonia mydas agassizii) from a relatively undisturbed habitat at Bahía Magdalena, Baja California Sur, Mexico. Tissues were analyzed for superoxide radical (O(2)(*-) production, lipid peroxidation (measured as thiobarbituric acid reactive substances, TBARS), and antioxidant enzyme activity (superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST)). Overall levels for all variables were within ranges reported for other reptile species. Results suggest differences in oxidative metabolism among tissues (p< or =0.05). Liver, lung and muscle had the highest levels of O(2)(*-) production. Liver revealed the highest TBARS levels. Liver and muscle showed the highest SOD activity, while liver and kidney had the highest CAT and GST activities. These data provide baseline values of the oxidative stress indicators in tissues from eastern Pacific green turtles. Development of a biomarker system to assess the health of wildlife species, especially one that could detect early exposure to environmental pollutants or emerging diseases, would provide a useful tool in the long-term conservation of the species.  相似文献   

5.

Background

The aim of the present paper was to describe the enzymatic antioxidant system in Hymenolepis diminuta collected from rats exposed to chronic cestode invasion.

Methodology

We dissected different tissues of H. diminuta (immature proglottids, genital primordia, hermaphroditic proglottids, early uterus, and gravid uterus) and studied activity of: superoxide dismutases (SOD1 and SOD2), catalase (CAT), glutathione peroxidases (non-Se-dependent GSHPx and Se-dependent GSHPx), glutathione-S-transferase (GST) and glutathione reductase (GSHR), and oxidative stress markers ?? reduced glutathione (GSH), and the lipid peroxidation level (TBARS).

Results

We demonstrated changes in antioxidant enzyme activities and levels of oxidative stress markers in different tissues of the parasite. The levels of TBARS and GSH indicate that oxidative stress occurred in tissues located proximal to the intestine wall. Activity of SOD1 was high in all parts of H. diminuta, but the GST activity was the highest of all studied antioxidant enzymes. SOD2 activity differed significantly in various parts of H. diminuta. Significant differences were observed for nonSeGSHPx and activity of other GSH-dependent enzymes was generally similar in all the tissues.

Conclusions

Our results show that the enzymatic antioxidant system of H. diminuta, allows the parasite to adapt and live under conditions of chronic oxidative stress. It suggests an oxidative-antioxidative balance during interactions between parasite and host.  相似文献   

6.
This study was conducted to investigate the occurrence of oxidative stress in the heart tissue of rats infected with Trypanosoma evansi. Rats were divided into 2 groups (A and B) with 12 animals each, and further subdivided into 4 subgroups (A1 and A2, 6 animals/each; and B1 and B2, 6 animals/each). Animals in the groups B1 and B2 were subcutaneously inoculated with T. evansi. Thiobarbituric acid reactive substances (TBARS), superoxide dismutase activity (SOD), glutathione S-transferase activity (GST), reduced glutathione activity (GSH), and non-protein thiols (NPSH) in the heart tissue were evaluated. At day 5 and 15 post-infection (PI), an increase in the TBARS levels and a decrease in the SOD activity (P<0.05) were observed. GSH and GST activities were decreased in infected animals at day 15 PI (P<0.05). Considering the proper functioning of the heart, it is possible that the changes in the activity of these enzymes involved in the oxidative stress may be related, at least in part, in the pathophysiology of rats infected with T. evansi.  相似文献   

7.
Cigarette smoking leads to uptake of a multitude of reactive chemicals including many electrophiles and may also give rise to oxidative stress. Human red blood cells are important targets for electrophilic and oxidant foreign compounds. We investigated the oxidative stress in erythrocytes upon cigarette smoking, and the response of antioxidant defense system against it. With this aim, simultaneous determination of erythrocyte superoxide dismutase (SOD), selenium dependent glutathione peroxidase (Se-GPx), catalase (CAT), glutathione S-transferase (GST) activities and plasma levels of thiobarbituric acid reactive substances (TBARS), and the degree of erythrocyte membrane lipid peroxidation (EMLP) were carried out in blood samples of smokers and their controls. Plasma TBARS levels and EMLP in smokers were significantly higher than the control levels (p < 0.01 and p < 0.005, respectively). SOD activity was diminished in smokers compared to nonsmoker controls (p < 0.005). Erythrocyte Se-GPx activity was also found significantly diminished in smokers (p < 0.005), while plasma Se-GPx activity was not changed. We observed that erythrocyte CAT activity was not different in smokers compared to nonsmoker controls. We found that the erythrocyte GST activity is significantly lower in young adult smokers (3.03 +/- 0.18 U/mg protein; mean +/- SEM; n = 46) than in nonsmoking contemporaries (3.98 +/- 0.26 U/mg protein; mean +/- SEM; n = 41). Together with previously reported data, it can be concluded that the decrease in GST activity leads to extra GST synthesis during erythrocyte proliferation. The same data were also analyzed for the sex differences. The statistically significant differences remained the same between nonsmoker and smoker females. Only EMLP degree and SOD activity were significantly different between nonsmoker and smoker males; however, when compared the parameters between male and female nonsmokers, GST activity was found to be significantly higher in females than that of males.  相似文献   

8.
Cirrhosis represents the terminal stage of a number of chronic liver diseases. Consequences include accumulation of toxic metabolic wastes, reduced synthesis of key proteins, increased portal venous pressure, and portosystemic shunting. We conducted a case-control study to assess the serum levels of S100B protein and parameters of oxidative stress, superoxide dismutase (SOD), catalase (CAT) and oxidative stress measured by the thiobarbituric acid method (TBARS), in a group of 14 pediatric patients with cirrhosis. No differences were found between groups in S100B protein levels. SOD activity and TBARS levels were higher; and CAT activity was lower in the cirrhotic group. A negative correlation between S100B and TBARS in the case group was found (r = −0.815, p = 0.001). Conclusions: This study didn’t indicate a possible role of S100B serum levels as marker of brain damage in cirrhotic children but suggest a possible relation between astrocyte function and oxidative damage in cirrhotic children.  相似文献   

9.
Our aim was to assess the degree of oxidative stress in patients with periodontitis by measuring their levels of thiobarbituric acid reactive substances (TBARS), enzymatic antioxidants (superoxide dismutase (SOD), catalase (CAT), glutathione peroxide (GSHPx)), and non-enzymatic antioxidants (vitamins E and C, reduced glutathione (GSH)). This study was conducted on 25 adult chronic periodontitis sufferers who were patients in Rajah Muthiah Dental College and Hospital, Annamalai University. The levels of TBARS and non-enzymatic antioxidants, and the activities of enzymatic antioxidants in the patients' plasma, erythrocytes and gingival tissues were assayed using specific colorimetric methods. The periodontitis sufferers had a significantly higher TBARS level than the healthy subjects. In the plasma, erythrocytes, erythrocyte membranes and gingival tissues of the periodontitis sufferers, enzymatic antioxidant activities were found to be significantly higher, whereas the levels of non-enzymatic antioxidants were significantly lower (except for reduced glutathione in the gingival tissues) relative to the parameters found for healthy subjects. The disturbance in the endogenous antioxidant defense system due to over-production of lipid peroxidation products at inflammatory sites can be related to a higher level of oxidative stress in patients with periodontitis.  相似文献   

10.
In this study, the protective effects of diphenyl diselenide [(PhSe)2] on quinclorac- induced toxicity were investigated in silver catfish (Rhamdia quelen). The fish were fed for 60 days with a diet in the absence or in the presence of 3.0 mg/Kg (PhSe)2. Animals were further exposed to 1 mg/L quinclorac for 8 days. At the end of experimental period, fish were euthanized and biopsies from liver and gills, as well as blood samples, were collected. The cortisol and metabolic parameters were determined in plasma, and those enzyme activities related to osmoregulation were assayed in the gills. In liver, some important enzyme activities of the intermediary metabolism and oxidative stress-related parameters, such as thiobarbituric acid-reactive substance (TBARS), protein carbonyl, catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), nonprotein thiols (NPSH) and ascorbic acid contents were also evaluated. Compared to the control group, quinclorac exposure significantly decreased hepatosomatic index and increased cortisol and lactate values in plasma. Moreover, the activities of fructose biphosphatase (FBPase), glucose-6-phosphate dehydrogenase (G6Pase), glycogen phosphorilase (GPase) and aspartate aminotransferase (AST) were significantly increased in liver. Quinclorac also induced lipid peroxidation while the activity of SOD, NPSH and ascorbic acid levels decreased in the liver. However, dietary (PhSe)2 reduced the herbicide-induced effects on the studied parameters. In conclusion, (PhSe)2 has beneficial properties based on its ability to attenuate toxicity induced by quinclorac by regulating energy metabolism and oxidative stress-related parameters.  相似文献   

11.

Aims

The aim of this study was to evaluate the antioxidant status and oxidative stress biomarkers in the blood of children and teenagers with Down syndrome.

Main methods

The analysis of enzymatic antioxidant defenses, such as the activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione transferase (GST), non-enzymatic antioxidants, such as levels of reduced glutathione (GSH), uric acid (UA) and vitamin E, as well as oxidative damage indicators, such as protein carbonyls (PC) levels and lipoperoxidation (TBARS), of DS individuals (n = 20) compared to healthy controls (n = 18). Except the vitamin E was measured by HPLC, all other markers were measured spectrophotometrically.

Key Findings

Antioxidant enzymes analysis showed significant increases in the SOD (47.2%), CAT (24.7%) and GR (49.6%) activities in DS subjects. No significant difference in GPx activity was detected while GST activity (61.2%) was decreased, and both responses may be consequence of the depletion of GSH (24.9%) levels. There were no significant differences in TBARS levels, while PC levels showed decreased (31.7%) levels compared to healthy controls, which may be related to the increase (16.1%) found in serum UA. Levels of vitamin E showed no significant differences between DS individuals compared to controls.

Significance

The results revealed a systemic pro-oxidant status in DS individuals, evidenced by the increased activity of some important antioxidant enzymes, together with decreased GSH levels in whole blood and elevated UA levels in plasma, probably as an antioxidant compensation related to the redox imbalance in DS individuals.  相似文献   

12.
Benznidazole (BZN) is a nitroimidazole derivative which has a notable trypanocide activity, and it is the only drug used in Brazil and Argentina for the treatment of Chagas' disease. The drug in current use is thought to act, at least in part, by inducing oxidative stress within the parasite. Imidazolic compounds are involved in the production of reactive oxygen species (ROS). In order to evaluate the effect of BZN on ROS production and on the antioxidant status of the host, male rats were treated for different periods of time (2, 4, 6, 10 and 30 days) with 40 mg BZN/kg body weight. After treatment, biomarkers of oxidative stress such as the activities of catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST) and glutathione reductase (GR), and also thiobarbituric acid reactive species (TBARS), reduced glutathione (GSH), total glutathione (TG) and oxidized glutathione (GSSG) concentrations, were measured in crude hepatic homogenates. Our results revealed that BZN is able to cause tissue damage as shown by increased TBARS content, inhibition of some antioxidants and induction of other antioxidants in a concentration- and time-dependent manner. The tissue damage measured as TBARS increased up to the 10th day of treatment. GST activity was inhibited during the BZN treatment. On the other hand, CAT and GR showed similar increased activities at the beginning, followed by decreased activities at the end of the treatment. After 30 days of treatment, GR activity remained low while CAT activity was high, compared to controls. The SOD activities remained unchanged throughout the experimental period. GSH showed lower values at the beginning of BZN treatment but the hepatic concentrations were enhanced at the end of the experimental period. Total glutathione showed a similar profile, and oxidized glutathione showed higher values in rats treated with BZN. In conclusion, these results indicate that, at therapeutic doses, BZN treatment elicits an oxidative stress in rat hepatocytes.  相似文献   

13.
Abstract

Benznidazole (BZN) is a nitroimidazole derivative which has a notable trypanocide activity, and it is the only drug used in Brazil and Argentina for the treatment of Chagas' disease. The drug in current use is thought to act, at least in part, by inducing oxidative stress within the parasite. Imidazolic compounds are involved in the production of reactive oxygen species (ROS). In order to evaluate the effect of BZN on ROS production and on the antioxidant status of the host, male rats were treated for different periods of time (2, 4, 6, 10 and 30 days) with 40 mg BZN/kg body weight. After treatment, biomarkers of oxidative stress such as the activities of catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST) and glutathione reductase (GR), and also thiobarbituric acid reactive species (TBARS), reduced glutathione (GSH), total glutathione (TG) and oxidized glutathione (GSSG) concentrations, were measured in crude hepatic homogenates. Our results revealed that BZN is able to cause tissue damage as shown by increased TBARS content, inhibition of some antioxidants and induction of other antioxidants in a concentration- and time-dependent manner. The tissue damage measured as TBARS increased up to the 10th day of treatment. GST activity was inhibited during the BZN treatment. On the other hand, CAT and GR showed similar increased activities at the beginning, followed by decreased activities at the end of the treatment. After 30 days of treatment, GR activity remained low while CAT activity was high, compared to controls. The SOD activities remained unchanged throughout the experimental period. GSH showed lower values at the beginning of BZN treatment but the hepatic concentrations were enhanced at the end of the experimental period. Total glutathione showed a similar profile, and oxidized glutathione showed higher values in rats treated with BZN. In conclusion, these results indicate that, at therapeutic doses, BZN treatment elicits an oxidative stress in rat hepatocytes.  相似文献   

14.
The present study was aimed to explore the effect of black pepper (Piper nigrum L.) on tissue lipid peroxidation, enzymic and non-enzymic antioxidants in rats fed a high-fat diet. Thirty male Wistar rats (95-115 g) were divided into 5 groups. They were fed standard pellet diet, high-fat diet (20% coconut oil, 2% cholesterol and 0.125% bile salts), high-fat diet plus black pepper (0.25 g or 0.5 g/kg body weight), high-fat diet plus piperine (0.02 g/kg body weight) for a period of 10 weeks. Significantly elevated levels of thiobarbituric acid reactive substances (TBARS), conjugated dienes (CD) and significantly lowered activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and reduced glutathione (GSH) in the liver, heart, kidney, intestine and aorta were observed in rats fed the high fat diet as compared to the control rats. Simultaneous supplementation with black pepper or piperine lowered TBARS and CD levels and maintained SOD, CAT, GPx, GST, and GSH levels to near those of control rats. The data indicate that supplementation with black pepper or the active principle of black pepper, piperine, can reduce high-fat diet induced oxidative stress to the cells.  相似文献   

15.
Many helminths cause long-lasting infections, living for several years in mammalian hosts reflecting a well balanced coexistence between host and parasite. There are many possible explanations as to how they can survive for lengthy periods. One possibility is their antioxidant systems, which can serve as defence mechanisms against host-generated oxygen radicals. Therefore, the aim of this experimental study was to examine the antioxidant system in Hymenolepisdiminuta during short (1.5 months young tapeworms) and long (1.5 years old tapeworms) term infection in the rat small intestine.The strobilae of H. diminuta tapeworms (14 young and three old) were divided into three pieces: the anterior part, containing the genital primordiae in the immature segments; the medial part, containing the early uterus in the mature, hermaphroditic proglottids and the terminal part with the mature gravid uterus in the gravid segments. Supernatants of these fragments were used for determination of markers of oxidative stress: concentration of thiobarbiturate reactive substances (TBARS) and of reduced glutathione (GSH), and the activity of antioxidant enzymes: superoxide dismutase (SOD1 and SOD2), catalase (CAT), glutathione peroxidases (GSHPxs), glutathione transferase (GST) and glutathione reductase (GSHR).The results indicated changes in levels of oxidative stress markers and antioxidant enzyme activity in both the young and old forms of H. diminuta. Relatively high activity of SOD (particularly in the anterior part of young tapeworms) was observed, as was increased activity of total GSHPx and a relatively high concentration of GSH in all parts of the tapeworms. These are caused by exposure to increased amount of ROS, which are produced during the inflammatory state. Due to the high activity of antioxidant enzymes, the anterior section of young and old tapeworms is equipped with a very effective antioxidant system. Old organisms also effectively resist oxidative stress due to reduced levels of lipid peroxidation and the high activity of GST, all of which suggest good adaptation to the hostile environment in the host’s intestine.  相似文献   

16.
The production of reactive oxygen species (ROS) is considered to be a major factor in oxidative cell injury. The antioxidant activity or the inhibition of the generation of free radicals is important in providing protection against such hepatic damage. Silymarin, derived from the milk thistle plant, Silybium marianum, has been used in traditional medicine as a remedy for diseases of the liver and biliary tract. In the present study, the effect of hepatoprotective drug silymarin on body weight and biochemical parameters, particularly, antioxidant status of ethanol-exposed rats was studied and its efficacy was compared with the potent antioxidant, ascorbic acid as well as capacity of hepatic regeneration during abstention. Ethanol, at a dose of 1.6 g/kg body wt/day for 4 wks affected body weight in 16-18 week-old male albino rats (Wistar strain weighing 200-220 g). Thiobarbituric acid reactive substance (TBARS) level, superoxide dismutase (SOD), and glutathione-s-transferase (GST) activities were significantly increased, whereas GSH content, and catalase, glutathione reductase (GR) and GPx (glutathione peroxidase) activities significantly reduced, on ethanol exposure. These changes were reversed by silybin and ascorbic acid treatment. It was also observed that abstinence from ethanol might help in hepatic regeneration. Silybin showed a significant hepatoprotective activity, but activity was less than that of ascorbic acid. Furthermore, preventive measures were more effective than curative treatment.  相似文献   

17.
In aged rats, trophic hormone-stimulated testosterone secretion by isolated Leydig cells is greatly reduced. The current studies were initiated to establish a functional link between excess oxidative stress and the age-related decline in steroidogenesis. Highly purified Leydig cell preparations obtained from 5-month (young mature) and 24-month (old) Sprague-Dawley rats were employed to measure and compare levels of lipid peroxidation, non-enzymatic (alpha-tocopherol, ascorbic acid, and reduced/oxidized glutathione) and enzymatic (Cu, Zn-superoxide dismutase, Cu, Zn-SOD; Mn-superoxide dismutase, Mn-SOD; glutathione peroxidase-1, GPX-1, and catalase, CAT) anti-oxidants. The extent of lipid peroxidation (oxidative damage) in isolated membrane fractions was quantified by measuring the content of thiobarbituric acid-reactive substances (TBARS) under basal conditions, or in the presence of non-enzymatic or enzymatic pro-oxidants. Membrane preparations isolated from Leydig cells from old rats exhibited two- to three-fold enhancement of basal TBARS formation. However, aging had no significant effect on TBARS formation in response to either non-enzymatic or enzymatic pro-oxidants. Among the non-enzymatic anti-oxidants, the levels of reduced glutathione were drastically reduced during aging, while levels of alpha-tocopherol and ascorbic acid remained unchanged. Both steady-state mRNA levels and catalytic activities of Cu, Zn-SOD, Mn-SOD, and GPX-1 were also significantly lower in Leydig cells from 24-month-old rats as compared with 5-month-old control rats. In contrast, neither mRNA levels nor enzyme activity of catalase was sensitive to aging. From these data we conclude that aging is accompanied by reduced expression of key enzymatic and non-enzymatic anti-oxidants in Leydig cells leading to excessive oxidative stress and enhanced oxidative damage (lipid peroxidation). It is postulated that such excessive oxidative insult may contribute to the observed age-related decline in testosterone secretion by testicular Leydig cells.  相似文献   

18.
Oxidative stress is currently suggested to play as a pathogenesis in the development of diabetes mellitus. The present study was designed to evaluate the effect of Casearia esculenta root extract on oxidative stress-related parameters in streptozotocin (STZ) -induced diabetic rats. Antidiabetic treatment with C. esculenta root extract (45 days) significantly (p < .05) decreased thiobarbituric acid reactive substances (TBARS) and remarkably improved tissue antioxidants status such as glutathione (GSH), ascorbic acid (vitamin C) and alpha-tocopherol (vitamin E) in liver and kidney of STZ-diabetic rats. In diabetics rats, the activities of enzymatic antioxidants such as superoxide dismutase (SOD, EC 1.11.1.1) catalase (CAT, EC 1.11.1.6) were decreased significantly while the activity of glutathione peroxidase (GPx, EC 1.11.1.9) decreased in the liver and increased in the kidney. The treatment of diabetic rats with C. esculenta root extract over a 45-day period returned these levels close to normal. These results suggest that C. esculenta root extracts exhibit antiperoxidative as well as antioxidant effects in STZ-induced diabetic rats.  相似文献   

19.
Abstract

The antioxidant effect of the ethanolic extract of Hemidesmus indicus R.Br. root (EHI), an indigenous Ayurvedic medicinal plant in India, was studied in rats with ethanol-induced nephrotoxicity. Administering 5 g/kg body weight/day of ethanol for 60 days to male Wistar rats resulted in significantly elevated levels of serum urea, creatinine and uric acid as well as kidney thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (LOOH) and conjugated dienes (CD) as compared to those of the experimental control rats. Decreased levels of kidney superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), vitamin C and vitamin E were also observed on alcohol administration as compared with those of the experimental control rats. EHI was administered at a dose of 500 mg/kg body weight/day for the last 30 days of the experiment to rats with ethanol-induced kidney injury, which significantly decreased the levels of serum urea, uric acid and creatinine as well as kidney TBARS, LOOH and CD and significantly elevated the activities of SOD, CAT, GPx, GSH, vitamin C and vitamin E in kidney as compared to that of untreated ethanol-administered rats. Histopathological observations also correlated with the biochemical parameters. Thus, the data indicate that treatment with EHI offers protection against free radical-mediated oxidative stress in kidney of animals with ethanol-induced nephtrotoxicity.  相似文献   

20.
Chronic obstructive pulmonary disease (COPD) is a major cause of mortality that has been associated with inflammation and oxidative stress. The purpose of the present case–control study was to determine the relationships between oxidative stress-related genetic variants and the risk and severity of COPD, as well as, the influence of these variants on inflammatory and oxidative stress parameters. Genotyping of superoxide dismutase 1 (SOD1) + 35 A/C (rs2234694), catalase [A-21T (rs7943316), C-262T (rs1001179)] and glutathione peroxidase 1 (reduced glutathione (GSH)-Px1) 198Pro/Leu (rs1050450) was carried out in 143 patients with COPD and 216 healthy controls using PCR-RFLP. Serum levels of IL-6 and TNF-α were determined by enzyme-linked immunosorbent assays (ELISA), while the levels of reduced GSH, total antioxidant status (TAS), H2O2, lipid peroxides (TBARS) and protein carbonyls (PCs) were determined using spectrophotometric methods. We also evaluated the activities of GSH-Px, catalase, and superoxide dismutase (SOD) in both plasma and erythrocytes. We did not observe significant differences in the genotype and allele frequencies of chosen variants between COPD patients and healthy controls. A significant correlation was retrieved between the SOD1?+?35A/C variant and disease severity (odds ratios (OR) = 0.15, p?=?0.04). In addition, patients having the +35AC genotype presented increased plasma levels of GSH and a reduced level of PCs (p?=?0.03, p?=?0.04, respectively). The present data highlighted the important role of antioxidant enzymes and their genetic variants in the oxidative stress-mediated pathogenesis and progression of COPD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号