首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antiviral protein kinase R (PKR) is an important host restriction factor, which poxviruses must overcome to productively infect host cells. To inhibit PKR, many poxviruses encode a pseudosubstrate mimic of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2), designated K3 in vaccinia virus. Although the interaction between PKR and eIF2α is highly conserved, some K3 orthologs from host-restricted poxviruses were previously shown to inhibit PKR in a species-specific manner. To better define this host range function, we compared the sensitivity of PKR from 17 mammals to inhibition by K3 orthologs from closely related orthopoxviruses, a genus with a generally broader host range. The K3 orthologs showed species-specific inhibition of PKR and exhibited three distinct inhibition profiles. In some cases, PKR from closely related species showed dramatic differences in their sensitivity to K3 orthologs. Vaccinia virus expressing the camelpox virus K3 ortholog replicated more than three orders of magnitude better in human and sheep cells than a virus expressing vaccinia virus K3, but both viruses replicated comparably well in cow cells. Strikingly, in site-directed mutagenesis experiments between the variola virus and camelpox virus K3 orthologs, we found that different amino acid combinations were necessary to mediate improved or diminished inhibition of PKR derived from different host species. Because there is likely a limited number of possible variations in PKR that affect K3-interactions but still maintain PKR/eIF2α interactions, it is possible that by chance PKR from some potential new hosts may be susceptible to K3-mediated inhibition from a virus it has never previously encountered. We conclude that neither the sensitivity of host proteins to virus inhibition nor the effectiveness of viral immune antagonists can be inferred from their phylogenetic relatedness but must be experimentally determined.  相似文献   

2.
Aberrant activation and mutation status of proteins in the phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and the mitogen activated protein kinase (MAPK) signaling pathways have been linked to tumorigenesis in various tumors including urothelial carcinoma (UC). However, anti-tumor therapy with small molecule inhibitors against mTOR turned out to be less successful than expected. We characterized the molecular mechanism of this pathway in urothelial carcinoma by interfering with different molecular components using small chemical inhibitors and siRNA technology and analyzed effects on the molecular activation status, cell growth, proliferation and apoptosis. In a majority of tested cell lines constitutive activation of the PI3K was observed. Manipulation of mTOR or Akt expression or activity only regulated phosphorylation of S6K1 but not 4E-BP1. Instead, we provide evidence for an alternative mTOR independent but PI3K dependent regulation of 4E-BP1. Only the simultaneous inhibition of both S6K1 and 4E-BP1 suppressed cell growth efficiently. Crosstalk between PI3K and the MAPK signaling pathway is mediated via PI3K and indirect by S6K1 activity. Inhibition of MEK1/2 results in activation of Akt but not mTOR/S6K1 or 4E-BP1. Our data suggest that 4E-BP1 is a potential new target molecule and stratification marker for anti cancer therapy in UC and support the consideration of a multi-targeting approach against PI3K, mTORC1/2 and MAPK.  相似文献   

3.
4.
5.
Integrin family of adhesion receptors play an important role in organizing the actin cytoskeleton and in signal transduction from the extracellular matrix. The previous studies have shown that exposure of fibroblast cells to extracellular matrix proteins activates ribosomal S6 kinase 1 (S6K1) pathway in a ligand dependent manner. Recently, a new, highly homologous ribosomal S6 kinase, termed S6K2, was identified. It has 70% amino acid identity in the overall sequence with S6K1, and the potential phosphorylation sites of S6K1 are conserved in S6K2. However, the N- and C-terminal domains of S6K2 are quite different from those of S6K1. In this study we have examined dynamics of fibronectin-induced activation of these two kinases, transiently expressed in human HEK 293 cells. Differences between profiles of activation of S6K1 and S6K2 were observed in the early period of fibronectin stimulation. Fibronectin-induced changes in S6K2 activity were closely correlated with phosphorylation at Ser423, which is homologues to Ser 434 of S6K1. Although we didn't observe considerable changes in phosphorylation of S6K1 at Ser434, suggesting potential differences in the regulation of these homologous kinases upon fibronectin stimulation.  相似文献   

6.
The cell-to-cell spread of Tobacco mosaic virus infection depends on virus-encoded movement protein (MP), which is believed to form a ribonucleoprotein complex with viral RNA (vRNA) and to participate in the intercellular spread of infectious particles through plasmodesmata. Previous studies in our laboratory have provided evidence that the vRNA movement process is correlated with the ability of the MP to interact with microtubules, although the exact role of this interaction during infection is not known. Here, we have used a variety of in vivo and in vitro assays to determine that the MP functions as a genuine microtubule-associated protein that binds microtubules directly and modulates microtubule stability. We demonstrate that, unlike MP in whole-cell extract, microtubule-associated MP is not ubiquitinated, which strongly argues against the hypothesis that microtubules target the MP for degradation. In addition, we found that MP interferes with kinesin motor activity in vitro, suggesting that microtubule-associated MP may interfere with kinesin-driven transport processes during infection.  相似文献   

7.
To investigate the functional domains of the coat protein (CP; 189 amino acids) of Brome mosaic virus, a plant RNA virus, 19 alanine-scanning mutants were constructed and tested for their infectivity in barley and Nicotiana benthamiana. Despite its apparent normal replicative competence and CP production, the C-terminal mutant F184A produced no virions. Furthermore, virion-forming C-terminal mutants P178A and D182A failed to move from cell to cell in both plant species, and mutants D181A and V187A showed host-specific movement. These results indicate that the C-terminal region of CP plays some important roles in virus movement and encapsidation. The specificity of certain mutations for viral movement in two different plant species is evidence for the involvement of host-specific factors.  相似文献   

8.
Infection with the isolate PVA-M of potato virus A (PVA; genus Potyvirus) is restricted to the inoculated leaves of Nicandra physaloides (Solanaceae), whereas the isolate PVA-B11 infects plants systemically by 10 days post inoculation. Resistance to systemic infection was shown to develop during plant growth. A recombinant virus (B11-M) in which a 1,208-nucleotide sequence of the full-length cDNA clone of PVA-B11 was replaced with the corresponding sequence from PVA-M displayed a phenotype similar to that of PVA-M. The replaced sequence contained four amino acid differences between the two isolates: one in the 6K2 protein and three in the viral genome-linked protein (VPg). Site-directed mutagenesis of the cDNA clones and inoculation of the mutants to N. physaloides indicated that the amino acid substitutions of Met5Val in the 6K2 protein or Leu185Ser in the VPg permitted vascular movement and systemic infection. However, resistance was only partially overcome by these changes, since systemic infection proceeded at a slower rate than with PVA-B11. The amino acid substitution Val116Met in the VPg alone was sufficient to overcome resistance and recover the phenotype of the isolate PVA-B11. These data indicated that both the 6K2 protein and the VPg were avirulence determinants of PVa-M in N. physaloides and suggested a possibly coordinated function of them in the vascular movement of PVA.  相似文献   

9.
Systemic spread of viruses in plants involves local movement from cell to cell and long-distance transport through the vascular system. The cell-to-cell movement of the Beet yellows virus (BYV) is mediated by a movement protein that is an Hsp70 homolog (Hsp70h). This protein is required for the assembly of movement-competent virions that incorporate Hsp70h. By using the yeast two-hybrid system, in vitro coimmunoprecipitation, and in planta coexpression approaches, we show here that the Hsp70h interacts with a 20-kDa BYV protein (p20). We further demonstrate that p20 is associated with the virions presumably via binding to Hsp70h. Genetic and immunochemical analyses indicate that p20 is dispensable for assembly and cell-to-cell movement of BYV but is required for the long-distance transport of virus through the phloem. These results reveal a novel activity for the Hsp70h that provides a molecular link between the local and systemic spread of a plant virus by docking a long-distance transport factor to virions.  相似文献   

10.
Mutants of the Cucumber mosaic virus (CMV) movement protein (MP) were generated and analyzed for their effects on virus movement and pathogenicity in vivo. Similar to the wild-type MP, mutants M1, M2, and M3, promoted virus movement in eight plant species. Mutant M3 showed some differences in pathogenicity in one host species. Mutant M8 showed some host-specific alterations in movement in two hypersensitive hosts of CMV. Mutant M9 showed altered pathogenicity on three hosts and was temperature sensitive for long-distance movement, demonstrating that cell-to-cell and long-distance movement are distinct movement functions for CMV. Four mutants (M4, M5, M6, and M7) were debilitated from movement in all hosts tested. Mutants M4, M5, and M6 could be complemented in trans by the wild-type MP expressed transgenically, although not by each other or by mutant M9 (at the restrictive temperature). Mutant M7 showed an inability to be complemented in trans. From these mutants, different aspects of the CMV movement process could be defined and specific roles for particular sequence domains assigned. The broader implications of these functions are discussed.  相似文献   

11.
The mechanisms that cells use to monitor telomere integrity, and the array of responses that may be induced, are not fully defined. To date there have been no studies in animals describing the ability of cells to survive and contribute to adult organs following telomere loss. We developed assays to monitor the ability of somatic cells to proliferate and differentiate after telomere loss. Here we show that p53 and Chk2 limit the growth and differentiation of cells that lose a telomere. Furthermore, our results show that two copies of the genes encoding p53 and Chk2 are required for the cell to mount a rapid wildtype response to a missing telomere. Finally, our results show that, while Chk2 functions by activating the p53-dependent apoptotic cascade, Chk2 also functions independently of p53 to limit survival. In spite of these mechanisms to eliminate cells that have lost a telomere, we find that such cells can make a substantial contribution to differentiated adult tissues.  相似文献   

12.
The triple-gene-block (TGB)1 protein of Potato mop-top virus (PMTV) was fused to fluorescent proteins and expressed in epidermal cells of Nicotiana benthamiana under the control of the 35S promoter. TGB1 fluorescence was observed in the cytoplasm, nucleus, and nucleolus and occasionally associated with microtubules. When expressed from a modified virus (PMTV.YFP-TGB1) which formed local lesions but was not competent for systemic movement, yellow fluorescent protein (YFP)-TGB1 labeled plasmodesmata in cells at the leading edge of the lesion and plasmodesmata, microtubules, nuclei, and nucleoli in cells immediately behind the leading edge. Deletion of 84 amino acids from the N-terminus of unlabeled TGB1 within the PMTV genome abolished movement of viral RNA to noninoculated leaves. When the same deletion was introduced into PMTV.YFP-TGB1, labeling of microtubules and nucleoli was abolished. The N-terminal 84 amino acids of TGB1 were fused to green fluorescent protein (GFP) and expressed in epidermal cells where GFP localized strongly to the nucleolus (not seen with unfused GFP), indicating that these amino acids contain a nucleolar localization signal; the fusion protein did not label microtubules. This is the first report of nucleolar and microtubule association of a TGB movement protein. The results suggest that PMTV TGB1 requires interaction with nuclear components and, possibly, microtubules for long-distance movement of viral RNA.  相似文献   

13.
14.
15.
This review presents the accumulating evidence for the roles of protein phosphatase 6 (PP6) in cell cycle, DNA damage repair, inflammatory signaling, lymphocyte development, virus infection, tumor formation/progression, cell/tissue size, and non-coding RNA-mediated regulation. PP6 is an evolutionarily conserved and ubiquitously expressed Ser/Thr protein phosphatase most closely related to protein phosphatase 2A (PP2A) and protein phosphatase 4 (PP4). Although abundantly expressed in cells with multiple roles in cellular signaling, PP6 has received less attention than its close relative PP2A. Many studies used okadaic acid as “PP2A” inhibitor, even though these toxins also inhibit PP6 activity, so effects of the inhibitor could have been due to inhibition of both phosphatases. PP6 has its own dedicated subunits that assemble into heterotrimers that presumably fulfill its discrete functions in cells.  相似文献   

16.
Angiotensin-converting enzyme (ACE) is expressed in many tissues, including vasculature and renal proximal tubules, and its genetic ablation in mice causes abnormal renal structure and functions, hypotension, and male sterility. To test the hypothesis that specific physiological functions of ACE are mediated by its expression in specific tissues, we generated different mouse strains, each expressing ACE in only one tissue. Here, we report the properties of two such strains of mice that express ACE either in vascular endothelial cells or in renal proximal tubules. Because of the natural cleavage secretion process, both groups also have ACE in the serum. Both groups were as healthy as wild-type mice, having normal kidney structure and fluid homeostasis, though males remained sterile, because they lack ACE expression in sperm. Despite equivalent serum ACE and angiotensin II levels and renal functions, only the group that expressed ACE in vascular endothelial cells had normal blood pressure. Expression of ACE, either in renal proximal tubules or in vasculature, is sufficient for maintaining normal kidney functions. However, for maintaining blood pressure, ACE must be expressed in vascular endothelial cells. These results also demonstrate that ACE-mediated blood pressure maintenance can be dissociated from its role in maintaining renal structure and functions.  相似文献   

17.
Treatment of human myeloid leukemia K562 cells with the serine/threonine protein phosphatases inhibitor okadaic acid induced mitotic arrest followed by apoptosis in a synchronized manner. The effect was observed at drug concentrations that inhibited the protein phosphatase type 2A but not type 1. We investigated whether apoptosis was a consequence of the preceding mitosis arrest or was induced independently by okadaic acid. We found that (1) apoptosis, but not mitotic arrest, was inhibited in cells with constitutive expression of Bcl-2; (2) pretreatment of cells with the DNA synthesis inhibitor hydroxyurea blocked the mitotic arrest but not the apoptosis mediated by okadaic acid; (3) down-regulation of c-myc gene was associated with apoptosis, but not with mitotic arrest; and (4) inhibition of protein synthesis abrogated mitotic arrest, but not apoptosis. The results suggest that inhibition of protein phosphatase 2A by okadaic acid provokes mitotic arrest and apoptosis of leukemia cells by independent mechanisms.  相似文献   

18.
The mitogen-activated protein kinase ERK1/2 pathway is essential in the control of cell proliferation and differentiation in most cellular systems. As such, it has been considered a potential target for antineoplastic therapy. For this purpose, we have examined the role of ERK activation in myeloid leukemia cell growth and differentiation. Using a representative set of myeloid leukemia cell lines, we show that cell proliferation was not accompanied by increases on ERK1/2 activation, and mitogenic stimulation did not enhance ERK activity. Moreover, abolition of ERK function by the inhibitor PD98059 or by a dominant inhibitory mutant ERK2 had no significant effects on proliferation. With the aid of various differentiation inducers, we found that within the same cell line, differentiation to a given lineage could occur with and without ERK1/2 activation, depending on the stimulus. Also, a differentiator could have the same effect in the presence or absence of ERK stimulation, depending on the cell line. ERK inhibition did not affect the differentiation elicited by stimuli whose effects were accompanied by ERK activation. Finally, constitutive ERK activity was also ineffective on proliferation and differentiation. Thus, our results indicate that ERK1/2 activation is not an essential requirement for leukemic cell growth and differentiation.  相似文献   

19.
Little is known about the innate immune mechanisms regulating adaptive immune responses elicited through the skin. Tissue injury is postulated to liberate Toll like receptor 4 (TLR4) ligands. In this study, we determined whether TLR4 signaling modulates the response to epidermal injury induced by tape stripping (TS) and whether it alters humoral and cellular immune responses generated through epicutaneous immunization with peptide+cholera toxin (CT). The combined use of cholera toxin and TS with antigen promoted optimal antigen-specific CD4(+) and CD8(+) T cell proliferation in Balb/c and C57BL/6 mice, respectively. TLR4 mutant mice had similar T cell responses to wild type mice. Further, OVA-protein specific IgG, IgG(1), IgG(2a), and IgE titers were similar in wild type and TLR4 mutant mice. Thus, TLR4 signaling was not required for the generation of epicutaneous T cell or antibody mediated immune responses and did not alter the quality of the immune responses elicited.  相似文献   

20.
RMS2 (RAMOSUS2) affects the level or transport of a graft-transmissible signal produced in the shoot and root that controls axillary bud outgrowth in pea (Pisum sativum L.). The shoot apex of rms2 transiently wilts under high evaporative demand. The origin of this phenotype was investigated to determine whether it was involved in the regulation of branching. Wild-type (WT) and rms2 leaves showed a similar stomatal conductance at both low and high evaporative demand in vivo, indicating normal stomatal function. Leaves of both genotypes had similar ABA content and response to ABA. Although root hydraulic conductance (determined by pressure-induced flow) of rms2 plants was normal, more xylem vessels per vascular bundle were identified in cross-sections of fully expanded rms2 petioles compared with those of the WT. However, the diameter of these vessels was nearly half that of the WT. Since the conductance of each vessel is proportional to the fourth power of the vessel radius (according to the Hagen-Poiseulle law), the theoretical (calculated) petiole hydraulic conductance of rms2 was greatly decreased compared with WT plants. Under high evaporative demand, this would cause a temporary imbalance between water supply to, and demand from, rms2 shoots, directly resulting in the wilting phenotype of the mutant. Reciprocal grafting showed that xylem vessel development in rms2 shoots is strictly shoot controlled, probably via elevated auxin levels. This altered xylem vessel development, though causing wilting in rms2 shoot tips, does not appear to affect shoot branching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号