首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leucine uptake into membrane vesicles from larvae of the midge Chironomus riparius was studied. The membrane preparation was highly enriched in typical brush border membrane enzymes and depleted of other membrane contaminants. In the absence of cations, there was a stereospecific uptake of l-leucine, which exhibited saturation kinetics. Parameters were determined both at neutral (Km 33 +/- 5 microM and Vmax 22.6 +/- 6.8 pmol/7s/mg protein) and alkaline (Km 46 +/- 5 microM and Vmax 15.5 +/- 2.5 pmol/7s/mg protein) pH values. At alkaline pH, external sodium increased the affinity for leucine (Km 17 +/- 1 microM) and the maximal uptake rate (Vmax 74.0 +/- 12.5 pmol/7s/mg protein). Stimulation of leucine uptake by external alkaline pH agreed with lumen pH measurements in vivo. Competition experiments indicated that at alkaline pH, the transport system readily accepts most L-amino acids, including branched, unbranched, and alpha-methylated amino acids, histidine and lysine, but has a low affinity for phenylalanine, beta-amino acids, and N-methylated amino acids. At neutral pH, the transport has a decreased affinity for lysine, glycine, and alpha-methylleucine. Taken together, these data are consistent with the presence in midges of two distinct leucine transport systems, which combine characters of the lepidopteran amino acid transport system and of the sodium-dependent system from lower neopterans.  相似文献   

2.
The ontogeny of glutamine uptake by jejunal basolateral membrane vesicles (BLMV) was studied in suckling and weanling rats and the results were compared with adult rats. Glutamine uptake was found to represent a transport into an osmotically active space and not mere binding to the membrane surface. Temperature dependency indicated a carrier-mediated process with optimal pH of 7.0. Transport of glutamine was Na+ (out greater than in) gradient dependent with a distinct "overshoot" phenomenon. The magnitude of the overshoot was higher in suckling compared with weanling rats. The uptake kinetics and inhibition profile indicated the existence of two major transport pathways. A Na(+)-dependent system correlated with System A showed tolerance to System N and System ASC substrates, and a Na(+)-independent system similar to the classical L system that favors leucine and BCH. The Vmax for the Na(+)-dependent system was higher in suckling compared with weanling and adult rats. The Vmax for the Na(+)-dependent system was 0.86 +/- 0.17, 0.64 +/- 0.8, and 0.41 +/- 0.9 nmol.mg protein-1.10 sec-1 for suckling, weanling, and adult rats, respectively. The Vmax for the Na(+)-independent system was 0.68 +/- 0.08, 0.50 +/- 0.03, and 0.24 +/- 0.03 nmol.mg protein-1.10 sec-1 for suckling, weanling, and adult rats, respectively. We conclude that glutamine uptake undergoes developmental changes consistent with more activity and/or number of glutamine transporters during periods of active cellular proliferation and differentiation.  相似文献   

3.
L-leucine plays a central role in the regulation of protein metabolism in heart and has been implicated in myocardial protection, but little is known about the relationship between these phenomena and leucine transport across the cardiac sarcolemma. In this study we used sarcolemmal vesicles and ventricular myocytes isolated from rat heart to characterise L-leucine transport under normal conditions and to investigate the effect of simulated hypoxia or inhibition of protein synthesis. The Km and Vmax of leucine uptake were 5.24+/-0.65 mM and 1.43+/-1.84 nmol min(-1) mg(-1) protein in vesicles compared to 2.17+/-0.13 mM and 1.7+/-0.76 nmol min(-1) microl(-1) intracellular space in cells. Transport was not dependent on Na+ or H+ gradients. In vesicles L-leucine uptake was increased by trans-stimulation, whilst inhibition was observed with classical system L substrates including 2-aminobicyclo[2,2,1]-heptane-2-carboxylic acid (BCH) suggesting that this system mediated L-leucine transport in heart. L-Leucine uptake into isolated cardiac myocytes was inhibited after 20, 30 and 60 min of simulated hypoxia. This was not caused by reduced cell viability, although the cells underwent a rigor contracture. Inhibition of protein synthesis did not affect L-leucine transport.  相似文献   

4.
A long-term exposition of Spodoptera exigua (Hübner) larvae to fenitrothion caused abnormalities in egg structure. When examined under a scanning electron microscope, the eggs revealed diminutions and cracks around the micropylar and aeropylar region. The damage was proportional to the concentration of the insecticide. The observed changes may be one of the reasons for the decreased survival of populations exposed to fenitrothion.  相似文献   

5.
1. Proteolysis was measured as [3H]leucine release from isolated perfused livers from rats, which had been labeled in vivo by an intraperitoneal injection of [3H]leucine about 16 h prior to the perfusion experiment. In livers from fed rats, insulin (35 nM) inhibited [3H]leucine release by 24.5 +/- 1.3% (n = 15) and led to an amiloride-sensitive, bumetanide-sensitive and furosemide-sensitive net K+ uptake of 5.53 +/- 0.31 mumol.g-1 (n = 15). Both the insulin effects on net K+ uptake and on [3H]leucine release were diminished by about 65% or 55% in presence of furosemide (0.1 mM) or bumetanide (5 microM), respectively. The insulin-induced net K+ uptake was virtually abolished in the presence of amiloride (1 mM) plus furosemide (0.1 mM). 2. In perfused livers from 24-h-starved rats, both the insulin-stimulated net K+ uptake and the insulin-induced inhibition of [3H]leucine release were about 80% lower than observed in experiments with livers from fed rats. The insulin effects on K+ balance and [3H]leucine release were not significantly influenced in the presence of glycine (2 mM), although glycine itself inhibited [3H]leucine release by 30.3 +/- 0.3% (n = 4) and 13.8 +/- 1.2% (n = 5) in livers from starved and fed rats, respectively. When livers from fed rats were preswollen by hypoosmotic perfusion (225 mOsmol.l-1), both the insulin-induced net K+ uptake and the inhibition of [3H]leucine release were diminished by 50-60%. 3. During inhibition of [3H]leucine release by insulin, further addition of glucagon (100 nM) led to a marked net K+ release from the liver (3.82 +/- 0.24 mumol.g-1), which was accompanied by stimulation of [3H]leucine release by 16.4 +/- 4.6% (n = 4). 4. Ba2+ (1 mM) infusion led to a net K+ uptake by the liver of 3.2 +/- 0.2 mumol.g-1 (n = 4) and simultaneously inhibited [3H]leucine release by 12.4 +/- 1.7% (n = 4). 5. There was a close relationship between the Ba2+ or insulin-induced net K+ uptake and the degree of inhibition of [3H]leucine release, even when the K+ response to insulin was modulated by bumetanide, furosemide, glucagon, hypotonic or glycine-induced cell swelling or the nutritional state. 6. The data suggest that the insulin-induced net K+ uptake involves activation of both NaCl/KCl cotransport and Na+/H+ exchange.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Changes in enzyme activities, metabolite concentrations, and membrane transport activity underlying the Chironomus riparius larvae adaptive response to anoxia were investigated. Trehalose, malate, and aspartate degradation and alanine accumulation were recorded. During anoxia exposure, there was a boost of antioxidant defenses as shown by an increase of the specific activity of the enzymes catalase, glutathione-S-transferase, glutathione peroxidase, glutathione-synthase, malic enzyme, and NADP-dependent isocitrate dehydrogenase. The ratio, glutathione reduced over glutathione oxidized, decreased. Except for alanine and catalase, the parameters return to their basal value when larvae are transferred to normoxic conditions. To test whether antioxidant defenses had protective effects on membrane functionality, L-leucine uptake into brush border membrane vesicles and membrane lipid peroxidation was measured. No difference between membranes prepared from larvae exposed to anoxia and control larvae was found. The amino acid alanine, when present inside the vesicles, trans-stimulated leucine uptake. This effect could represent a mechanism to stimulate amino acid uptake and catabolism in vivo when free alanine concentration increases during hypoxic periods.  相似文献   

7.
We have previously shown that a single oral dose of potassium dichromate results in a decrease in the activities of several brush border membrane enzymes, produces oxidative stress, and alters the activities of several antioxidant enzymes in the small intestine of rats. In the present study, we have investigated the effect of treatment with the dietary antioxidant caffeic acid on potassium dichromate-induced biochemical changes in the rat intestine. Adult male Wistar rats were randomly divided into four groups: control, potassium dichromate alone, caffeic acid alone, and potassium dichromate + caffeic acid. Administration of a single oral dose of potassium dichromate alone (100 mg/kg body mass) led to a decrease in the activities of brush border membrane enzymes, increase in lipid peroxidation, decrease in sulfhydryl groups, and changes in the activities of several antioxidant enzymes. Two oral doses of caffeic acid (each of 250 mg/kg body mass) greatly attenuated the potassium dichromate-induced changes in all these parameters, but the administration of caffeic acid alone had no effect. Thus, caffeic acid is an effective agent in reducing the effects of potassium dichromate on the intestine and could prove to be useful in alleviating the toxicity of chromium(VI) compounds.  相似文献   

8.
Daphnia magna were exposed to a total concentration of 5.0+/-0.04 microg Ag/l, added as AgNO(3) (dissolved concentration, as defined by 0.45 microm filtration = 2.0+/-0.01 microg Ag/l) in moderately hard synthetic water under static conditions (total organic carbon = 4.80+/-1.32 mg/l) with daily feeding and water renewal, for 21 days. There was no mortality in control daphnids and 20% mortality in silver-exposed animals. Silver exposure caused a small but significant reduction of reproductive performance manifested as a 13.7% decrease in the number of neonates produced per adult per reproduction day over the 21-day exposure. However, silver exposed daphnids also exhibited a much more marked ionoregulatory disturbance, which was characterized by a 65% decrease in whole body Na(+) concentration, and an 81% inhibition of unidirectional whole body Na(+) uptake. Previous work on the acute toxicity of Ag(+) to daphnids has shown that Na(+) uptake inhibition is directly related to inhibition of Na(+),K(+)-ATPase activity. Therefore, we suggest that the Na(+) uptake inhibition seen in response to chronic silver exposure was explained by an inhibition of the Na(+) channels at the apical 'gill' membrane, since a 60% increase in whole body Na(+),K(+)-ATPase activity was observed in the chronically silver-exposed daphnids. Our findings demonstrate that, in broad view, the key mechanism involved in chronic silver toxicity in D. magna, the most acutely sensitive freshwater organism tested up to now, resembles that described for acute toxicity-i.e. ionoregulatory disturbance associated with inhibition of active Na(+) uptake, though the fine details may differ. Our results provide encouragement for future extension of the current acute version of the Biotic Ligand Model (BLM) to one that predicts chronic silver toxicity for environmental regulation and risk assessment. The results strongly suggest that Na(+) uptake inhibition is the best endpoint to determine sensitivity to both acute and chronic toxicity in the scope of future versions of the BLM for silver.  相似文献   

9.
The characteristics of tryptophan uptake in isolated human placental brush-border membrane vesicles were investigated. Tryptophan uptake in these vesicles was predominantly Na+-independent. Uptake of tryptophan as measured with short incubations occurred exclusively by a carrier-mediated process, but significant binding of this amino acid to the membrane vesicles was observed with longer incubations. The carrier-mediated system obeyed Michaelis-Menten kinetics, with an apparent affinity constant of 12.7 +/- 1.0 microM and a maximal velocity of 91 +/- 5 pmol/15 s per mg of protein. The kinetic constants were similar in the presence and absence of a Na+ gradient. Competition experiments showed that tryptophan uptake was effectively inhibited by many neutral amino acids except proline, hydroxyproline and 2-(methylamino)isobutyric acid. The inhibitory amino acids included aromatic amino acids as well as other system-1-specific amino acids (system 1 refers to the classical L system, according to the most recent nomenclature of amino acid transport systems). The transport system showed very low affinity for D-isomers, was not affected by phloretin or glucose but was inhibited by p-azidophenylalanine and N-ethylmaleimide. The uptake rates were only minimally affected by change in pH over the range 4.5-8.0. Tryptophan uptake markedly responded to trans-stimulation, and the amino acids capable of causing trans-stimulation included all amino acids with system-1-specificity. The patterns of inhibition of uptake of tryptophan and leucine by various amino acids were very similar. We conclude that system t, which is specific for aromatic amino acids, is absent from human placenta and that tryptophan transport in this tissue occurs via system 1, which has very broad specificity.  相似文献   

10.
Membrane potentials and conductances, and intracellular ionic activities were studied in isolated perfused collecting tubules of K+-adapted Amphiuma. Intracellular Na+ (aNai) and K+ (aKi) activities were measured, using liquid ion-exchanger double-barreled microelectrodes. Apical and basolateral membrane conductances were estimated by cable analysis. The effects of inhibition of the apical conductance by amiloride (10(-5) M) and of inhibition of the basolateral Na-K pump by either a low K+ (0.1 mM) bath or by ouabain (10(-4) M) were studied. Under control conditions, aNai was 8.4 +/- 1.9 mM and aKi 56 +/- 3 mM. With luminal amiloride, aNai decreased to 2.2 +/- 0.4 mM and aKi increased to 66 +/- 3 mM. Ouabain produced an increase of aNai to 44 +/- 4 mM, and a decrease of aKi to 22 +/- 6, and similar changes were observed when the tubule was exposed to a low K+ bath solution. During pump inhibition, there was a progressive decrease of the K+-selective basolateral membrane conductance and of the Na+ permeability of the apical membrane. A similar inhibition of both membrane conductances was observed after pump inhibition by low K+ solution. Upon reintroduction of K+, a basolateral membrane hyperpolarization of -23 +/- 4 mV was observed, indicating an immediate reactivation of the electrogenic Na-K pump. However, the recovery of the membrane conductances occurred over a slower time course. These data imply that both membrane conductances are regulated according to the intracellular ionic composition, but that the basolateral K+ conductance is not directly linked to the pump activity.  相似文献   

11.
It was the aim of this study to examine the potential regulatory effects of a long-term low dietary protein supply on the transport capacity of the jejunal brush-border membrane for amino acids. For this purpose, we used the neutral amino acids L-alanine (representative for nonessential amino acids) and L-leucine (representative for essential amino acids) as model substances. Ten sheep lambs, 8 weeks of age and 19-27 kg body weight, were allotted to two dietary regimes with either adequate or reduced protein supply which was achieved by 17.9% and 9.7% of crude protein in the concentrated feed, respectively. The feeding periods were 4-6 weeks in length. Similarly, eight goat kids of 5-7 weeks of age and 8-14 kg body weight were allotted to either adequate (crude protein 20.1%, feeding period 9-12 weeks) or reduced protein supply (10.1%, feeding period 17-18 weeks). Dietary protein reduction in lambs caused a significant body weight loss of 0.6 +/- 0.7 kg, whereas the body weight in control animals increased by 1.9 +/- 0.7 kg (P<0.05). Plasma urea concentrations decreased significantly by 60% (low protein 2.3 +/- 0.1 versus control 5.7 +/- 0.2 mmol l(-1), P<0.001). In kids, reduction of dietary protein intake led to significant decreases of the daily weight gain by 48% from 181 +/- 8 g to 94 +/- 3 g (P<0.001) and daily dry matter intake by 27% from 568 +/- 13 g to 417 +/- 6 g (P<0.01). Respective urea concentrations in plasma were reduced by 77% from 5.2 +/- 0.4 to 1.2 +/- 0.2 mmol l(-1) (P<0.01). Kinetic analyses of the initial rates of alanine uptake into isolated jejunal brush-border membrane vesicles from sheep and goats as affected by low dietary protein supply yielded that the apparent Km was neither significantly different between the species nor significantly affected by the feeding regime thus ranging between 0.12 and 0.16 mmol.l(-1). Reduction of dietary protein, however, resulted in significantly decreased Vmax values of the transport system by 25-30%, irrespective of the species. Kinetic analyses of the initial rates of leucine uptake into jejunal brush-border membrane vesicles from sheep and goats yielded that leucine uptake was mediated by Na+-dependent as well as Na+-independent processes. Similar to alanine, apparent Km values of leucine uptake were neither different between the species nor affected due to low dietary protein and ranged between 0.08 and 0.15 mmol l(-1). In contrast to the alanine transport mechanism, dietary protein reduction resulted in increased Vmax values of Na+-dependent leucine transport by 53% in sheep and 230% in goats. Similarly, Na+-independent leucine uptake was stimulated by 85% and 200% in sheep and in goats, respectively. This study shows adaptation of amino acid absorption at the brush-border membrane level of jejunal enterocytes of small ruminants due to dietary protein reduction. Whereas the transport capacity for the nonessential amino acid alanine was reduced due to low dietary protein, the transport capacity for the essential amino acid leucine was markedly stimulated. From this, the involvement of rather different feedback mechanisms in adaptation of intestinal amino acid transport mechanisms has to be discussed.  相似文献   

12.
We have estimated an upper limit for the electrogenic contribution of the Na-K pump to diastolic transmembrane potential. We simultaneously monitored the maximum diastolic potential and the extracellular space potassium activity during exposure to a very high concentration of ouabain. Exposure to ouabain caused a depolarization of approximately 3 mV (n = 33 experiments) over 34 +/- 3 s (mean +/- standard error) prior to any change in extracellular K activity. In four experiments, we monitored intracellular sodium activity and observed it to rise with approximately the same temporal lag (delay = 26 +/- 7 s). We also measured relative membrane conductance in one series of experiments and observed it to decrease to 91 +/- 2% of its control value by the time extracellular space K began to rise. Following the initial increase in extracellular space K activity the subsequent membrane depolarization is shown to be accurately predicted solely from the measured increase in extracellular space K activity as calculated from the Goldman equation. Limitations of the method and possible interpretations of the data are discussed. We interpret this ouabain-induced depolarization that occurs prior to the rise in external K to be an upper limit to the Na-K pump's electrogenic contribution to steady-state membrane potential.  相似文献   

13.
In cultures of hamster fibroblasts (BHK cell line) treated with potassium dichromate (K2Cr2O7) nucleic acid and protein syntheses are differentially inhibited, and nucleoside uptake into the intracellular pool is characterized by a stimulation phase followed by an inhibition phase. Different patterns are observed for the uptake of each ribo- and deoxyribonucleoside, pyrimidine nucleoside (particularly deoxycytidine) uptake reaching the highest stimulation level. Kinetics of thymidine and deoxycytidine initial uptake at different exogenous nucleoside concentrations show that K2Cr2O7 affects both simple and facilitated diffusion of nucleosides. The time course of thymidine and deoxycytidine pool saturation suggests however that the effects of K2Cr2O7 on plasma membrane permeability are partially counterbalanced by modifications of pool size deriving from the concomitant alteration of steps of nucleoside metabolism separate from nucleoside uptake.  相似文献   

14.
This study is the first step in characterizing ion uptake mechanisms of mosquito larvae from the Amazon region of Brazil. Hemolymph NaCl levels and rates of unidirectional Na(+) and Cl(-) uptake were measured in larvae of Aedes aegypti and Culex quinquefasciatus in a series of environmental manipulations that are known to challenge ion regulation in other aquatic animals. Despite being reared for numerous generations in dilute media (20 micromol L(-1) NaCl), both species were able to maintain high hemolymph NaCl concentrations, a departure from previous studies. Exposure to distilled water or high-NaCl media did not affect hemolymph ion levels, but pH 3 caused significant decreases in hemolymph Na(+) and Cl(-) levels in both species. Exposure to water from Rio Negro (pH 5.5), an organically rich but ion-poor body of water, did not disturb hemolymph Na(+) and Cl(-) levels or the uptake of these ions. Acute exposure to control media or Rio Negro water titrated to pH 3.5 caused inhibition of Na(+) uptake and stimulation of Cl(-) uptake in C. quinquefasciatus, but A. aegypti larvae experienced only a significant reduction of Na(+) uptake in Rio Negro/pH 3.5 treatment. The stimulation of Cl(-) uptake at low pH has been documented only in aquatic insects and differs from all other invertebrate and vertebrate species. A similar pattern of Na(+) uptake inhibition and Cl(-) uptake stimulation was observed in A. aegypti larvae exposed to bafilomycin A(1), a blocker of V-type H(+) ATPase. Culex quinquefasciatus larvae were unaffected by this drug. Both Na(+) and Cl(-) uptake were reduced when C. quinquefasciatus larvae were exposed to acetazolamide, indicating that H(+) and HCO(3)(-), derived from hydration of CO(2), are involved with Na(+) and Cl(-) uptake. Kinetic analysis of Na(+) and Cl(-) uptake in C. quinquefasciatus, A. aegypti, and Anopheles nuneztovari larvae indicate that these Amazonian species share similar high-capacity and high-affinity mechanisms. Comparison of the Amazonian C. quinquefasciatus with a Californian population provided evidence of both phenotypic plasticity and population disparity in Na(+) and Cl(-) uptake, respectively. When the California population of C. quinquefasciatus was reared in a medium similar to that of the Amazonian group (60 micromol L(-1) NaCl) instead of 4,000 micromol L(-1) NaCl, larvae increased both Na(+) uptake capacity (J(max)) and affinity (i.e., reduced K(m)), yet Cl(-) uptake did not change from its nonsaturating, low-capacity pattern. In the reverse experiment, Amazonian C. quinquefasciatus demonstrated plasticity in both Na(+) and Cl(-) uptake by significantly reducing rates when held in 4,000 micromol L(-1) NaCl for 3 d.  相似文献   

15.
Taurine (2-aminoethanesulfonic acid) is a unique sulfur amino acid derivative that has putative nutritional, osmoregulatory, and neuroregulatory roles and is highly concentrated within a variety of cells. The permeability of Percoll density gradient purified rat liver lysosomes to taurine was examined. Intralysosomal amino acid analysis showed trace levels of taurine compared to most other amino acids. Taurine uptake was Na(+)-independent, with an overshoot between 5-10 minutes. Trichloroacetic acid extraction studies and detergent lysis confirmed that free taurine accumulated in the lysosomal space. Kinetic studies revealed heterogeneous uptake with values for Km1 = 31 +/- 1.82 and Km2 greater than 198 +/- 10.2 mM. The uptake had a pH optimal of 6.5 and was stimulated by the potassium specific ionophore valinomycin. The exodus rate was fairly rapid, with a t1/2 of 5 minutes at 37 degrees C. Analog inhibition studies indicated substrate specificity similar to the plasma membrane beta-alanine carrier system, with inhibition by beta-alanine, hypotaurine, and taurine. alpha-Alanine, 2-methylaminoisobutyric acid (MeAIB), and threonine were poor inhibitors. No effects were observed with sucrose and the photoaffinity derivative of taurine NAP-taurine [N-(4-azido-2-nitrophenyl)-2-aminoethanesulfonate]. In summary, rat liver lysosomes possess a high Km system for taurine transport that is sensitive to changes in K+ gradient and perhaps valinomycin induced diffusional membrane potential. These features may enable lysosomes to adapt to changing intracellular concentrations of this osmotic regulatory substance.  相似文献   

16.
Transport of the antifolate cancer drug methotrexate was studied in vesicles isolated from the basolateral membrane of rat liver. Transport of methotrexate by basolateral membrane vesicles (BLMVs) was mostly via uptake into an osmotically active intravesicular space, with some binding (approximately 9%), as shown by initial uptake studies and by varying medium osmolarity with increasing concentrations of sucrose. Methotrexate transport was linear for the first 20 s of incubation. Transport was not affected by imposition of a Na+ gradient across the vesicular membrane. Transport of methotrexate displayed a broad pH optimum: at an intravesicular pH of 7.5, the initial rate of uptake was not significantly different at extravesicular pH values ranging from 5.5 to 7.5, but uptake was less at extravesicular pH of 5.0 or 8.0. Methotrexate transport was saturable: Km = 0.15 +/- 0.05 microM and Vmax = 11.4 +/- 1.1 pmol 10 s-1 mg-1 protein. Methotrexate uptake into BLMVs was not inhibited by 5-methyltetrahydrofolate nor by 5-formyltetrahydrofolate but was weakly inhibited by folic acid in a concentration-dependent manner. Uptake was also inhibited by anion-exchange inhibitor 4,4'-diisothio-cyanostilbene-2,2'-disulfonic acid (DIDS), and by the structurally unrelated anions ATP, ADP, Cl-, SO4(2-), and oxalate2-. Adenosine (no negative charge) had no effect on transport. When vesicles were preloaded with anions (ADP, SO4(2-), oxalate2-) such that an anion gradient existed from the intra- to the extravesicular compartment, and methotrexate uptake was measured, no stimulation of uptake was seen. Methotrexate uptake into rat liver BLMVs was electrogenic as shown by stimulation of the initial rate of uptake by a valinomycin-imposed K+ diffusion potential across the vesicular membrane. These results suggest that methotrexate is transported into the hepatocyte across the basolateral membrane by an electrogenic, multispecific anion carrier system.  相似文献   

17.
Brush-border membrane vesicles prepared from rabbit kidney cortex were incubated at 37 degrees C for 30 min with phosphatidylinositol-specific phospholipase C. This maneuver resulted in a release of approx. 85% of the brush-border membrane-linked enzyme alkaline phosphatase as determined by its enzymatic activity. Transport of inorganic [32P]phosphate (100 microM) by the PI-specific phospholipase C-treated brush-border membrane vesicles was measured at 20-22 degrees C in the presence of an inwardly directed 100 mM Na+ gradient. Neither initial uptake rates, as estimated from 10-s uptake values (103.5 +/- 6.8%, n = 7 experiments), nor equilibrium uptake values, measured after 2 h (102 +/- 3.4%) were different from controls (100%). Control and PI-specific phospholipase C-treated brush-border membrane vesicles were extracted with chloroform/methanol to obtain a proteolipid fraction which has been shown to bind Pi with high affinity and specificity (Kessler, R.J., Vaughn, D.A. and Fanestil, D.D. (1982) J. Biol. Chem. 257, 14311-14317). Phosphate binding (at 10 microM Pi) by the extracted proteolipid was measured. No significant difference in binding was observed between the two types of preparations: 31.0 +/- 9.37 in controls and 29.8 +/- 8.3 nmol/mg protein in the proteolipid extracted from PI-specific phospholipase C-treated brush-border membrane vesicles. It appears therefore that alkaline phosphatase activity is essential neither for Pi transport by brush-border membrane vesicles nor for Pi binding by proteolipid extracted from brush-border membrane. These results dissociate alkaline phosphatase activity, but not brush-border membrane vesicle transport of phosphate, from phosphate binding by proteolipid.  相似文献   

18.
Effects of non lethal concentrations of hexavalent chromium on intestinal enzymology of Salmo gairdneri and Dicentrarchus labrax (Pisces). The effects of an exposure to potassium dichromate on intestinal enzyme activities (Alkaline phosphatase, maltase, leucine amino peptidase and ATPases) have been studied on a fresh water fish (Salmo gairdneri) and a salt water fish (Dicentrarchus labrax). Fish were exposed at seasonal temperatures (13 or 21 degrees C) to toxic concentrations equal to 1/10 of the 24 h-LC 50 (i.e. 18 mg/l Cr for trout and 5 mg/l Cr for bass) during respectively 13 and 21 days. Intoxicated trout stopped feeding and showed a decrease in their intestinal weight at the end of the experiments. A decrease of brush border membrane activities (Alkaline phosphatase, maltase and leucine amino peptidase) were also observed. These alterations have been interpreted as the consequence of the chromium induces fasting. Intoxicated bass showed no alterations of their feeding habits. Two specific effects of chromium on enzyme activities have been found: a severe decrease of the alkaline phosphatase activity and an increase of the Na/K ATPase activity. These enzyme activities could be useful indicators of chromium intoxication in marine fish.  相似文献   

19.
Response of isolated sperm plasma membranes from sea urchin to egg jelly   总被引:1,自引:0,他引:1  
The acrosome reaction in sea urchin sperm is induced by a glycoprotein jelly surrounding the egg and is accompanied by changes in ion permeability of sperm plasma membrane. In an attempt to learn what membrane components are involved in the response to jelly, we have begun to reassemble sperm membrane components into artificial membranes and assay for permeability changes mimicking those that occur in sperm. Jelly in sea water at concentrations that induce the acrosome reaction did not significantly change 45Ca2+ uptake of sonicated unilamellar vesicles made with soybean lipid only (ratio jelly:control uptake = 1.08 +/- 0.36 SD, n = 21). Experiments with pure lipid planar bilayers made with soybean lipid or a lipid extract from sperm and held at various voltages, also did not reveal substantial permeability changes at comparable jelly concentrations. Thus, jelly by itself does not change the conductance of a pure lipid bilayer. In contrast, significant (P----0.0005, t test for two sample means) 45Ca2+ uptake was observed with vesicles made by cosonicating soybean phospholipids and Strongylocentrotus purpuratus sperm membranes isolated by the method of Cross, N. L. [1983, J. Cell Sci. 59, 13-25] (ratio jelly: control uptake = 1.51 +/- 0.75, n = 20, 16 positive out of 20 experiments). The calcium uptake response of the mixed vesicles was also species-specific: it did not occur with jelly from Arbacia punctulata (ratio Arbacia jelly: control = 1.18 +/- 0.51; ratio Strongylocentrotus jelly: control = 1.71 +/- 0.97, n = 10; P----0.025, paired t statistic). Vesicles made with soybean lipid and an octyl glucoside extract of sperm membranes also responded to jelly with increased 45Ca2+ uptake. Our results indicate that we have the starting conditions to isolate and characterize the sperm membrane components that participate in the egg jelly induced permeability changes.  相似文献   

20.
We describe the existence of a potassium ion transport mechanism in the mitochondrial inner membrane of a lower eukaryotic organism, Acanthamoeba castellanii. We found that substances known to modulate potassium channel activity influenced the bioenergetics of A. castellanii mitochondria. In isolated mitochondria, the rate of resting respiration is increased by about 10% in response to potassium channel openers, i.e. diazoxide and BMS-191095, during succinate-, malate-, or NADH-sustained respiration. This effect is strictly dependent on the presence of potassium ions in an incubation medium and is reversed by glibenclamide (a potassium channel blocker). Diazoxide and BMS-191095 also caused a slight but statistically significant depolarization of mitochondrial membrane potential (measured with a TPP(+)-specific electrode), regardless of the respiratory substrate used. The resulting steady state value of membrane potential was restored after treatment with glibenclamide or 1 mM ATP. Additionally, the electrophysiological properties of potassium channels present in the A. castellanii inner mitochondrial membrane are described in the reconstituted system, using black lipid membranes. Conductance from 90 +/- 7 to 166 +/- 10 picosiemens, inhibition by 1 mM ATP/Mg(2+) or glibenclamide, and activation by diazoxide were observed. These results suggest that an ATP-sensitive potassium channel similar to that of mammalian mitochondria is present in A. castellanii mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号