首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 257 毫秒
1.
The yeast Candida tropicalis produces xylitol, a natural, low-calorie sweetener whose metabolism does not require insulin, by catalytic activity of NADPH-dependent xylose reductase. The oxidative pentose phosphate pathway (PPP) is a major basis for NADPH biosynthesis in C. tropicalis. In order to increase xylitol production rate, xylitol dehydrogenase gene (XYL2)disrupted C. tropicalis strain BSXDH-3 was engineered to co-express zwf and gnd genes which, respectively encodes glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6-PGDH), under the control of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter. NADPH-dependent xylitol production was higher in the engineered strain, termed "PP", than in BSXDH-3. In fermentation experiments using glycerol as a co-substrate with xylose, strain PP showed volumetric xylitol productivity of 1.25 g l(-1) h(-1), 21% higher than the rate (1.04 g l(-1) h(-1)) in BSXDH-3. This is the first report of increased metabolic flux toward PPP in C. tropicalis for NADPH regeneration and enhanced xylitol production.  相似文献   

2.
Xylose reductase (XR) is the first enzyme in D: -xylose metabolism, catalyzing the reduction of D: -xylose to xylitol. Formation of XR in the yeast Candida tropicalis is significantly repressed in cells grown on medium that contains glucose as carbon and energy source, because of the repressive effect of glucose. This is one reason why glucose is not a suitable co-substrate for cell growth in industrial xylitol production. XR from the ascomycete Neurospora crassa (NcXR) has high catalytic efficiency; however, NcXR is not expressed in C. tropicalis because of difference in codon usage between the two species. In this study, NcXR codons were changed to those preferred in C. tropicalis. This codon-optimized NcXR gene (termed NXRG) was placed under control of a constitutive glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter derived from C. tropicalis, and integrated into the genome of xylitol dehydrogenase gene (XYL2)-disrupted C. tropicalis. High expression level of NXRG was confirmed by determining XR activity in cells grown on glucose medium. The resulting recombinant strain, LNG2, showed high XR activity (2.86 U (mg of protein)(-1)), whereas parent strain BSXDH-3 showed no activity. In xylitol fermentation using glucose as a co-substrate with xylose, LNG2 showed xylitol production rate 1.44 g L(-1) h(-1) and xylitol yield of 96% at 44 h, which were 73 and 62%, respectively, higher than corresponding values for BSXDH-3 (rate 0.83 g L(-1) h(-1); yield 59%).  相似文献   

3.
d-Xylonate was produced from d-xylose using Kluyveromyces lactis strains which expressed the gene for NADP(+)-dependent d-xylose dehydrogenase from Trichoderma reesei (xyd1). Up to 19 ± 2g d-xylonatel(-1) was produced when K. lactis expressing xyd1 was grown on 10.5 gd-galactosel(-1) and 40 g d-xylosel(-1). Intracellular accumulation of d-xylonate (up to ~70 mg [gbiomass](-1)) was observed. d-Xylose was metabolised to d-xylonate, xylitol and biomass. Oxygen could be reduced to 6mmolO(2)l(-1)h(-1) without loss in titre or production rate, but metabolism of d-xylose and xylitol were more efficient when 12 mmolO(2)l(-1)h(-1) were provided. d-Xylose uptake was not affected by deletion of either the d-xylose reductase (XYL1) or a putative xylitol dehydrogenase encoding gene (XYL2) in xyd1 expressing strains. K. lactis xyd1ΔXYL1 did not produce extracellular xylitol and produced more d-xylonate than the xyd1 strain containing the endogenous XYL1. K. lactis xyd1ΔXYL2 produced high concentrations of xylitol and significantly less d-xylonate than the xyd1 strain with the endogenous XYL2.  相似文献   

4.
从256个自然样品中筛选得到1株可高效转化D-木糖的酵母。通过生理生化和分子生物学方法鉴定, 证实该菌株是属于Candida tropicalis。以该酵母为研究对象, 增加木糖醇脱氢酶表达量, 通过改变代谢流以达到提高酒精产率的目的。以pXY212-XYL2质粒为基础载体, 构建了含有潮霉素抗性的pYX212-XYL2-Hygro, 电击转化进入野生型C. tropicalis, 潮霉素抗性筛选, 得到含高拷贝木糖醇脱氢酶基因的重组菌株C. tropicalis XYL2-7。重组菌的比酶活达到0.5 u/mg protein, 比原始菌株提高了3倍。实验表明, 重组菌木糖醇得率比原始菌株降低了3倍, 酒精得率提高了5倍。首次通过实验验证了热带假丝酵母利用木糖产乙醇的可行性, 这对研究酵母利用秸秆、麦糠、谷壳等纤维质农业废弃物生产燃料乙醇具有重要启示。  相似文献   

5.
Xylitol dehydrogenase (XDH) was purified from the cytoplasmic fraction of Gluconobacter oxydans ATCC 621. The purified enzyme reduced D-xylulose to xylitol in the presence of NADH with an optimum pH of around 5.0. Based on the determined NH2-terminal amino acid sequence, the gene encoding xdh was cloned, and its identity was confirmed by expression in Escherichia coli. The xdh gene encodes a polypeptide composed of 262 amino acid residues, with an estimated molecular mass of 27.8 kDa. The deduced amino acid sequence suggested that the enzyme belongs to the short-chain dehydrogenase/reductase family. Expression plasmids for the xdh gene were constructed and used to produce recombinant strains of G. oxydans that had up to 11-fold greater XDH activity than the wild-type strain. When used in the production of xylitol from D-arabitol under controlled aeration and pH conditions, the strain harboring the xdh expression plasmids produced 57 g/l xylitol from 225 g/l D-arabitol, whereas the control strain produced 27 g/l xylitol. These results demonstrated that increasing XDH activity in G. oxydans improved xylitol productivity.  相似文献   

6.
代谢工程改善野生酵母利用木糖产乙醇的性能   总被引:1,自引:0,他引:1  
从256个自然样品中筛选得到1株可高效转化D-木糖的酵母。通过生理生化和分子生物学方法鉴定, 证实该菌株是属于Candida tropicalis。以该酵母为研究对象, 增加木糖醇脱氢酶表达量, 通过改变代谢流以达到提高酒精产率的目的。以pXY212-XYL2质粒为基础载体, 构建了含有潮霉素抗性的pYX212-XYL2-Hygro, 电击转化进入野生型C. tropicalis, 潮霉素抗性筛选, 得到含高拷贝木糖醇脱氢酶基因的重组菌株C. tropicalis XYL2-7。重组菌的比酶活达到0.5 u/mg protein, 比原始菌株提高了3倍。实验表明, 重组菌木糖醇得率比原始菌株降低了3倍, 酒精得率提高了5倍。首次通过实验验证了热带假丝酵母利用木糖产乙醇的可行性, 这对研究酵母利用秸秆、麦糠、谷壳等纤维质农业废弃物生产燃料乙醇具有重要启示。  相似文献   

7.
Xylitol formation by a recombinantSaccharomyces cerevisiae strain containing theXYL1 gene fromPichia stipitis CBS 6054 was investigated under three sets of conditions: (a) with glucose, ethanol, acetate, or glycerol as cosubstrates, (b) with different oxygenation levels, and (c) with different ratios of xylose to cosubstrate. With both glucose and ethanol the conversion yields were close to 1 g xylitol/g consumed xylose. Decreased aeration increased the xylitol yield on the basis of consumed cosubstrate, while the rate of xylitol formation decreased. The xylitol yield based on consumed cosubstrate also increased with increased-xylose:cosubstrate ratios. The transformant utilized the cosubstrate more efficiently than did a reference strain in terms of utilization rate and growth rate, implying that the regeneration of NAD(P)+ during xylitol formation by the transformant balanced the intracellular redox potential.  相似文献   

8.
The co-production of xylitol and ethanol from agricultural straw has more economic advantages than the production of ethanol only. Saccharomyces cerevisiae, the most widely used ethanol-producing yeast, can be genetically engineered to ferment xylose to xylitol. In the present study, the effects of xylose-specificity, cofactor preference, and the gene copy number of xylose reductase (XR; encoding by XYL1 gene) on xylitol production of S. cerevisiae were investigated. The results showed that overexpression of XYL1 gene with a lower xylose-specificity and a higher NADPH preference favored the xylitol production. The copy number of XYL1 had a positive correlation with the XR activity but did not show a good correlation with the xylitol productivity. The overexpression of XYL1 from Candida tropicalis (CtXYL1) achieved a xylitol productivity of 0.83 g/L/h and a yield of 0.99 g/g-consumed xylose during batch fermentation with 43.5 g/L xylose and 17.0 g/L glucose. During simultaneous saccharification and fermentation (SSF) of pretreated corn stover, the strain overexpressing CtXYL1 produced 45.41 g/L xylitol and 50.19 g/L ethanol, suggesting its application potential for xylitol and ethanol co-production from straw feedstocks.  相似文献   

9.
AIMS: To determine the effects on xylitol accumulation and ethanol yield of expression of mutated Pichia stipitis xylitol dehydrogenase (XDH) with reversal of coenzyme specificity in recombinant Saccharomyces cerevisiae. METHODS AND RESULTS: The genes XYL2 (D207A/I208R/F209S) and XYL2 (S96C/S99C/Y102C/D207A/I208R/F209S) were introduced into S. cerevisiae, which already contained the P. stipitis XYL1 gene (encoding xylose reductase, XR) and the endogenously overexpressed XKS1 gene (encoding xylulokinase, XK). The specific activities of mutated XDH in both strains showed a distinct increase in NADP(+)-dependent activity in both strains with mutated XDH, reaching 0.782 and 0.698 U mg(-1). In xylose fermentation, the strain with XDH (D207A/I208R/F209S) had a large decrease in xylitol and glycerol yield, while the xylose consumption and ethanol yield were decreased. In the strain with XDH (S96C/S99C/Y102C/D207A/I208R/F209S), the xylose consumption and ethanol yield were also decreased, and the xylitol yield was increased, because of low XDH activity. CONCLUSIONS: Changing XDH coenzyme specificity was a sufficient method for reducing the production of xylitol, but high activity of XDH was also required for improved ethanol formation. SIGNIFICANCE AND IMPACT OF THE STUDY: The difference in coenzyme specificity was a vital parameter controlling ethanolic xylose fermentation but the XDH/XR ratio was also important.  相似文献   

10.
The traditional ethanologenic yeast Saccharomyces cerevisiae cannot metabolize xylose, which is an abundant sugar in non-crop plants. Engineering this yeast for a practicable fermentation of xylose will therefore improve the economics of bioconversion for the production of fuels and chemicals such as ethanol. One of the most widely employed strategies is to express XYL1, XYL2, and XYL3 genes derived from Scheffersomyces stipitis (formerly Pichia stiptis) in S. cerevisiae. However, the resulting engineered strains have been reported to exhibit large variations in xylitol accumulation and ethanol yields, generating many hypotheses and arguments for elucidating these phenomena. Here we demonstrate that low expression levels of the XYL2 gene, coding for xylitol dehydrogenase (XDH), is a major bottleneck in efficient xylose fermentation. Through an inverse metabolic engineering approach using a genomic library of S. cerevisiae, XYL2 was identified as an overexpression target for improving xylose metabolism. Specifically, we performed serial subculture experiments after transforming a genomic library of wild type S. cerevisiae into an engineered strain harboring integrated copies of XYL1, XYL2 and XYL3. Interestingly, the isolated plasmids from efficient xylose-fermenting transformants contained XYL2. This suggests that the integrated XYL2 migrated into a multi-copy plasmid through homologous recombination. It was also found that additional overexpression of XYL2 under the control of strong constitutive promoters in a xylose-fermenting strain not only reduced xylitol accumulation, but also increased ethanol yields. As the expression levels of XYL2 increased, the ethanol yields gradually improved from 0.1 to 0.3g ethanol/g xylose, while the xylitol yields significantly decreased from 0.4 to 0.1g xylitol/g xylose. These results suggest that strong expression of XYL2 is a necessary condition for developing efficient xylose-fermenting strains.  相似文献   

11.
Glycerol can be used as a primary carbon source by yeasts, little is known regarding glycerol metabolism in Candida tropicalis. In this study, glycerol kinase gene (gk) was disrupted from xylitol dehydrogenase gene (XYL2) knockout C. tropicalis strain BSXDH-3. The resultant gk knockout C. tropicalis strain was incapable to grow on glycerol. The cells growth on glycerol was resumed by co-expressing Scheffersomyces stipitis gcy1, 2 and 3 genes, which respectively encode NADP+-dependent glycerol dehydrogenase 1, 2 and 3, under the control of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter. NADPH-dependent xylitol production was higher in the engineered strain, termed “GK”, than in BSXDH-3. In fermentation experiments using glycerol as co-substrate with xylose, strain GK produced xylitol 0.85 and 1.28 g l?1 h?1 at the time periods of 16 and 24 h, respectively, which is 30 and 18 % higher at same time intervals in BSXDH-3. This is the first report of gk gene disruption and co-expression of gcy1, 2 and 3 genes for NADPH regeneration and enhanced xylitol production in C. tropicalis.  相似文献   

12.
Semidefined media fermentation simulating the sugar composition of hemicellulosic hydrolysates (around 85 g l-1 xylose, 17 g l-1 glucose, and 9 g l-1 arabinose) was investigated to evaluate the glucose and arabinose influence on xylose-to-xylitol bioconversion by Candida guilliermondii. The results revealed that glucose reduced the xylose consumption rate by 30%. Arabinose did not affect the xylose consumption but its utilization by the yeast was fully repressed by both glucose and xylose sugars. Arabinose was only consumed when it was used as a single carbon source. Xylitol production was best when glucose was not present in the fermentation medium. On the other hand, the arabinose favored the xylitol yield (which attained 0.74 g g-1 xylose consumed) and it did not interfere with xylitol volumetric productivity (Q P=0.85 g g-1), the value of which was similar to that obtained with xylose alone.  相似文献   

13.
AIMS: To inhibit xylitol dehydrogenase (XDH) in Trichoderma reesei by antisense inhibition strategy and construct novel strains capable of accumulating xylitol. METHODS AND RESULTS: The xdh1 antisense expression plasmid pGTA-xdh was constructed by inserting xdh1 DNA fragment inversely between the gpdA promoter and the trpC terminator from Aspergillus nidulans into a pUC19 plasmid backbone. Trichoderma reesei protoplasts were co-transformated with pGTA-xdh and hygromycin B resistance plasmid pAN7-1. Of 20 transformants screened from the selective medium, one transformant with the highest xylitol accumulation, designated ZY15, showed a distinct reduction (c. 52%) in XDH activity compared with the original strain Rut-C30. The results of Southern hybridization and PCR assay showed that the antisense expression cassette of xdh1 was integrated into the genome of T. reesei. The RT-PCR analysis proved that antisense RNA effectively inhibited XDH expression (c. 65%). Xylitol accumulation (2.37 mg ml(-1)) of ZY15 was five times higher than that (0.46 mg ml(-1)) of the original strain Rut-C30. CONCLUSIONS: Strain ZY15 successfully downregulated XDH production and exhibited xylitol accumulation in xylose liquid medium. SIGNIFICANCE AND IMPACT OF THE STUDY: This study contributed to the budding field of fungal genetics in two points. First, it confirmed that antisense RNA strategy could be used as a means of reducing gene expression in the filamentous fungus T. reesei. Secondly, it verified that the strategy appears most promising for creating novel filamentous fungi strains capable of accumulating intermediary metabolites.  相似文献   

14.
The recombinant xylose-fermenting Saccharomyces cerevisiae strain harboring xylose reductase (XR) and xylitol dehydrogenase (XDH) from Scheffersomyces stipitis requires NADPH and NAD(+), creates cofactor imbalance, and causes xylitol accumulation during growth on d-xylose. To solve this problem, noxE, encoding a water-forming NADH oxidase from Lactococcus lactis driven by the PGK1 promoter, was introduced into the xylose-utilizing yeast strain KAM-3X. A cofactor microcycle was set up between the utilization of NAD(+) by XDH and the formation of NAD(+) by water-forming NADH oxidase. Overexpression of noxE significantly decreased xylitol formation and increased final ethanol production during xylose fermentation. Under xylose fermentation conditions with an initial d-xylose concentration of 50 g/liter, the xylitol yields for of KAM-3X(pPGK1-noxE) and control strain KAM-3X were 0.058 g/g xylose and 0.191 g/g, respectively, which showed a 69.63% decrease owing to noxE overexpression; the ethanol yields were 0.294 g/g for KAM-3X(pPGK1-noxE) and 0.211 g/g for the control strain KAM-3X, which indicated a 39.33% increase due to noxE overexpression. At the same time, the glycerol yield also was reduced by 53.85% on account of the decrease in the NADH pool caused by overexpression of noxE.  相似文献   

15.
To enhance metabolite transfer in the two initial sequential steps of xylose metabolism in yeast, two structural genes of Pichia stipitis, XYL1 and XYL2 encoding xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively, were fused in frame. Four chimeric genes were constructed, encoding fusion proteins with different orders of the enzymes and different linker lengths. These genes were expressed in Saccharomyces cerevisiae. The fusion proteins exhibited both XR and XDH activity when XYL1 was fused downstream of XYL2. The specific activity of the XDH part of the complexes increased when longer peptide linkers were used. Bifunctional enzyme complexes, analyzed by gel filtration, were found to be tetramers, hexamers, and octamers. No degradation products were detected by Western blot analysis. S. cerevisiae strains harboring the bifunctional enzymes grew on minimal-medium xylose plates, and oxygen-limited xylose fermentation resulted in xylose consumption and ethanol formation. When a fusion protein, containing a linker of three amino acids, was coexpressed with native XR and XDH monomers in S. cerevisiae, enzyme complexes consisting of chimerical and native subunits were formed. The total activity of these complexes showed XR and XDH activities similar to the activities obtained when the monomers were expressed individually. Strains which coexpressed chimerical subunits together with native XR and XDH monomers consumed less xylose and produced less xylitol. However, the xylitol yield was lower in these strains than in strains expressing only native XR and XDH monomers, 0.55 and 0.62, respectively, and the ethanol yield was higher. The reduced xylitol yield was accompanied by reduced glycerol and acetate formation suggesting enhanced utilization of NADH in the XR reaction.  相似文献   

16.
[目的]研究米曲霉木糖醇脱氢酶基因的结构与功能.[方法]克隆测序来源于米曲霉的木糖醇脱氢酶(XDH)基因,利用Swiss-MODEL和Modeller对XDH进行三级结构模建,通过PROCHECK和Prosa2003对得到的4个目标模型进行评价,从中得到一个最佳模型.在同源建模的基础上,通过分子对接软件MolsoftICM-Pro,对辅因子进行对接,预测了XDH与NAD+、Zn2+作用的相关残基.寻找底物木糖醇与XDH结合的可能活性口袋,用Molsoft模拟XDH与木糖醇的对接,预测了酶与底物作用的关键氨基酸残基.[结果]结构分析显示,米曲霉XDH含有醇脱氢酶家族锌指纹结构和典型醇脱氢酶Rossmann折叠的辅酶结合域,属于Medium-chain脱氢酶(MDR)家族.通过对接研究,预测了XDH与NAD+之间形成氢键的氨基酸有Asp206、Arg211、Ser255、Ser301和Arg303,这些氨基酸位于结合域,与Zn2+形成氢键的氨基酸有His72和Glu73,位于催化域,与天然底物木糖醇形成氢键的氨基酸有Ile46、Ile349、Lys350和Thr351,位于催化域.[结论]所得信息对XDH分子定向改造、拓展米曲霉工业应用范围有重要意义.  相似文献   

17.
Escherichia coli W3110 was previously engineered to co-utilize glucose and xylose by replacing the wild-type crp gene with a crp* mutant encoding a cAMP-independent CRP variant (Cirino et al., 2006 [Cirino, P.C., Chin, J.W., Ingram, L.O., 2006. Engineering Escherichia coli for xylitol production from glucose-xylose mixtures. Biotechnol. Bioeng. 95, 1167-1176.]). Subsequent deletion of the xylB gene (encoding xylulokinase) and expression of xylose reductase from Candida boidinii (CbXR) resulted in a strain which produces xylitol from glucose-xylose mixtures. In this study we examine the contributions of the native E. coli xylose transporters (the d-xylose/proton symporter XylE and the d-xylose ABC transporter XylFGH) and CRP* to xylitol production in the presence of glucose and xylose. The final batch xylitol titer with strain PC09 (Delta xylB and crp*) is reduced by 40% upon deletion of xylG and by 60% upon deletion of both xyl transporters. Xylitol production by the wild-type strain (W3110) expressing CbXR is not reduced when xylE and xylG are deleted, demonstrating tight regulation of the xylose transporters by CRP and revealing significant secondary xylose transport. Finally, plasmid expression of XylE or XylFGH with CbXR in PC07 (Delta xylB and wild-type crp) growing on glucose results in xylitol titers similar to that achieved with PC09 and provides an alternative strategy to the use of CRP*.  相似文献   

18.
The baker's yeast Saccharomyces cerevisiae is generally classified as a non-xylose-utilizing organism. We found that S. cerevisiae can grow on D-xylose when only the endogenous genes GRE3 (YHR104w), coding for a nonspecific aldose reductase, and XYL2 (YLR070c, ScXYL2), coding for a xylitol dehydrogenase (XDH), are overexpressed under endogenous promoters. In nontransformed S. cerevisiae strains, XDH activity was significantly higher in the presence of xylose, but xylose reductase (XR) activity was not affected by the choice of carbon source. The expression of SOR1, encoding a sorbitol dehydrogenase, was elevated in the presence of xylose as were the genes encoding transketolase and transaldolase. An S. cerevisiae strain carrying the XR and XDH enzymes from the xylose-utilizing yeast Pichia stipitis grew more quickly and accumulated less xylitol than did the strain overexpressing the endogenous enzymes. Overexpression of the GRE3 and ScXYL2 genes in the S. cerevisiae CEN.PK2 strain resulted in a growth rate of 0.01 g of cell dry mass liter(-1) h(-1) and a xylitol yield of 55% when xylose was the main carbon source.  相似文献   

19.
Xylitol was produced a in two-substrate, batch fermentation with cell recycling of Candida tropicalis ATCC 13803. A series of cell-recycle experiments showed that the feeding of xylose, glucose and yeast extract in the xylitol production phase was most effective in enhancing xylitol productivity. The optimized cell recycle fermentation resulted in 0.82 g xylitol/g xylose yield, 4.94 g xylitol l–1 h–1 productivity, and final xylitol concentration of 189 g l–1. These results were 1.3 times higher in volumetric xylitol productivity and 2.2 times higher in final product concentration compared with the corresponding values of the optimized two-substrate batch culture.  相似文献   

20.
Production of xylitol from D-xylose by recombinant Lactococcus lactis   总被引:1,自引:0,他引:1  
The D-xylose reductase from Pichia stipitis CBS 5773 and the xylose transporter from Lactobacillus brevis ATCC 8287 were expressed in active form in Lactococcus lactis NZ9800. Xylitol production was investigated using non-growing recombinant cells in high cell-density under microaerobic conditions in the presence of xylose and glucose. Besides xylose, the recombinant strain with xylose reductase activity reduced l-arabinose and D-ribose in significant extent to the corresponding pentitols. The ratio of xylitol produced per glucose consumed was almost 10-fold higher under glucose limitation than the ratio in the presence of excess initial glucose. The co-expression of the xylose transporter with the xylose reductase did not increase the efficiency of xylitol production appreciably when compared to the strain in which only the xylose reductase gene was expressed. A fed-batch experiment with high initial xylose concentration (160 gl(-1)) under glucose limitation was carried out using the strain co-expressing xylose reductase and xylose transporter genes. The xylitol yield from xylose was 1.0 mol mol(-1) and the ratio of xylitol produced per glucose consumed was 2.5 mol mol(-1). The volumetric productivity was 2.72 gl(-1)h(-1) at 20 h. Of the xylose initially present, 34% was consumed. Analysis of the fermentation metabolites revealed a shift from homolactic to mixed acid fermentation at early stages of the experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号