首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Investigations of protein-solute interactions typically show that osmolytes favor native conformations. In this study, the effects of representative compatible and counteracting osmolytes on the reactivation of lactate dehydrogenase from two different conformational states were explored. Contrary to expectations, proline and trimethylamine oxide inhibited both the initial time course and the extent of reactivation of lactate dehydrogenase from bovine heart following denaturation in guanidine hydrochloride, as well as following inactivation at pH 2.3. Reactivation of acid-dissociated porcine heart lactate dehydrogenase was inhibited by both proline and trimethylamine oxide (2 M). In all instances, trimethylamine oxide was the more effective inhibitor of reactivation. Analysis of the catalytic properties of the reactivating enzyme provided evidence that the molecular species that was enzymatically active during the initial stages of reactivation of acid-inactivated porcine heart lactate dehydrogenase reflects a non-native conformation. Proline and trimethylamine oxide stabilize polypeptides through exclusion from the polypeptide backbone; the inhibition of renaturation/reassociation described here is probably due to attenuation of this stabilizing influence through favorable interactions of the osmolytes with sidechains of residues that lie at the interfaces of the monomers and dimers that associate to form the active tetramer. In addition, these osmolytes may stabilize non-native intermediates in the folding pathway. The high viscosity of solutions containing more than 3 m proline was a major factor in the inhibition of reassociation of acid-dissociated porcine heart lactate dehydrogenase as well as other viscosity-dependent transformations that may occur during reactivation following unfolding in guanidine hydrochloride.  相似文献   

2.
The isolation and partial characterization of a flavoprotein which functions as the electron acceptor of trimethylamine dehydrogenase (EC 1.5.99.7) from a methylotrophic bacterium is described. It has a molecular weight of 77,000 and is composed of two dissimilar subunits. All preparations examined contained only 1 mol of FAD/mol of the flavoprotein. Trimethylamine dehydrogenase, in the presence of trimethylamine or dithionite, reduced the flavoprotein to a stable anionic semiquinone form. No evidence for the participation of the fully reduced flavoprotein in catalysis could be obtained.  相似文献   

3.
The metabolism of trimethylamine (TMA) and dimethylamine (DMA) in Arthrobacter P1 involved the enzymes TMA monooxygenase and trimethylamine-N-oxide (TMA-NO) demethylase, and DMA monooxygenase, respectively. The methylamine and formaldehyde produced were further metabolized via a primary amine oxidase and the ribulose monophosphate (RuMP) cycle. The amine oxidase showed activity with various aliphatic primary amines and benzylamine. The organism was able to use methylamine, ethylamine and propylamine as carbon-and nitrogen sources for growth. Butylamine and benzylamine only functioned as nitrogen sources. Growth on glucose with ethylamine, propylamine, butylamine and benzylamine resulted in accumulation of the respective aldehydes. In case of ethylamine and propylamine this was due to repression by glucose of the synthesis of the aldehyde dehydrogenase(s) required for their further metabolism. Growth on glucose/methylamine did not result in repression of the RuMP cycle enzyme hexulose-6-phosphate synthase (HPS). High levels of this enzyme were present in the cells and as a result formaldehyde did not accumulate. Ammonia assimilation in Arthrobacter P1 involved NADP-dependent glutamate dehydrogenase (GDH), NAD-dependent alanine dehydrogenase (ADH) and glutamine synthetase (GS) as key enzymes. In batch cultures both GDH and GS displayed highest levels during growth on acetate with methylamine as the nitrogen source. A further increase in the levels of GS, but not GDH, was observed under ammonia-limited growth conditions in continuous cultures with acetate or glucose as carbon sources.Abbreviations HPS hexulose-6-phosphate synthase - RuMP ribulose monophosphate - DMA dimethylamine - TMA trimethylamine - TMA-NO trimethylamine-N-oxide - ICL isocitrate lyase - GS glutamine synthetase - GDH glutamate dehydrogenase - ADH alanine dehydrogenase - GOGAT glutamate synthase  相似文献   

4.
The gene encoding trimethylamine dehydrogenase (EC 1.5.99.7) from bacterium W3A1 has been cloned. Using the polymerase chain reaction a 530 bp DNA fragment encoding a distal part of the gene was amplified. Using this fragment of DNA as a probe, a clone was then isolated as a 4.5 kb BamHI fragment and shown to encode residues 34 to 729 of trimethylamine dehydrogenase. The polymerase chain reaction was used also to isolate the DNA encoding the missing N-terminal part of the gene. The complete open reading frame contained 2,190 base pairs coding for the processed protein of 729 amino acids which lacks the N-terminal methionine residue. The high-level expression of the gene in Escherichia coli was achieved by the construction of an expression vector derived from the plasmid pKK223-3. The cloning and sequence analysis described here complete the partial assignment of the amino acid sequence derived from chemical sequence [1] and will now permit the refinement of the crystallographic structure of trimethylamine dehydrogenase and also a detailed investigation of the mechanism and properties of the enzyme by protein engineering.  相似文献   

5.
E.p.r. spectroscopy of the trimethylamine and dimethylamine dehydrogenases of Hyphomicrobium X indicates that the substrate-reduced forms of these enzymes exist in the triplet state, which arise through interaction of a reduced [4Fe-4S] cluster and flavosemiquinone, with e.p.r. signals which differ in detail from those of the trimethylamine dehydrogenase of bacterium W3A1. Under certain conditions the intramolecular electron transfer between the flavoquinol form of 6-S-cysteinyl-FMN and the [4Fe-4S] cluster in all three dehydrogenases was much slower than the preceding reduction of the flavin to the flavoquinol form. Trimethylamine dehydrogenases from both organisms show a time-dependent broadening of the e.p.r. signals centred around g = 2 after mixing with trimethylamine. The broadening of the e.p.r. signals could be correlated with an unexpected dependence of the rate of formation of the triplet state on substrate concentration. A model which accounts in a qualitative manner for the substrate dependence of the formation of the triplet state in the trimethylamine dehydrogenase of Hyphomicrobium X is proposed. The binding of the substrate to the reduced form of the enzyme seems to result in a conformational change of the enzyme to a form in which the rate of intramolecular electron transfer is decreased. This finding may be correlated with the observation of hyperbolic substrate inhibition for both trimethylamine dehydrogenases. The results indicate the transfer of an electron to the [4Fe-4S] cluster to be an obligatory step in catalysis and suggest that the transfer of electrons from these enzymes to electron acceptors is mediated solely through the [4Fe-4S] cluster.  相似文献   

6.
1. The trimethylamine dehydrogenase of bacterium 4B6 was purified to homogeneity as judged by analytical polyacrylamide-gel electrophoresis. The specific activity of the purified enzyme is 30-fold higher than that of crude sonic extracts. 2. The molecular weight of the enzyme is 161000. 3. The kinetic properties of the purified enzyme were studied by using an anaerobic spectrophotometric assay method allowing the determination of trimethylamine dehydrogenase activity at pH8.5, the optimum pH. The apparent K(m) for trimethylamine is 2.0+/-0.3mum and the apparent K(m) for the primary hydrogen acceptor, phenazine methosulphate, is 1.25mm. 4. Of 13 hydrogen acceptors tested, only Brilliant Cresyl Blue and Methylene Blue replace phenazine methosulphate. 5. A number of secondary and tertiary amines with N-methyl and/or N-ethyl groups are oxidized by the purified enzyme; primary amines and quaternary ammonium salts are not oxidized. Of the compounds that are oxidized by the purified enzyme, only trimethylamine and ethyldimethylamine support the growth of bacterium 4B6. 6. Trimethylamine dehydrogenase catalyses the anaerobic oxidative N-demethylation of trimethylamine with the formation of stoicheiometric amounts of dimethylamine and formaldehyde. Ethyldimethylamine is also oxidatively N-demethylated yielding ethylmethylamine and formaldehyde; diethylamine is oxidatively N-de-ethylated. 7. The activity of the purified enzyme is unaffected by chelating agents and carbonyl reagents, but is inhibited by some thiol-binding reagents and by Cu(2+), Co(2+), Ni(2+), Ag(+) and Hg(2+). Trimethylamine dehydrogenase activity is potently inhibited by trimethylsulphonium chloride, by tetramethylammonium chloride and other quaternary ammonium salts, and by monoamine oxidase inhibitors of the substituted hydrazine and the non-hydrazine types. 8. Inhibition by the substituted hydrazines is time-dependent, is prevented by the presence of trimethylamine or trimethylamine analogues and in some cases requires the presence of the hydrogen acceptor phenazine methosulphate. The inhibition was irreversible with the four substituted hydrazines that were tested.  相似文献   

7.
Bacterial trimethylamine dehydrogenase contains a novel type of covalently bound flavin mononucleotide and a tetrameric iron-sulphur centre. The dehydrogenase takes up 1.5mol of dithionite/mol of enzyme and is thereby converted into the flavin quinol-reduced (4Fe-4S) form, with the expected bleaching of the visible absorption band of the flavin and the emergence of signals of typical reduced ferredoxin in the electronparamagnetic-resonance spectrum. On reduction with a slight excess of substrate, however, unusual absorption and electron-paramagnetic-resonance spectra appear quite rapidly. The latter is attributed to extensive interaction between the reduced (4Fe-4S) centre and the flavin semiquinone. The species of enzyme arising during the catalytic cycle were studied by a combination of rapid-freeze e.p.r. and stopped-flow spectophotometry. The initial reduction of the flavin to the quinol form is far too rapid to be rate-limiting in catalysis, as is the reoxidation of the substrate-reduced enzyme by phenazine methosulphate. Formation of the spin-spin-interacting species from the dihydroflavin is considerably slower, however, and it may be the rate-limiting step in the catalytic cycle, since its rate of formation agrees reasonably well with the catalytic-centre activity determined in steady-state kinetic assays. In addition to the interacting form, a second form of the enzyme was noted during reduction by trimethylamine, differing in absorption spectrum, the structure of which remains to be determined.  相似文献   

8.
Deodorizing effects of tea catechins on amines were examined under alkaline conditions to eliminate the neutralization reaction. They showed deodorizing activity on ethylamine, but none on dimethylamine or trimethylamine. Deodorizing activity on ethylamine was found to be in the order of (-)-epigallocatechin gallate > gallic acid > (-)-epigallocatechin (EGC) > (-)-epicatechin gallate > ethyl gallate > (+)-catechin = (-)-epicatechin. Further, reaction products of EGC with methylamine, ethylamine, and ammonia were detected by HPLC, indicating that a deodorizing reaction other than neutralization occurs. From structural analysis of the reaction product with the methylamine isolated as a peracetylated derivative, the product was presumed to be methylamine substituted EGC, in which the hydroxyl group of EGC at the 4' position is replaced by the methylamino group. The same replacement reaction took place in the case of ethylamine and ammonia.  相似文献   

9.
A cholate-inducible, NADH-dependent flavin oxidoreductase from the intestinal bacterium Eubacterium sp. strain VPI 12708 was purified 372-fold to apparent electrophoretic homogeneity. The subunit and native molecular weights were estimated to be 72,000 and 210,000, respectively, suggesting a homotrimeric organization. Three peaks of NADH:flavin oxidoreductase activity (forms I, II, and III) eluted from a DEAE-high-performance liquid chromatography column. Absorption spectra revealed that purified form III, but not form I, contained bound flavin, which dissociated during purification to generate form I. Enzyme activity was inhibited by sulfhydryl-reactive compounds, acriflavine, o-phenanthroline, and EDTA. Activity assays and Western blot (immunoblot) analysis confirmed that expression of the enzyme was cholate inducible. The first 25 N-terminal amino acid residues of purified NADH:flavin oxidoreductase were determined, and a corresponding oligonucleotide probe was synthesized for use in cloning of the associated gene, baiH. Restriction mapping, sequence data, and RNA blot analysis suggested that the baiH gene was located on a previously described, cholate-inducible operon > or = 10 kb long. The baiH gene encoded a 72,006-Da polypeptide containing 661 amino acids. The deduced amino acid sequence of the baiH gene was homologous to that of NADH oxidase from Thermoanaerobium brockii, trimethylamine dehydrogenase from methylotrophic bacterium W3A1, Old Yellow Enzyme from Saccharomyces carlsbergensis, and the product of the baiC gene of Eubacterium sp. strain VPI 12708, located upstream from the baiH gene in the cholate-inducible operon. Alignment of these five sequences revealed potential ligands for an iron-sulfur cluster, a putative flavin adenine dinucleotide-binding domain, and two other well-conserved domains of unknown function.  相似文献   

10.
The reaction of trimethylamine dehydrogenase with trimethylamine   总被引:1,自引:0,他引:1  
The reductive half-reaction of trimethylamine dehydrogenase with its physiological substrate trimethylamine has been examined by stopped-flow spectroscopy over the pH range 6.0-11.0, with attention focusing on the fastest of the three kinetic phases of the reaction, the flavin reduction/substrate oxidation process. As in previous work with the slow substrate diethylmethylamine, the reaction is found to consist of three well resolved kinetic phases. The observed rate constant for the fast phase exhibits hyperbolic dependence on the substrate concentration with an extrapolated limiting rate constant (klim) greater than 1000 s-1 at pH above 8.5, 10 degrees C. The kinetic parameter klim/Kd for the fast phase exhibits a bell-shaped pH dependence, with two pKa values of 9.3 +/- 0.1 and 10. 0 +/- 0.1 attributed to a basic residue in the enzyme active site and the ionization of the free substrate, respectively. The sigmoidal pH profile for klim gives a single pKa value of 7.1 +/- 0. 2. The observed rate constants for both the intermediate and slow phases are found to decrease as the substrate concentration is increased. The steady-state kinetic behavior of trimethylamine dehydrogenase with trimethylamine has also been examined, and is found to be adequately described without invoking a second, inhibitory substrate-binding site. The present results demonstrate that: (a) substrate must be protonated in order to bind to the enzyme; (b) an ionization group on the enzyme is involved in substrate binding; (c) an active site general base is involved, but not strictly required, in the oxidation of substrate; (d) the fast phase of the reaction with native enzyme is considerably faster than observed with enzyme isolated from Methylophilus methylotrophus that has been grown up on dimethylamine; and (e) a discrete inhibitory substrate-binding site is not required to account for excess substrate inhibition, the kinetic behavior of trimethylamine dehydrogenase can be readily explained in the context of the known properties of the enzyme.  相似文献   

11.
Fujieda N  Satoh A  Tsuse N  Kano K  Ikeda T 《Biochemistry》2004,43(33):10800-10808
Histamine dehydrogenase from Nocardioides simplex is a homodimeric enzyme and catalyzes oxidative deamination of histamine. The gene encoding this enzyme has been sequenced and cloned by polymerase chain reactions and overexpressed in Escherichia coli. The sequence of the complete open reading frame, 2073 bp coding for a protein of 690 amino acids, was determined on both strands. The amino acid sequence of histamine dehydrogenase is closely related to those of trimethylamine dehydrogenase and dimethylamine dehydrogenase containing an unusual covalently bound flavin mononucleotide, 6-S-cysteinyl-flavin mononucleotide, and one 4Fe-4S cluster as redox active cofactors in each subunit of the homodimer. The presence of the identical redox cofactors in histamine dehydrogenase has been confirmed by sequence alignment analysis, mass spectral analysis, UV-vis and EPR spectroscopy, and chemical analysis of iron and acid-labile sulfur. These results suggest that the structure of histamine dehydrogenase in the vicinity of the two redox centers is almost identical to that of trimethylamine dehydrogenase as a whole. The structure modeling study, however, demonstrated that a putative substrate-binding cavity in histamine dehydrogenase is quite distinct from that of trimethylamine dehydrogenase.  相似文献   

12.
The gene encoding histamine dehydrogenase in Rhizobium sp. 4--9 has been cloned and overexpressed in Escherichia coli. The coding region of the gene was 2,079 bp and encoded a protein of 693 amino acids with a calculated molecular mass of 76,732 Da. This histamine dehydrogenase was related to histamine dehydrogenase from Nocardioides simplex (54.5% identical), trimethylamine dehydrogenase from Methylophilus methylotrophus (39.3% identical) and dimethylamine dehydrogenase from Hyphomicrobium X (38.1% identical), which have a covalent 6-S-cysteinyl flavin mononucleotide and a [4Fe--4S] cluster as redox cofactors. Sequence alignment and a UV-visible absorption spectrum supported the presence of these cofactors in this histamine dehydrogenase. The investigation of the enzymatic properties suggested that this enzyme exhibited the most excellent substrate specificity toward histamine among all amine oxidases or dehydrogenases found to date. The recombinant enzyme was able to be used for the colorimetric determination of histamine, which gave a linear calibration curve and identical data with conventional methods.  相似文献   

13.
The aerobic and anaerobic degradation of trimethylamine by a newly isolated denitrifying bacterium from an enrichment culture with trimethylamine inoculated with activated sludge was studied. Based on 16S rDNA analysis, this strain was identified as a Paracoccus sp. The isolate, strain T231, aerobically degraded trimethylamine, dimethylamine and methylamine and released a stoichiometric amount of ammonium ion into the culture fluid as a metabolic product, indicating that these methylated amines were completely degraded to formaldehyde and ammonia. The strain degraded trimethylamine also under denitrifying conditions and consumed a stoichiometric amount of nitrate, demonstrating that complete degradation of trimethylamine was coupled with nitrate reduction. Cell-free extract prepared from cells grown aerobically on trimethylamine exhibited activities of trimethylamine mono-oxygenase, trimethylamine N-oxide demethylase, dimethylamine mono-oxygenase, and methylamine mono-oxygenase. Cell-free extract from cells grown anaerobically on trimethylamine and nitrate exhibited activities of trimethylamine dehydrogenase and dimethylamine dehydrogenase. These results indicate that strain T231 had two different pathways for aerobic and anaerobic degradation of trimethylamine. This is a new feature for trimethylamine metabolism in denitrifying bacteria.  相似文献   

14.
A voltammetric enzyme electrode was developed based on nicotinamide-independent trimethylamine dehydrogenase (TMADH, EC 1.5.99.7), which catalyses the oxidation of trimethylamine (TMA) to dimethylamine and formaldehyde. A quaternized osmium hydrogel polymer, poly(vinylimidazole-[Os(4,4′-dimethyl-2,2′-bipyridine)2Cl]+/2+) with ethylamine (PVI-Os-EA), was prepared as a potential redox mediator in an electrochemical biosensor. TMA was detected using TMADH that was co-immobilized with an osmium hydrogel polymer on electrodeposited gold nanoparticles (Au-NPs) on screen-printed carbon electrodes (SPCEs). The Au-NPs deposited onto SPCEs provided about a three times higher electrochemical response compared to that of a planar gold electrode. As TMA was catalyzed by wired TMADH, the electrical signal was monitored at 0.3 V versus Ag/AgCl by cyclic voltammetry and chronoamperometry. The anode currents increased linearly in proportion to the TMA concentration over the 0 ∼ 2.5 mM range with a detection limit of 1 μM (R = 0.9972).  相似文献   

15.
Among methylamine and/or ethylamine minus mutants of Arthrobacter P1 four different classes were identified, which were blocked either in the methylamine transport system, amine oxidase, hexulose phosphate synthase or acetaldehyde dehydrogenase. The results indicated that a common primary amine oxidase is involved in the metabolism of methylamine and ethylamine. Growth on ethylamine, however, was not dependent on the presence of the methylamine transport system. In mutants lacking amine oxidase, methylamine was unable to induce the synthesis of hexulose phosphate synthase, thus confirming the view that the actual inducer for the latter enzyme is not methylamine, but its oxidation product formaldehyde. Contrary to expectation, when the formaldehyde fixing enzyme hexulose phosphate synthase was deleted (mutant Art 11), accumulation of formaldehyde during growth on choline or on glucose plus methylamine as a nitrogen source did not occur. Evidence was obtained to indicate that under these conditions formaldehyde may be oxidized to carbon dioxide via formate, a sequence in which peroxidative reactions mediated by catalase are involved. In addition, a specific NAD-dependent formaldehyde dehydrogenase was detected in choline-grown cells of wild type Arthrobacter P1 and strain Art 11. This enzyme, however, does not play a role in methylamine or formaldehyde metabolism, apparently because these compounds do not induce its synthesis.Abbreviations RuMP ribulose monophosphate - HPS hexulose phosphate synthase - HPI hexulose phosphate isomerase  相似文献   

16.
Methylmalonate semialdehyde dehydrogenase was purified from rat liver in order to define the distal portion of valine catabolism and related pathways in mammals. The purified enzyme is active with malonate semialdehyde and consumes both stereoisomers of methylmalonate semialdehyde, implicating a single semialdehyde dehydrogenase in the catabolism of valine, thymine, and compounds catabolized by way of beta-alanine. The oxidation of malonate and methylmalonate semialdehydes by this enzyme is CoA-dependent, the products being acetyl-CoA and propionyl-CoA, respectively. Expected activity with ethylmalonate semialdehyde as substrate was not found. Methylmalonate semialdehyde dehydrogenase was separated on DEAE-Sephacel into two isoforms which differ in mobility during nondenaturing polyacrylamide gel electrophoresis. The two forms are immunologically cross-reactive and exhibit the same N-terminal sequence, suggesting that one form is the product of the other. The monomer molecular mass, determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, was 58 kDa. The native molecular mass, estimated by gel filtration, was 250 kDa, suggesting a tetrameric structure.  相似文献   

17.
The trimethylamine dehydrogenase of bacterium W3A1 is reduced with the formation of a triplet state in which two electrons, derived from the substrate, are distributed between the [4Fe-4S] cluster and 6-S-cysteinyl-FMN semiquinone. In titration experiments at pH 8.5 about 1.0 mol of dimethylamine or 0.5 mol of trimethylamine per mol of the enzyme is required to titrate the enzyme to an endpoint. At pH values less than 8.0, however, an excess of trimethylamine is required to obtain maximal yield of the g = 4 e.p.r. signal, characteristic of the triplet state, or maximal absorbance at 365 nm which indicates formation of the flavin semiquinone. The binding of 0.86 mol of trimethylamine per mol of the enzyme could be detected by a gel chromatographic method. When the enzyme is titrated with dithionite in the presence of tetramethylammonium chloride, an endpoint is reached after the uptake of two electrons which give rise to the triplet state, whereas three electrons are consumed in the absence of tetramethylammonium chloride to reduce the enzyme completely. The enzyme is inhibited noncompetitively by tetramethylammonium chloride and the slopes of double reciprocal plots are a concave upwards function of inhibitor concentration. The data indicate the presence of a binding site for the substrate and other amines on the reduced enzyme which enhances the proportion of enzyme in the triplet state.  相似文献   

18.
When grown on methylated amines as a carbon source, Methylophilus methylotrophus synthesizes an electron transfer flavoprotein (ETF) which is the natural electron acceptor of trimethylamine dehydrogenase. It is composed of two dissimilar subunits of 38,000 and 42,000 daltons and 1 mol of flavin adenine dinucleotide. It was reduced by trimethylamine dehydrogenase to a stable anionic semiquinone form, which could not be converted, either enzymatically or chemically, to the fully reduced dihydroquinone. This ETF exhibited spectral properties which were nearly identical to ETFs from bacterium W3A1, Paracoccus denitrificans, and pig liver mitochondria. M. methylotrophus ETF cross-reacted immunologically and enzymatically with the ETF of bacterium W3A1 but not with the other two ETFs. In M. methylotrophus and bacterium W3A1, ETF and trimethylamine dehydrogenase were each expressed during growth on trimethylamine and were each absent during growth on methanol.  相似文献   

19.
A FAD-containing monooxygenase isolated from pig liver microsomes migrates as a single band upon electrophoresis in polyacrylamide gels in the presence of dodecyl sulfate. The minimum molecular weight based on mass of amino acids per mole of flavin is 64,000. However, the catalytically active enzyme exists as aggregating units of the monomer. Neither oxygen nor organic substrates perturbed the spectrum of the oxidized flavoprotein and their binding to this form of the enzyme could not be detected. Anaerobically NADPH bleaches the flavoprotein, and in the presence of both NADPH and oxygen a remarkably stable intermediate form of the enzyme, with an absorption band at 375 nm, is observed. The spectrum of the intermediate resembles that of a peroxyflavin. The monooxygenase catalyzes NADPH- and oxygen-dependent oxygenations of nucleophilic nitrogen- or sulfur-containing compounds. Kinetic studies carried out with a model organic nitrogen substrate (trimethylamine) and a sulfur substrate (methimazole) gave similar patterns. The kinetic data are consistent with an ordered Ter-Bi mechanism with an irreversible step between the second and third substrate where NADPH is added first, followed by oxygen, and the oxidizable organic substrate is added last. If NADPH is the first substrate added, then NADP+ must be the last product released since NADP+ is competitive with NADPH.  相似文献   

20.
A newly discovered enzyme, α-ketoadipate reductase, has been purified 1000-fold from human placenta. This enzyme catalyzes the following reaction: α-ketoadipate + NADH + H+ → α-hydroxyadipate + NAD. The enzyme has an estimated molecular weight of 95,000 on gel filtration and an isoelectric point at pH 7.0 on electrofocusing. Several forms of the enzyme were isolated during purification. The pH optimum for the major form was 6.3. The reaction product of α-ketoadipate reductase was identified as α-hydroxyadipate by comparison of the enzyme product with chemically prepared α-hydroxyadipate. Studies of the reaction stoichiometry indicated that equimolar quantities of NADH and α-ketoadipate were used in the synthesis of an equivalent quantity of α-hydroxyadipate. Under conditions where the remaining lactate dehydrogenase and malate dehydrogenase were completely inhibited without affecting the α-ketoadipate reductase activity, it was found that α-ketoadipate reductase was highly specific for α-ketoadipate as substrate. NADPH could not substitute for NADH. Initial velocity experiments showed that NADH was an uncompetitive substrate inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号