共查询到20条相似文献,搜索用时 46 毫秒
1.
茎顶端分生组织在植物发育过程中的保持、转变和逆转 总被引:1,自引:0,他引:1
顶端分生组织(shoot apical meristems,SAM)为产生新的器官和组织而不断提供新的细胞,它的活性依赖于平衡分生组织细胞的增殖和器官发生之间关系的调控基因.来自不具备光合能力的顶端分生组织的细胞可形成具有光合能力的营养器官.在从营养生长到生殖发育的转变过程中,茎顶端分生组织,转变为花序分生组织,最终形成花分生组织.在进入开花决定状态以前,SAM的状态很大程度上受到环境信号和转录调控因子的影响.以模式植物拟南芥为主,对在顶端分生组织的保持和转变中复杂同时又有差异的基因调控网络进行讨论.在花和花序分生组织逆转过程中,SAM中的细胞也受到相关基因的调控,且表达方式存在明显的时空差异.因此,具有决定性的和未决定性双重特性的分生组织之间的转变和相互协调,对于器官发生和形态建成起到至关重要的作用. 相似文献
2.
3.
In higher plants, the process of embryogenesis establishes the plant body plan (body axes). On the basis of positional information
specified by the body axes, the shoot apical meristem (SAM) and root apical meristem (RAM) differentiate at fixed positions
early in embryogenesis. After germination, SAM and RAM are responsible for the development of the above-ground and below-ground
parts, respectively, of the plant. Because of the importance of SAM function in plant development, the mechanisms of SAM formation
during embryogenesis and of SAM maintenance and function in post-embryonic development are priority questions in plant developmental
biology. Recent advances in molecular and genetic analysis of morphogenetic mutations in Arabidopsis have revealed several components required for SAM formation, maintenance and function. Although these processes are fundamental
to the life cycle of every plant, conservation of the components does not explain the diversity of plant morphologies. Rice
is used as a model plant of the grass family and of monocots because of the progress in research infrastructure, especially
the collection of unique mutations and genome information. In comparison with the dicot Arabidopsis, rice has many unique organs or processes of development. This review summarizes what is known of the processes of SAM formation,
maintenance and function in rice. 相似文献
4.
Plant cytochrome P450s interact with a flavoprotein, NADPH-cytochrome P450 reductase (CPR), to transfer electrons from NADPH.
The gene for rice P450 reductase (RCPR) was cloned and expressed in Saccaromyces cerevisiae, where the specific activity of the expressed RPCR was 0.91 U/mg protein. When isoflavone synthase gene (IFS) from red clover, used as a model system of plant cytochrome P450, was co-expressed with RCPR in yeast, the production of
genistein from naringein increased about 4.3-fold, indicating that the RCPR efficiently interacts with cytochrome P450 to
transfer electrons from NADPH. 相似文献
5.
《Bioscience, biotechnology, and biochemistry》2013,77(12):2796-2799
CYP199A2, a bacterial P450 monooxygenase from Rhodopseudomonas palustris, was found to exhibit oxidation activity towards three hydroxynaphthoic acids. Whole cells of the recombinant Escherichia coli strain expressing CYP199A2 efficiently catalyzed the regioselective oxidation of 1-, 3-, and 6-hydroxy-2-naphthoic acids to produce 1,7-, 3,7-, and 6,7-dihydroxynaphthoic acid respectively. These results suggest that CYP199A2 might be a useful oxidation biocatalyst for the synthesis of dihydroxynaphthoic acids. 相似文献
6.
Cytochrome P450 3A9 catalyzes the metabolism of progesterone and other steroid hormones 总被引:3,自引:0,他引:3
The catalytic requirements and the role of P450 3A9, a female-specific isoform of CYP3A from rat brain, in the metabolism of several steroid hormones were studied using recombinant P450 3A9 protein. The optimal steroid hormone hydroxylase activities of P450 3A9 required cholate but not cytochrome b5. P450 3A9 was active in the hydroxylation reactions of testosterone, androstenedione, progesterone and dehydroepiandrosterone (DHEA). No activity of P450 3A9 toward cortisol was detectable under our reconstitution conditions. Among all the steroid hormones examined, female-specific P450 3A9 seemed to catalyze most efficiently the metabolism of progesterone, one of the major female hormones, to form three mono-hydroxylated products, 6-, 16-, and 21-hydroxyprogesterone. Our data also showed that P450 3A9 can catalyze the formation of a dihydroxy product, 4-pregnen-6, 21-diol-3, 20-dione, from progesterone with a turnover number, 1.3 nmol/min/nmol P450. Based on the Vmax/Km values for P450 3A9 using either 21-hydroxprogesterone or 6-hydroxyprogesterone as a substrate, 4-pregnen-6, 21-diol-3, 20-dione may be formed either by 6-hydroxylation of 21-hydroxprogesterone or 21-hydroxylation of 6-hydroxyprogesterone. As a major isoform of CYP3A expressed in rat brain, the activities of P450 3A9 toward two major neurosteroids, progesterone and DHEA suggested a possible role for P450 3A9 in the metabolism of neurosteroids. 相似文献
7.
细胞色素P450 2B4的结构及其催化反应 总被引:1,自引:0,他引:1
细胞色素P450是广泛存在于动物、植物和微生物中的含亚铁血红素单加氧酶,参与致癌作用和药物代谢、类固醇激素合成、脂溶性维生素代谢、多不饱和脂肪酸转换为生物活性分子等生理过程。P450能够催化完成伯、仲碳氢键羟基化、烯烃和芳烃环氧化、碳碳键耦合和断裂、α羟基化(去烷基化和杂原子氧化)、还原、1,2-迁移(卤素、氢和苯)等有机反应。本文综述了P450 2B4的结构与功能,讨论了细胞色素P450 2B4的活性中心和底物识别位点、与底物反应和产物释放的机理,以及P450在有机合成中的应用。 相似文献
8.
Takeshita H Tsubota E Takatsuka H Kunito T Fujihara J 《Cell biochemistry and function》2008,26(7):813-816
Human cytochrome P450 2J2 (CYP2J2) is abundant in cardiovascular tissue and active in the metabolism of arachidonic acid to eicosanoids that have potent vasodilatory properties. Variability of the CYP2J2 gene is highly constrained except for its proximal promoter: there is a relatively common and functionally relevant single nucleotide polymorphism, indicated by -50G > T polymorphism (CYP2J2*7). Although genetic variation is known among ethnic groups, data for allele frequency are limited to a few Caucasian, Asian, and one African populations. In the present study, genotype distribution of CYP2J2*7 polymorphisms was investigated using polymerase chain reaction and restriction fragment length polymorphism assay in Japanese (n = 338), Mongolian (n = 118), and Ovambo (n = 186) populations and the findings compared with other populations. The mutant (CYP2J2*7) frequencies in the Japanese, Mongolians, and Ovambos were 0.0621, 0.0339, and 0.0672, respectively. Except for the Taiwanese, a general uniformity in the polymorphism in the Asian populations was observed. The mutation frequency of Ovambos was relatively lower than that of the African-American population. This study is the first to investigate the distribution of the CYP2J2*7 gene polymorphisms in Japanese, Mongolians, and Ovambos. These data will be informative and facilitate genetic association studies, in Asian and African populations for CYP2J2-related diseases such as cardiovascular disorders. 相似文献
9.
M. Teresa Donato José V. Castell M. José Gómez-Lechón 《In vitro cellular & developmental biology. Animal》1994,30(12):825-832
Summary The stability and inducibility of several P450 activities (namely, P450 1A1, 2A1, 2B1/2, 2C11, and 3A1) were studied in rat
hepatocytes co-cultured with the MS epithelial cell line derived from monkey kidney. The results revealed that these monooxygenase
activities were systematically higher in co-cultures than in conventional hepatocyte cultures. Pure cultures showed a rapid
loss of monooxygenase activities, which were undetectable after 5 days. In contrast, all isozymes assayed were measurable
in co-cultured hepatocytes on Day 7 (about 15 to 40% of the initial activities of Day 0 of culture). The beneficial effects
of the co-culture system seemed to be more selective for certain cytochrome P450 isoforms, with P450 1A1 and 3A1 being the
best stabilized isozymes after 1 wk. A clear response to inducers was observed in co-cultures, each isozyme showing a different
induction pattern. 3-Methylcholanthrene produced a strong increase in P450 1A1 (7-ethoxyresorufin O-deethylase) activity and
a low increase in P450 2A1 (testosterone 7α-hydroxylation), whereas no changes were observed in the other activities. Phenobarbital treatment resulted in increases in
P450 2B1/2 (7-pentoxyresorufin O-depentylase and 16α- and 16β-hydroxylation of testosterone) activities, while minor effects were observed on P450 3A1 (testosterone 6β-hydroxylation) activity. Dexamethasone markedly increased P450 3A1 (testosterone 6β- and 15β-hydroxylation) activity and, to a lesser extent, P450 2B1/2 (16β-hydroxylation). 相似文献
10.
为探讨P450介导的绿盲蝽Apolygus lucorum(Meyer-Dür)抗药性机制,合理使用杀虫药剂,本研究通过活体和离体抑制实验发现,增效醚(PBO)对绿盲蝽P450酶活性有显著的抑制作用:在处理时长为24h时,P450酶活性由未处理时的12.02pmol/min/mgPro.下降至1.63pmol/min/mgPro.,PBO对P450酶的抑制中浓度为0.256mmol/L。生物测定结果表明,PBO对三氟氯氰菊酯具有显著增效作用,增效7.2倍,而对吡虫啉、灭多威、马拉硫磷无显著增效作用。利用RT-PCR及RACE技术对绿盲蝽P450基因进行克隆,获得了2条CYP4家族基因,全长均为1631bp,含有完整的开放阅读框,编码501个氨基酸;序列比对表明这是一对等位基因,含有CYP4家族所有保守特征序列;同源性比较及系统发育分析显示这2个基因编码的氨基酸序列与褐飞虱Nilaparvata lugens CYP4CE1亲缘关系最近,同源性分别为41.5%和41.1%。 相似文献
11.
Meng Zhang Rui Huang Sang-Choul Im Lucy Waskell Ayyalusamy Ramamoorthy 《The Journal of biological chemistry》2015,290(20):12705-12718
Mammalian cytochrome P450 (P450) is a membrane-bound monooxygenase whose catalytic activities require two electrons to be sequentially delivered from its redox partners: cytochrome b5 (cytb5) and cytochrome P450 reductase, both of which are membrane proteins. Although P450 functional activities are known to be affected by lipids, experimental evidence to reveal the effect of membrane on P450-cytb5 interactions is still lacking. Here, we present evidence for the influence of phospholipid bilayers on complex formation between rabbit P450 2B4 (CYP2B4) and rabbit cytb5 at the atomic level, utilizing NMR techniques. General line broadening and modest chemical shift perturbations of cytb5 resonances characterize CYP2B4-cytb5 interactions on the intermediate time scale. More significant intensity attenuation and a more specific protein-protein binding interface are observed in bicelles as compared with lipid-free solution, highlighting the importance of the lipid bilayer in stabilizing stronger and more specific interactions between CYP2B4 and cytb5, which may lead to a more efficient electron transfer. Similar results observed for the interactions between CYP2B4 lacking the transmembrane domain (tr-CYP2B4) and cytb5 imply interactions between tr-CYP2B4 and the membrane surface, which might assist in CYP2B4-cytb5 complex formation by orienting tr-CYP2B4 for efficient contact with cytb5. Furthermore, the observation of weak and nonspecific interactions between CYP2B4 and cytb5 in micelles suggests that lipid bilayer structures and low curvature membrane surface are preferable for CYP2B4-cytb5 complex formation. Results presented in this study provide structural insights into the mechanism behind the important role that the lipid bilayer plays in the interactions between P450s and their redox partners. 相似文献
12.
17α-羟基黄体酮(17α-OH-PROG)是甾体激素类药物的关键中间体,其生物合成主要由细胞色素单加氧酶(CYP17)催化生成。在此过程中,细胞色素 P450还原酶(cytochrome P450 reductase,CPR)作为细胞色素P450 酶电子传递链的重要组成部分,直接影响CYP17的催化效率。为研究不同来源CPR与17α-羟化酶的适配性,首先以人源17α-羟化酶作为研究对象,构建了表达质粒pPIC3.5k-hCYP17,获得了重组毕赤酵母菌株。其次筛选获得3种不同来源CPR,构建了表达质粒 pPICZX-CPR,获得17α-羟化酶与CPR共表达菌株,并在毕赤酵母中进行转化实验,对转化产物进行薄层色谱(TLC)和高效液相色谱(HPLC)分析。结果显示,重组菌株具有17α-羟化酶活性,能够催化黄体酮生成目标产物17α-OH-PROG 以及副产物16α-羟基黄体酮(16α-OH-PROG)。不同来源的CPR与17α-羟化酶共表达与仅表达17α-羟化酶的产率相比均有所提高,其中hCPR-CYP17共表达菌株表现出最高的转化水平,17α-OH-PROG产率提高42%。上述结果表明:17α-羟化酶基因与CPR共表达能够提高其黄体酮17α-羟基化水平。为甾体黄体酮17α-羟基化的生物催化研究提供思路,对甾体药物的工业生产具有重要意义。 相似文献
13.
《Bioscience, biotechnology, and biochemistry》2013,77(8):1696-1701
Cytochrome P450 (P450 or CYP) monooxygenases play an important role in the oxidation of a number of lipophilic substrates including secondary metabolites in higher plants. Larkin reported that CYP78A1 was preferentially expressed in developing inflorescences of Zea mays (Larkin, Plant Mol. Biol. 25: 343-353, 1994). However, the enzymatic function of CYP78A1 hasn’t been clarified yet. To characterized the enzymatic activity of CYP78A1, in this study, CYP78A1 cDNA and tobacco or yeast NADPH-cytochrome P450 oxidoreductase (P450 reductase) was expressed in the yeast Saccharomyces cerevisiae AH22 cells under the control of alcohol dehydrogenase promoter I and terminator. The reduced CO-difference spectrum of a microsomal fraction prepared from the transformed yeast cells expressing CYP78A1 and yeast P450 reductase showed a peak at 449 nm. Based on the spectrum, the content of a P450 molecule was estimated to be 45 pmol P450 equivalent/mg of protein in the microsomal fraction. The recombinant yeast microsomes containing CYP78A1 and yeast P450 reductase were found to catalyze 12-monooxygenation of lauric acid. Based on these results, CYP78A1 preferentially expressed in developing inflorescences of Zea mays appeared to have participated in the monooxygenation of fatty acids. 相似文献
14.
15.
目的:采用cocktail探针药物法研究傣药"雅解沙把"对肝细胞色素P450亚型CYP1A2、CYP2C19、CYP2E1、CYP3A4的影响。方法:将SD大鼠随机分为空白对照组、苯巴比妥钠组(10.8 mg/kg)、"雅解沙把"低剂量组(0.27 g生药/kg)和"雅解沙把"高剂量组(2.43 g生药/kg),按上述剂量灌胃给药,空白对照组灌胃蒸馏水。连续灌胃7天后处死动物,取肝脏制备肝微粒体,以甲硝唑为内标,建立HPLC方法检测Cocktail探针药物奥美拉唑、氯唑沙宗、咖啡因、氨苯砜的代谢情况。结果:与空白对照组比较,"雅解沙把"低剂量组和高剂量组氯唑沙宗的代谢明显升高,氯唑沙宗的含量显著降低(P0.01),"雅解沙把"高剂量组奥美拉唑和氨苯砜的代谢明显升高,奥美拉唑和氨苯砜的含量明显降低(P0.05)。"雅解沙把"低剂量组和高剂量组虽咖啡因代谢较与空白对照组有上升的趋势,但差异无统计学意义(P0.05)。结论:傣药"雅解沙把"能促进肝药酶CYP3A4、CYP2C19、CYP2E1的活性,加速药物代谢,这可能是其解药物毒的作用机制之一。 相似文献
16.
催化吲哚生成靛蓝的细胞色素P450BM-3 定向进化研究 总被引:6,自引:0,他引:6
以催化吲哚产生的靛蓝在 630 nm 处具有特殊的吸收峰为高通量筛选指标,将来源于 Bacillus megaterium 的细胞色素 P450BM-3 单加氧酶的基因序列用易错聚合酶链式反应进行定向进化,通过多轮突变,在原有的能产靛蓝的高活力突变酶的基础上成功获得了三个高于亲本酶的突变酶,突变酶的酶活分别是亲本酶的 6.6 倍 (hml001) , 9.6 倍 (hml002) 和 5.3 倍 (hml003) ,并对突变酶的动力学参数进行了分析 . 突变酶 DNA 测序的结果表明, hml001 含有一个有义氨基酸置换 I39V , hml002 含有三个有义氨基酸置换 D168N , A225V , K440N , hml003 含有一个有义氨基酸置换 E435D ,这些突变位点有些远离底物结合部位,有些位于底物结合部位 . 相似文献
17.
细胞色素P450蛋白CYP78A5/KLUH主要以非细胞自主性的方式调控了拟南芥器官大小的发育。我们对一个新的cyp78a5(sALK_024697)突变体的研究表明,CYP78A5基因还参与控制了拟南芥叶发育的时期转换。cyp78a5突变体中幼年态叶(juvenile leaf)向转换期叶(transition leaf)的发育时期推迟,而且没有成年态叶(adult leaf)形成。遗传分析表明CYP78A5基因可能与SUPPRESSOR OF GENE SILENCING3(SGS3)基因作用在同一个遗传调控途径控制叶片发育时期的转换。 相似文献
18.
杂交粳稻及其亲本千粒重与产量、品质的相关性 总被引:1,自引:0,他引:1
为了探明杂交粳稻及其亲本千粒重与产量、品质的关系,以4个千粒重介于23.1~28.0 g之间的BT型不育系和24个千粒重介于18.1~32.0 g之间的三系粳稻恢复系,采用p×q不完全双列杂交(NCⅡ)设计,配制96个杂交组合为试验材料,对F1千粒重优势表现、F1千粒重与亲本千粒重及其与产量、品质性状间的相关性进行分析,确定高产优质兼顾的杂交粳稻的千粒重范围。结果表明:(1)56.3%的杂交组合千粒重超过其双亲平均值,19.8%的杂交组合千粒重表现正向超亲优势;(2)F1千粒重与母本千粒重、父本千粒重、双亲千粒重平均值的相关性均达极显著水平(r=0.33**、0.71**、0.78**),且恢复系千粒重对杂种的影响大于不育系;(3)F1千粒重、父本千粒重及双亲千粒重平均值与组合单株产量的相关性均达极显著水平(r=0.55**、0.47**、0.51**),母本千粒重与组合单株产量相关不显著;(4)F1千粒重、父本千粒重与糙米率、精米率、整精米率、垩白粒率、粒长、粒宽均呈极显著正相关,与透明度呈显著正相关,母本千粒重与垩白粒率、垩白度、粒长均呈极显著正相关,与粒宽呈显著正相关;(5)杂交粳稻育种中具有高产优质兼顾的F1千粒重范围应在25.1~27.0 g之间。 相似文献
19.
Bingbing Ma Qianwen Wang Bing-Nan Han Haruo Ikeda Chunfang Zhang Lian-Hua Xu 《化学与生物多样性》2021,18(4):e2000910
Cytochrome P450 enzymes (P450s) are versatile biocatalysts, which insert a molecular oxygen into inactivated C−H bonds under mild conditions. CYP105D7 from Streptomyces avermitilis has been reported as a bacterial substrate-promiscuous P450 which catalyzes the hydroxylation of 1-deoxypentalenic acid, diclofenac, naringenin, compactin and steroids. In this study, CYP105D7 catalyzes hydroxylation, epoxidation and dehydrogenation of capsaicin, a pharmaceutical agent, revealing its functional diversity. The kinetic parameters of the CYP105D7 oxidation of capsaicin were determined as Km=311.60±87.30 μM and kcat=2.01±0.33 min−1. In addition, we conducted molecular docking, mutagenesis and substrate binding analysis, indicating that Arg81 plays crucial role in the capsaicin binding and catalysis. To our best knowledge, this study presents the first report to illustrate that capsaicin can be catalyzed by prokaryotic P450s. 相似文献