首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 856 毫秒
1.
Systemic phospholipid transfer protein (PLTP) is a recognized risk factor for coronary heart disease. In apolipoprotein E-deficient mice, systemic PLTP deficiency is atheroprotective, whereas PLTP overexpression is proatherogenic. As expected, we also observed significantly smaller lesions (P < 0.0001) in hypercholesterolemic double mutant low density lipoprotein receptor-deficient (LDLr(-/-)) PLTP-deficient (PLTP(-/-)) mice compared with LDLr(-/-) mice expressing systemic PLTP. To assess the specific contribution of only macrophage-derived PLTP to atherosclerosis progression, bone marrow transplantation was performed in LDLr(-/-) mice that also lacked systemic PLTP. Groups of double mutant PLTP(-/-)LDLr(-/-) mice were irradiated with 1,000 rad and injected with bone marrow (BM) cells collected from either PLTP(-/-) or wild-type mice. When fed a high-fat diet, BM cell expression of PLTP decreased plasma cholesterol of PLTP(-/-)LDLr(-/-) mice from 878 +/- 220 to 617 +/- 183 mg/dl and increased HDL cholesterol levels from 54 +/- 11 to 117 +/- 19 mg/dl. This decreased total plasma cholesterol and increased HDL cholesterol contributed to the significantly smaller atherosclerotic lesions in both aortas and heart sinus valves observed in these mice. Thus, unlike total systemic PLTP, locally produced macrophage-derived PLTP beneficially alters lipoprotein metabolism and reduces lesion progression in hyperlipidemic mice.  相似文献   

2.
Plasma phospholipid transfer protein (PLTP) transfers phospholipids between lipoproteins and mediates HDL conversion. PLTP-overexpressing mice have increased atherosclerosis. However, mice do not express cholesteryl ester transfer protein (CETP), which is involved in the same metabolic pathways as PLTP. Therefore, we studied atherosclerosis in heterozygous LDL receptor-deficient (LDLR(+/-)) mice expressing both human CETP and human PLTP. We used two transgenic lines with moderately and highly elevated plasma PLTP activity. In LDLR(+/-)/huCETPtg mice, cholesterol is present in both LDL and HDL. Both are decreased in LDLR(+/-)/huCETPtg/huPLTPtg mice (>50%). An atherogenic diet resulted in high levels of VLDL+LDL cholesterol. PLTP expression caused a strong PLTP dose-dependent decrease in VLDL and LDL cholesterol (-26% and -69%) and a decrease in HDL cholesterol (-70%). Surprisingly, atherosclerosis was increased in the two transgenic lines with moderately and highly elevated plasma PLTP activity (1.9-fold and 4.4-fold, respectively), indicating that the adverse effect of the reduction in plasma HDL outweighs the beneficial effect of the reduction in apolipoprotein B (apoB)-containing lipoproteins. The activities of the antiatherogenic enzymes paraoxonase and platelet-activating factor acetyl hydrolase were both PLTP dose-dependently reduced ( approximately -33% and -65%, respectively). We conclude that expression of PLTP in this animal model results in increased atherosclerosis in spite of reduced apoB-containing lipoproteins, by reduction of HDL and of HDL-associated antioxidant enzyme activities.  相似文献   

3.
Plasma phospholipid transfer protein (PLTP) interacts with HDL particles and facilitates the transfer of phospholipids from triglyceride (TG)-rich lipoproteins to HDL. Overexpressing human PLTP in mice increases the susceptibility to atherosclerosis. In human plasma, high-active and low-active forms of PLTP exist. To elucidate the contribution of phospholipid transfer activity to changes in lipoprotein metabolism and atherogenesis, we developed mice expressing mutant PLTP, still able to associate with HDL but lacking phospholipid transfer activity. In mice heterozygous for the LDL receptor, effects of the mutant and normal human PLTP transgene (mutPLTP tg and PLTP tg, respectively) were compared. In PLTP tg mice, plasma PLTP activity was increased 2.9-fold, resulting in markedly reduced HDL lipid levels. In contrast, in mutPLTP tg mice, lipid levels were not different from controls. Furthermore, hepatic VLDL-TG secretion was stimulated in PLTP tg mice, but not in mutPLTP tg mice. When mice were fed a cholesterol-enriched diet, atherosclerotic lesion size in PLTP tg mice was increased more than 2-fold compared with control mice, whereas in mutPLTP tg mice, there was no change. Our findings demonstrate that PLTP transfer activity is essential for the development of atherosclerosis in PLTP transgenic mice, identifying PLTP activity as a possible target to prevent atherogenesis, independent of plasma PLTP concentration.  相似文献   

4.
Plasma phospholipid transfer protein (PLTP) is thought to be involved in the remodeling of high density lipoproteins (HDL), which are atheroprotective. It is also involved in the metabolism of very low density lipoproteins (VLDL). Hence, PLTP is thought to be an important factor in lipoprotein metabolism and the development of atherosclerosis. We have overexpressed PLTP in mice heterozygous for the low density lipoprotein (LDL) receptor, a model for atherosclerosis. We show that increased PLTP activity results in a dose-dependent decrease in HDL, and a moderate stimulation of VLDL secretion (相似文献   

5.
Plasma phospholipid transfer protein (PLTP) and cholesteryl ester transfer protein (CETP) are homologous molecules that mediate neutral lipid and phospholipid exchange between plasma lipoproteins. Biochemical experiments suggest that only CETP can transfer neutral lipids but that there could be overlap in the ability of PLTP and CETP to transfer or exchange phospholipids. Recently developed PLTP gene knock-out (PLTP0) mice have complete deficiency of plasma phospholipid transfer activity and markedly reduced high density lipoprotein (HDL) levels. To see whether CETP can compensate for PLTP deficiency in vivo, we bred the CETP transgene (CETPTg) into the PLTP0 background. Using an in vivo assay to measure the transfer of [(3)H]PC from VLDL into HDL or an in vitro assay that determined [(3)H]PC transfer from vesicles into HDL, we could detect no phospholipid transfer activity in either PLTP0 or CETPTg/PLTP0 mice. On a chow diet, HDL-PL, HDL-CE, and HDL-apolipoprotein AI in CETPTg/PLTP0 mice were significantly lower than in PLTP0 mice (45 +/- 7 versus 79 +/- 9 mg/dl; 9 +/- 2 versus 16 +/- 5 mg/dl; and 51 +/- 6 versus 100 +/- 9, arbitrary units, respectively). Similar results were obtained on a high fat, high cholesterol diet. These results indicate 1) that there is no redundancy in function of PLTP and CETP in vivo and 2) that the combination of the CETP transgene with PLTP deficiency results in an additive lowering of HDL levels, suggesting that the phenotype of a human PLTP deficiency state would include reduced HDL levels.  相似文献   

6.
Phospholipid transfer protein   总被引:5,自引:0,他引:5  
A role for phospholipid transfer protein (PLTP) in HDL remodelling and in the formation of pre-beta-HDL is now well established, both in vivo and in vitro. Over-expression of human PLTP in C57BL6 mice lowers plasma HDL levels, probably because of increased HDL catabolism. Despite these low HDL levels, plasma from these mice mitigates cholesterol accumulation in macrophages and has increased potential for pre-beta-HDL formation. Plasma HDL concentration is also decreased in PLTP knockout mice. These intriguing observations can be explained by recent studies that indicate that PLTP is not only involved in remodelling of HDL subfractions but also in VLDL turnover. The role of PLTP in atherogenesis and VLDL synthesis was demonstrated in transgenic mouse models with increased susceptibility for the development of atherosclerosis, bred into PLTP knockout mice. The data clearly show that PLTP can be proatherogenic. As mentioned above, however, PLTP may have antiatherogenic potential in wild-type C57BL6 mice. Information regarding the role and regulation of PLTP in human (patho)physiology is still relatively sparse but accumulating rapidly. PLTP activity is elevated in diabetes mellitus (both type 1 and type 2), obesity and insulin resistance.  相似文献   

7.
Plasma phospholipid transfer protein (PLTP) has atherogenic properties in genetically modified mice. PLTP stimulates hepatic triglyceride secretion and reduces plasma levels of high density lipoproteins (HDL). The present study was performed to relate the increased atherosclerosis in PLTP transgenic mice to one of these atherogenic effects. A humanized mouse model was used which had decreased LDL receptor expression and was transgenic for human cholesterylester transfer protein (CETP) in order to obtain a better resemblance to the plasma lipoprotein profile present in humans. It is well known that female mice are more susceptible to atherosclerosis than male mice. Therefore, we compared male and female mice expressing human PLTP. The animals were fed an atherogenic diet and the effects on plasma lipids and lipoproteins, triglyceride secretion and the development of atherosclerosis were measured. The development of atherosclerosis was sex-dependent. This effect was stronger in PLTP transgenic mice, while PLTP activity levels were virtually identical. Also, the rates of hepatic secretion of triglycerides were similar. In contrast, plasma levels of HDL were about 2-fold lower in female mice than in male mice after feeding an atherogenic diet. We conclude that increased atherosclerosis caused by overexpression of PLTP is related to a decrease in HDL, rather than to elevated hepatic secretion of triglycerides.  相似文献   

8.
Several synthetic class A peptide analogues have been shown to mimic many of the properties of human apo A-I in vitro. A new peptide [acetyl-(AspTrpLeuLysAlaPheTyrAspLysValPheGluLysPheLysGluPhePhe)-NH2; 5F], with increased amphipathicity, was administered by intraperitoneal injection, 20 microg/day for 16 weeks, to C57BL/6J mice fed an atherogenic diet. Mouse apo A-I (MoA-I) (50 microg/day) or phosphate-buffered saline (PBS) injections were given to other mice as controls. Total plasma cholesterol levels and lipoprotein profiles were not significantly different between the treated and control groups, except that the mice receiving 5F or MoA-I had lower high density lipoprotein (HDL) cholesterol when calculated as a percentage of total cholesterol. No toxicity or production of antibodies to the injected materials was observed. When HDL was isolated from high fat diet-administered mice injected with 5F and presented to human artery wall cells in vitro together with human low density lipoprotein (LDL), there were substantially fewer lipid hydroperoxides formed and substantially less LDL-induced monocyte chemotactic activity than with HDL from PBS-injected animals. Injection of human apo A-I produced effects similar to 5F on lipid peroxide formation and LDL-induced monocyte chemotactic activity, but injection of MoA-I was significantly less effective in reducing lipid hydroperoxide formation or lowering LDL-induced monocyte chemotactic activity. Mice receiving peptide 5F had significantly less aortic atherosclerotic lesion area compared with mice receiving PBS, whereas lesion area in mice receiving MoA-I was similar to that of the PBS-injected animals. This is the first in vivo demonstration that a model class A amphipathic helical peptide has antiatherosclerotic properties. We conclude that 5F inhibits lesion formation in high fat diet-administered mice by a mechanism that does not involve changes in the lipoprotein profile, and may have potential in the prevention and treatment of atherosclerosis.  相似文献   

9.
Treatment of human artery wall cells with apolipoprotein A-I (apoA-I), but not apoA-II, with an apoA-I peptide mimetic, or with high density lipoprotein (HDL), or paraoxonase, rendered the cells unable to oxidize low density lipoprotein (LDL). Human aortic wall cells were found to contain 12-lipoxygenase (12-LO) protein. Transfection of the cells with antisense to 12-LO (but not sense) eliminated the 12-LO protein and prevented LDL-induced monocyte chemotactic activity. Addition of 13(S)-hydroperoxyoctadecadienoic acid [13(S)-HPODE] and 15(S)-hydroperoxyeicosatetraenoic acid [15(S)-HPETE] dramatically enhanced the nonenzymatic oxidation of both 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC) and cholesteryl linoleate. On a molar basis 13(S)-HPODE and 15(S)-HPETE were approximately two orders of magnitude greater in potency than hydrogen peroxide in causing the formation of biologically active oxidized phospholipids (m/z 594, 610, and 828) from PAPC. Purified paraoxonase inhibited the biologic activity of these oxidized phospholipids. HDL from 10 of 10 normolipidemic patients with coronary artery disease, who were neither diabetic nor receiving hypolipidemic medications, failed to inhibit LDL oxidation by artery wall cells and failed to inhibit the biologic activity of oxidized PAPC, whereas HDL from 10 of 10 age- and sex-matched control subjects did.We conclude that a) mildly oxidized LDL is formed in three steps, one of which involves 12-LO and each of which can be inhibited by normal HDL, and b) HDL from at least some coronary artery disease patients with normal blood lipid levels is defective both in its ability to prevent LDL oxidation by artery wall cells and in its ability to inhibit the biologic activity of oxidized PAPC.  相似文献   

10.
In low density lipoprotein receptor (LDLR)-deficient mice, overexpression of human plasma phospholipid transfer protein (PLTP) results in increased atherosclerosis. PLTP strongly decreases HDL levels and might alter the antiatherogenic properties of HDL particles. To study the potential interaction between human PLTP and apolipoprotein A-I (apoA-I), double transgenic animals (hPLTPtg/hApoAItg) were compared with hApoAItg mice. PLTP activity was increased 4.5-fold. Plasma total cholesterol and phospholipid were decreased. Average HDL size (analyzed by gel filtration) increased strongly, hPLTPtg/hApoAItg mice having very large, LDL-sized, HDL particles. Also, after density gradient ultracentrifugation, a substantial part of the apoA-I-containing lipoproteins in hPLTPtg/hApoAItg mice was found in the LDL density range. In cholesterol efflux studies from macrophages, HDL isolated from hPLTPtg/hApoAItg mice was less efficient than HDL isolated from hApoAItg mice. Furthermore, it was found that the largest subfraction of the HDL particles present in hPLTPtg/hApoAItg mice was markedly inferior as a cholesterol acceptor, as no labeled cholesterol was transferred to this fraction. In an LDLR-deficient background, the human PLTP-expressing mouse line showed a 2.2-fold increased atherosclerotic lesion area. These data demonstrate that the action of human PLTP in the presence of human apoA-I results in the formation of a dysfunctional HDL subfraction, which is less efficient in the uptake of cholesterol from cholesterol-laden macrophages.  相似文献   

11.
In humans, fibrates are used to treat dyslipidemia, because these drugs lower plasma triglycerides and raise HDL cholesterol. Treatment with fibrates lowers plasma phospholipid transfer protein (PLTP) activity in humans, but increases PLTP activity in mice, without a consistent effect on HDL-cholesterol concentration. Earlier, we found that PLTP overexpression in transgenic mice results in decreased plasma HDL levels and increased diet-induced atherosclerosis. So it seems that the interplay between fibrates, PLTP and HDL is different in mice and man, which may be important for atherosclerosis development. In the present study, we measured the effects of fibrates on PLTP expression in cultured human hepatocytes and effects of fibrate treatment on human PLTP expression, plasma PLTP activity and HDL levels in human PLTP transgenic mice. Fibrate treatment did not influence PLTP mRNA levels in human hepatocytes. Hepatic human PLTP mRNA levels and PLTP activity were both moderately elevated by fenofibrate treatment in human PLTP transgenic mice. In wild-type mice, however, feeding fenofibrate resulted in a strong induction of PLTP mRNA in the liver and a more than 4-fold increase of plasma PLTP activity. Plasma triglycerides were reduced in all mice by 48% or more by fenofibrate treatment. HDL-cholesterol concentrations were substantially increased by fenofibrate in PLTP overexpressing mice (+72%), but unaffected in wild-type mice. We conclude that fenofibrate treatment reverses the HDL-lowering effect of PLTP overexpression in human PLTP transgenic mice.  相似文献   

12.
Phospholipid transfer protein (PLTP) facilitates the transfer of phospholipids from triglyceride-rich lipoproteins into HDL. PLTP has been shown to be an important factor in lipoprotein metabolism and atherogenesis. Here, we report that chronic high-fat, high-cholesterol diet feeding markedly increased plasma cholesterol levels in C57BL/6 mice. PLTP deficiency attenuated diet-induced hypercholesterolemia by dramatically reducing apolipoprotein E-rich lipoproteins (-88%) and, to a lesser extent, LDL (-40%) and HDL (-35%). Increased biliary cholesterol secretion, indicated by increased hepatic ABCG5/ABCG8 gene expression, and decreased intestinal cholesterol absorption may contribute to the lower plasma cholesterol in PLTP-deficient mice. The expression of proinflammatory genes (intercellular adhesion molecule-1 and vascular cell adhesion molecule-1) is reduced in aorta of PLTP knockout mice compared with wild-type mice fed either a chow or a high-cholesterol diet. Furthermore, plasma interleukin-6 levels are significantly lower in PLTP-deficient mice, indicating reduced systemic inflammation. These data suggest that PLTP appears to play a proatherogenic role in diet-induced hyperlipidemic mice.  相似文献   

13.
Vitamin E is a lipophilic anti-oxidant that can prevent the oxidative damage of atherogenic lipoproteins. However, human trials with vitamin E have been disappointing, perhaps related to ineffective levels of vitamin E in atherogenic apoB-containing lipoproteins. Phospholipid transfer protein (PLTP) promotes vitamin E removal from atherogenic lipoproteins in vitro, and PLTP deficiency has recently been recognized as an anti-atherogenic state. To determine whether PLTP regulates lipoprotein vitamin E content in vivo, we measured alpha-tocopherol content and oxidation parameters of lipoproteins from PLTP-deficient mice in wild type, apoE-deficient, low density lipoprotein (LDL) receptor-deficient, or apoB/cholesteryl ester transfer protein transgenic backgrounds. In all four backgrounds, the vitamin E content of very low density lipoprotein (VLDL) and/or LDL was significantly increased in PLTP-deficient mice, compared with controls with normal plasma PLTP activity. Moreover, PLTP deficiency produced a dramatic delay in generation of conjugated dienes in oxidized apoB-containing lipoproteins as well as markedly lower titers of plasma IgG autoantibodies to oxidized LDL. The addition of purified PLTP to deficient plasma lowered the vitamin E content of VLDL plus LDL and normalized the generation of conjugated dienes. The data show that PLTP regulates the bioavailability of vitamin E in atherogenic lipoproteins and suggest a novel strategy for achieving more effective concentrations of anti-oxidants in lipoproteins, independent of dietary supplementation.  相似文献   

14.
Phospholipid transfer protein (PLTP) is associated with HDL particles in plasma, where it transfers phospholipids between lipoproteins and remodels HDL particles. Tangier disease patients, with a mutated ABCA1 transporter, have extremely low plasma HDL concentration and reduced PLTP activity levels, a phenotype that is also observed in mice lacking ABCA1. We investigated whether low HDL levels and low PLTP activity are mechanistically related. Firstly, we studied PLTP expression and distribution among lipoproteins in mice lacking ABCA1 (ABCA1−/−). Parallel to the strong reduction in PLTP activity in plasma of ABCA1−/− mice, decreased PLTP protein levels were observed. Neither PLTP synthesis in liver or macrophages nor the ability of the macrophages to secrete PLTP were impaired in ABCA1−/− mice. However, the PLTP activity level in the medium of cultured macrophages was determined by HDL levels in the medium. PLTP was associated with HDL particles in wild type mice, whereas in ABCA1−/− mice, PLTP was associated with VLDL and LDL particles. Secondly, we treated different mouse models with varying plasma HDL and PLTP levels (wild type, ABCA1−/−, apoE−/− and PLTPtg mice, overexpressing human PLTP) with a synthetic LXR ligand, and investigated the relationship between LXR-mediated PLTP induction and HDL levels in plasma. Plasma PLTP activity in wild type mice was induced 5.6-fold after LXR activation, whereas in ABCA1−/−, apoE−/− and PLTPtg mice, all having reduced HDL levels, induction of PLTP activity was 2.4- , 3.2- and 2.0-fold, respectively. The less pronounced PLTP induction in these mice compared to wild type mice was not caused by a decreased PLTP gene expression in the liver or macrophages. Our findings indicate that the extent of LXR-mediated PLTP induction depends on plasma HDL levels. In conclusion, we demonstrate that ABCA1 deficiency in mice affects plasma PLTP level and distribution through an indirect effect on HDL metabolism. In addition, we show that the extent of LXR-mediated PLTP induction is HDL-dependent. These findings indicate that plasma HDL level is an important regulator of plasma PLTP and might play a role in the stabilization of PLTP in plasma.  相似文献   

15.

Objective

Elevated plasma phospholipid transfer protein (PLTP) expression may increase atherosclerosis in mice by reducing plasma HDL and increasing hepatic VLDL secretion. Hepatic lipase (HL) is a lipolytic enzyme involved in several aspects of the same pathways of lipoprotein metabolism. We investigated whether the effects of elevated PLTP activity are compromised by HL deficiency.

Methods and results

HL deficient mice were crossbred with PLTP transgenic (PLTPtg) mice and studied in the fasted state. Plasma triglycerides were decreased in HL deficiency, explained by reduced hepatic triglyceride secretion. In PLTPtg mice, a redistribution of HL activity between plasma and tissue was evident and plasma triglycerides were also decreased. HL deficiency mitigated or even abolished the stimulatory effect of elevated PLTP activity on hepatic triglyceride secretion. HL deficiency had a modest incremental effect on plasma HDL, which remained present in PLTP transgenic/HL−/− mice, thereby partially compensating the decrease in HDL caused by elevation of PLTP activity. HDL decay experiments showed that the fractional turnover rate of HDL cholesteryl esters was delayed in HL deficient mice, increased in PLTPtg mice and intermediate in PLTPtg mice in an HL−/− background.

Conclusions

HL affects hepatic VLDL. Elevated PLTP activity lowers plasma HDL-cholesterol by stimulating the plasma turnover and hepatic uptake of HDL cholesteryl esters. HL is not required for the increase in hepatic triglyceride secretion or for the lowering of HDL-cholesterol induced by PLTP overexpression.  相似文献   

16.
The plasma phospholipid transfer protein (PLTP) plays an important role in the regulation of plasma high density lipoprotein (HDL) levels and governs the distribution of HDL sub-populations. In the present study, adenovirus mediated overexpression of human PLTP in mice was employed to investigate the distribution of PLTP in serum and its effect on plasma lipoproteins. Gel filtration experiments showed that the distributions of PLTP activity and mass in serum are different, suggesting that human PLTP circulated in mouse plasma as two distinct forms, one with high and the other with low specific activity. Our study further demonstrates that overexpression of PLTP leads to depletion of HDL and that, as PLTP activity declines, replenishment of the HDL fraction occurs. During this process, the lipoprotein profile displays transient particle populations, including apoA-IV and apoE-rich particles in the LDL size range and small particles containing apoA-II only. The possible role of these particles in HDL reassembly is discussed. The increased PLTP activity enhanced the ability of mouse sera to produce preβ-HDL. The present results provide novel evidence that PLTP is an important regulator of HDL metabolism and plays a central role in the reverse cholesterol transport (RCT) process.  相似文献   

17.

Background

Phospholipid transfer protein (PLTP) is expressed by various cell types. In plasma, it is associated with high density lipoproteins (HDL). Elevated levels of PLTP in transgenic mice result in decreased HDL and increased atherosclerosis. PLTP is present in human atherosclerotic lesions, where it seems to be macrophage derived. The aim of the present study is to evaluate the atherogenic potential of macrophage derived PLTP.

Methods and Findings

Here we show that macrophages from human PLTP transgenic mice secrete active PLTP. Subsequently, we performed bone marrow transplantations using either wild type mice (PLTPwt/wt), hemizygous PLTP transgenic mice (huPLTPtg/wt) or homozygous PLTP transgenic mice (huPLTPtg/tg) as donors and low density lipoprotein receptor deficient mice (LDLR−/−) as acceptors, in order to establish the role of PLTP expressed by bone marrow derived cells in diet-induced atherogenesis. Atherosclerosis was increased in the huPLTPtg/wt→LDLR−/− mice (2.3-fold) and even further in the huPLTPtg/tg→LDLR−/− mice (4.5-fold) compared with the control PLTPwt/wt→LDLR−/− mice (both P<0.001). Plasma PLTP activity levels and non-HDL cholesterol were increased and HDL cholesterol decreased compared with controls (all P<0.01). PLTP was present in atherosclerotic plaques in the mice as demonstrated by immunohistochemistry and appears to co-localize with macrophages. Isolated macrophages from PLTP transgenic mice do not show differences in cholesterol efflux or in cytokine production. Lipopolysaccharide activation of macrophages results in increased production of PLTP. This effect was strongly amplified in PLTP transgenic macrophages.

Conclusions

We conclude that PLTP expression by bone marrow derived cells results in atherogenic effects on plasma lipids, increased PLTP activity, high local PLTP protein levels in the atherosclerotic lesions and increased atherosclerotic lesion size.  相似文献   

18.
The plasma phospholipid transfer protein (PLTP) plays an important role in the regulation of plasma high density lipoprotein (HDL) levels and governs the distribution of HDL sub-populations. In the present study, adenovirus mediated overexpression of human PLTP in mice was employed to investigate the distribution of PLTP in serum and its effect on plasma lipoproteins. Gel filtration experiments showed that the distributions of PLTP activity and mass in serum are different, suggesting that human PLTP circulated in mouse plasma as two distinct forms, one with high and the other with low specific activity. Our study further demonstrates that overexpression of PLTP leads to depletion of HDL and that, as PLTP activity declines, replenishment of the HDL fraction occurs. During this process, the lipoprotein profile displays transient particle populations, including apoA-IV and apoE-rich particles in the LDL size range and small particles containing apoA-II only. The possible role of these particles in HDL reassembly is discussed. The increased PLTP activity enhanced the ability of mouse sera to produce pre(beta)-HDL. The present results provide novel evidence that PLTP is an important regulator of HDL metabolism and plays a central role in the reverse cholesterol transport (RCT) process.  相似文献   

19.
Two lipid transfer proteins are active in human plasma, cholesteryl ester transfer protein (CETP), and phospholipid transfer protein (PLTP). Mice by nature do not express CETP. Additional inactivation of the PLTP gene resulted in reduced secretion of VLDL and subsequently in decreased susceptibility to diet-induced atherosclerosis. The aim of this study is to assess possible effects of differences in PLTP expression on VLDL secretion in mice that are proficient in CETP and PLTP. We compared human CETP transgenic (huCETPtg) mice with mice expressing both human lipid transfer proteins (huCETPtg/huPLTPtg). Plasma cholesterol in huCETPtg mice was 1.5-fold higher compared with huCETPtg/huPLTPtg mice (P < 0.001). This difference was mostly due to a lower HDL level in the huCETPtg/huPLTPtg mice, which subsequently could lead to the somewhat decreased CETP activity and concentration that was found in huCETPtg/huPLTPtg mice (P < 0.05). PLTP activity was 2.8-fold increased in these animals (P < 0.001). The human PLTP concentration was 5 microg/ml. Moderate overexpression of PLTP resulted in a 1.5-fold higher VLDL secretion compared with huCETPtg mice (P < 0.05). The composition of nascent VLDL was similar in both strains. These results indicate that elevated PLTP activity in huCETPtg mice results in an increase in VLDL secretion. In addition, PLTP overexpression decreases plasma HDL cholesterol as well as CETP.  相似文献   

20.
One main determinant in high-density lipoprotein (HDL) metabolism is phospholipid transfer protein (PLTP), a plasma protein that is associated with HDL. In transgenic mice overexpressing human PLTP we found that elevated plasma PLTP levels dose-dependently increased the susceptibility to diet-induced atherosclerosis. This could be mainly due to the fact that most functions of PLTP are potentially atherogenic, such as decreasing plasma HDL levels. To further elucidate the role of PLTP in lipoprotein metabolism and atherosclerosis we generated a novel transgenic mouse model that allows conditional expression of human PLTP. In this mouse model a human PLTP encoding sequence is controlled by a Tet-On system. Upon induction of PLTP expression, our mouse model showed a strongly increased PLTP activity (from 3.0 ± 0.6 to 11.4 ± 2.8 AU, p < 0.001). The increase in PLTP activity resulted in an acute decrease in plasma cholesterol of 33% and a comparable decrease in phospholipids. The decrease in total plasma cholesterol and phospholipids was caused by a 35% decrease in HDL-cholesterol level and a 41% decrease in HDL-phospholipid level. These results demonstrate the feasibility of our mouse model to induce an acute elevation of PLTP activity, which is easily reversible. As a direct consequence of an increase in PLTP activity, HDL-cholesterol and HDL-phospholipid levels strongly decrease. Using this mouse model, it will be possible to study the effects of acute elevation of PLTP activity on lipoprotein metabolism and pre-existing atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号