首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multidrug resistance (MDR) transporters have been termed the Phase III detoxification system because they not only export endogenous metabolites but provide protection from xenobiotic insult by actively secreting foreign compounds and their metabolites from tissues. However, MDR overexpression in tumors can lead to drug resistance, a major obstacle in the treatment of many cancers, including lung cancer. Isothiocyanates from cruciferous vegetables, such as sulforaphane (SF) and erucin (ER), are known to enhance the expression of Phase II detoxification enzymes. Here we evaluated the ability of SF and ER to modulate MDR mRNA and protein expressions, as well as transporter activity. The expression of P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1) and multidrug resistance protein 2 (MRP2) in liver (HepG2), colon (Caco-2) and lung (A549) cancer cells treated with ER or SF was analyzed by Western blotting. Neither SF nor ER affected P-gp expression in any of the cell lines tested. Both SF and ER increased the protein levels of MRP1 and MRP2 in HepG2 cells and of MRP2 in Caco-2 cells in a dose-dependent manner. In A549 lung cancer cells, SF increased MRP1 and MRP2 mRNA and protein levels; ER caused a similar yet smaller increase in MRP1 and MRP2 mRNA. In addition, SF and ER increased MRP1-dependent efflux of 5-carboxyfluorescein diacetate in A549 cells, although again the effect of SF was substantially greater than that of ER. The implication of these findings is that dietary components that modulate detoxification systems should be studied carefully before being recommended for use during chemotherapy, as these compounds may have additional influences on the disposition of chemotherapeutic drugs.  相似文献   

2.
3.
RNase MRP is a ribonucleoprotein enzyme with a structure similar to RNase P. It is required for normal processing of precursor rRNA, cleaving it in the Internal Transcribed Spacer 1. Abbreviations: RNase MRP RNase for mitochondrial RNA processing; also involved in pre-rRNA processing; RNase P - RNase for pre-tRNA processing; snoRNA - small nucleolar RNA; RNP - RNA-protein particle; snoRNP - small nucleolar RNA-protein particle.  相似文献   

4.
MRP8 and MRP14 are members of the S-100 family of Ca2+-binding proteins and are expressed by granulocytes and monocytes. Members of this family have been described to be involved in membrane and cytoskeleton interactions; we therefore studied the subcellular distribution of MRP8/MRP14 in cultured human monocytes at the ultrastructural level. Monospecific rabbit antisera against MRP8 and MRP14 and a monoclonal antibody (moAb 27E10), which exclusively recognizes the MRP8/MRP14 heterodimer but not the monomers, were used in both immunoperoxidase/preembedding-and immunogold/cryotechniques. Comparing non-stimulated monocytes with Ca2+ ionophore A23187-treated cells, we could demonstrate that MRP8 and MRP14 associate with membrane and cytoskeletal structures in a Ca2+-dependent manner. Employing moAb 27E10, MRP8/MRP14 complexes were shown to be translocated to these cellular components. In addition, immunogold double-labelling experiments revealed a clear co-localization of MRP8/MRP14 complexes with the type III intermediate filament vimentin. Analysis of immunogold-labelled cryosections of renal allografts after acute vascular rejection demonstrated that a subpopulation of infiltrating macrophages showed a similar association of MRP8/MRP14 to the cytoskeleton in situ; this finding emphasizes the in vivo relevance of our observations. We conclude that Ca2+-dependent translocation of MRP8/MRP14 occurs to distinct subcellular components suggesting a role of these proteins for the modulation of cytoskeletal and membrane interactions.  相似文献   

5.
6.
7.
The human multidrug resistance protein MRP1 and its homolog, MRP2, are both thought to be involved in cancer drug resistance and the transport of a wide variety of organic anions, including the cysteinyl leukotriene C4 (LTC4) (Km = 0.1 and 1 microm). To determine which domain of these proteins is associated with substrate specificity and subcellular localization, we constructed various chimeric MRP1/MRP2 molecules and expressed them in polarized mammalian LLC-PK1 cells. We examined the kinetic properties of each chimeric protein by measuring LTC4 and methotrexate transport in inside-out membrane vesicles, sensitivity to an anticancer agent, etoposide, and subcellular localization by indirect immunofluorescence methods. The following results were determined in these studies: (i) when the NH2-proximal 108 amino acids of MRP2, including transmembrane (TM) helices 1-3, were exchanged with the corresponding region of MRP1, Km(LTC4) values of the chimera decreased approximately 4-fold and Km(methotrexate) values increased approximately 5-fold relative to those of wild-type MRP2 and MRP1, respectively, whereas resistance to etoposide increased approximately 3-fold; (ii) when the NH2-proximal region up to TM9 of MRP2 was exchanged with the corresponding region of MRP1, a further increase in etoposide resistance was observed, and subcellular localization moved from the apical to the lateral membrane; (iii) when two-thirds of MRP2 at the NH2 terminus were exchanged with the corresponding MRP1 region, the chimeric protein transported LTC4 with an efficiency comparable with that achieved by the wild-type MRP1; and (iv) exchange of the COOH-terminal 51 amino acids between MRP1 and MRP2 did not affect the localization of either of the proteins. These results provide a strong framework for further studies aimed at determining the precise domains of MRP1 and MRP2 with affinity for LTC4 and anticancer agents.  相似文献   

8.
Martin AN  Li Y 《Cell research》2007,17(3):219-226
RNase MRP RNA is the RNA subunit of the RNase mitochondrial RNA processing (MRP) enzyme complex that is involved in multiple cellular RNA processing events. Mutations on RNase MRP RNA gene (RMRP) cause a recessively inherited developmental disorder, cartilage-hair hypoplasia (CHH). The relationship of the genotype (RMRP mutation), RNA processing deficiency of the RNase MRP complex, and the phenotype of CHH and other skeletal dysplasias is yet to be explored.  相似文献   

9.
The mitochondrial RNA-binding proteins (MRP) 1 and 2 play a regulatory role in RNA editing and putative role(s) in RNA processing in Trypanosoma brucei. Here, we report the purification of a high molecular weight protein complex consisting solely of the MRP1 and MRP2 proteins from the mitochondrion of T. brucei. The MRP1/MRP2 complex natively purified from T. brucei and the one reconstituted in Escherichia coli in vivo bind guide (g) RNAs and pre-mRNAs with dissociation constants in the nanomolar range, and efficiently promote annealing of pre-mRNAs with their cognate gRNAs. In addition, the MRP1/MRP2 complex stimulates annealing between two non-cognate RNA molecules suggesting that along with the cognate duplexes, spuriously mismatched RNA hybrids may be formed at some rate in vivo. A mechanism of catalysed annealing of gRNA/pre-mRNA by the MRP1/MRP2 complex is proposed.  相似文献   

10.
Cyclic nucleotides are known to be effluxed from cultured cells or isolated tissues. Two recently described members of the multidrug resistance protein family, MRP4 and MRP5, might be involved in this process, because they transport the 3',5'-cyclic nucleotides, cAMP and cGMP, into inside-out membrane vesicles. We have investigated cGMP and cAMP efflux from intact HEK293 cells overexpressing MRP4 or MRP5. The intracellular production of cGMP and cAMP was stimulated with the nitric oxide releasing compound sodium nitroprusside and the adenylate cyclase stimulator forskolin, respectively. MRP4- and MRP5-overexpressing cells effluxed more cGMP and cAMP than parental cells in an ATP-dependent manner. In contrast to a previous report we found no glutathione requirement for cyclic nucleotide transport. Transport increased proportionally with intracellular cyclic nucleotide concentrations over a calculated range of 20-600 microm, indicating low affinity transport. In addition to several classic inhibitors of organic anion transport, prostaglandins A(1) and E(1), the steroid progesterone and the anti-cancer drug estramustine all inhibited cyclic nucleotide efflux. The efflux mediated by MRP4 and MRP5 did not lead to a proportional decrease in the intracellular cGMP or cAMP levels but reduced cGMP by maximally 2-fold over the first hour. This was also the case when phosphodiesterase-mediated cyclic nucleotide hydrolysis was inhibited by 3-isobutyl-1-methylxanthine, conditions in which efflux was maximal. These data indicate that MRP4 and MRP5 are low affinity cyclic nucleotide transporters that may at best function as overflow pumps, decreasing steep increases in cGMP levels under conditions where cGMP synthesis is strongly induced and phosphodiesterase activity is limiting.  相似文献   

11.
Changes in cytosolic calcium concentrations regulate a wide variety of cellular processes, and calcium-binding proteins are the key molecules in signal transduction, differentiation, and cell cycle control. S100A12, a recently described member of the S100 protein family, has been shown to be coexpressed in granulocytes and monocytes together with two other S100 proteins, MRP8 (S100A8) and MRP14 (S100A9), and a functional relationship between these three S100 proteins has been suggested. Using Western blotting, calcium overlays, intracellular flow cytometry, and cytospin preparations, we demonstrate that S100A12 expression in leukocytes is specifically restricted to granulocytes and that S100A12 represents one of the major calcium-binding proteins in these cells. S100A12, MRP8, and MRP14 translocate simultaneously from the cytosol to cytoskeletal and membrane structures in a calcium-dependent manner. However, no evidence for direct protein-protein interactions of S100A12 with either MRP8 or MRP14 or the heterodimer was found by chemical cross-linking, density gradient centrifugation, mass spectrometric measurements, or yeast two hybrid detection. Thus, S100A12 acts individually during calcium-dependent signaling, independent of MRP8, MRP14, and the heterodimer MRP8/MRP14. This granulocyte-specific signal transduction pathway may offer attractive targets for therapeutic intervention with exaggerated granulocyte activity in pathological states.  相似文献   

12.
We have hypothesized a suppressive mechanism against dietary docosahexaenoic acid (22:6n-3; DHA)-induced tissue lipid peroxidation, in which the degradation products, including their conjugates, are excreted into the urine by xenobiotic or organic anion transporters. In this study, we employed parent-strain Sprague-Dawley rats (SDRs), together with their mutant strain, Eisai hyperbilirubinuria rats (EHBRs). EHBRs are deficient in multidrug resistance-associated protein (MRP) 2, and show defective urinary excretion of numerous xenobiotics and organic anions. Both strains of rats were fed a diet containing DHA at 8.4% of total energy for 31 d. In the livers of the DHA-fed rats, the level of free malondialdehyde (MDA) + 4-hydroxy-2-alkenals (HAE) fell, and conversely glutathione S-transferase (GST) activity increased in MRP2-deficient EHBRs as compared to the SDRs, suggesting that the glutathione (GSH)-conjugation reaction for the aldehydes generated on DHA intake was accelerated in the MRP2-deficient EHBRs. Since the gene expression of liver MRP3 in the MRP2-deficient EHBRs was amplified to compensate for DHA intake, it is thought that the transport of MRP3 substrates into the bloodstream, rather than MRP2-mediated excretion of its substrates into the bile, was promoted. Indeed, excretion of mercapturic acid (acetylcysteine conjugates derived metabolically from the conjugate of each aldehyde with GSH) into the urine increased significantly in MRP2-deficient EHBRs fed DHA.  相似文献   

13.
为了比较腋臭患者与正常人顶泌汗腺中MRP8表达情况,并对其临床应用价值作出评价。随机选取我院2015~2016年就诊患者90例对其进行回顾性研究,其中腋臭病确诊患者30例作为实验组,肺癌患者30例为阳性对照组,正常人腋下皮肤组织30例作为空白对照组,采用免疫组化法检测MRP8蛋白的表达情况并作统计学分析。实验显示:实验组腋臭顶泌汗腺中MRP8的表达阳性率(60%)高于空白对照组(33.3%),差异具统计学意义(p<0.05);阳性对照组中MRP8的表达阳性率(90%)高于实验组,两组间差异具统计学意义(p<0.05)。腋臭患者的汗腺中MRP8蛋白表达较正常人高,提示腋臭的发生、发展与该蛋白表达的变化具有密切关系,能够为腋臭临床诊断提供重要依据。  相似文献   

14.
The multidrug resistance proteins MRP2 (ABCC2) and MRP3 (ABCC3) are key primary active transporters involved in anionic conjugate and drug extrusion from the human liver. The major physiological role of MRP2 is to transport conjugated metabolites into the bile canaliculus, whereas MRP3 is localized in the basolateral membrane of the hepatocytes and transports similar metabolites back to the bloodstream. Both proteins were shown to interact with a large variety of transported substrates, and earlier studies suggested that MRPs may work as co-transporters for different molecules. In the present study we expressed the human MRP2 and MRP3 proteins in insect cells and examined their transport and ATPase characteristics in isolated, inside-out membrane vesicles. We found that the primary active transport of estradiol-17-beta-d-glucuronide (E217betaG), a major product of human steroid metabolism, was differently modulated by bile acids and organic anions in the case of human MRP2 and MRP3. Active E217betaG transport by MRP2 was significantly stimulated by the organic anions indomethacin, furosemide, and probenecid and by several conjugated bile acids. In contrast, all of these agents inhibited E217betaG transport by MRP3. We found that in the case of MRP2, ATP-dependent vesicular bile acid transport was increased by E217betaG, and the results indicated an allosteric cross-stimulation, probably a co-transport of bile acids and glucuronate conjugates through this protein. There was no such stimulation of bile acid transport by MRP3. In conclusion, the different transport modulation of MRPs by bile acids and anionic drugs could play a major role in regulating physiological and pathological metabolite fluxes in the human liver.  相似文献   

15.
A method is described for purification of P6, MRP8, and MRP14, three calcium-binding proteins assigned to the S100 protein family. The purification procedure included preparation of human granulocytes, ammonium sulfate precipitation, and anion-exchange chromatography and resulted in the copurification of P6, MRP8, and MRP14. Individual proteins were separated by either preparative isoelectric focusing or preparative SDS–PAGE. The procedure was carried out in the course of 4 days and yielded several milligrams of essentially pure P6, MRP8, and MRP14 in either native or denatured form.  相似文献   

16.
Migration inhibitory factor-related protein 8 (MRP8) and MRP14 are expressed by myeloid cells and especially known as marker proteins of an immature and inflammatory subtype of macrophages. In this study, we immunohistochemically examined an accumulation of MRP8+ and MRP14+ macrophages in skin lesions during Leishmania major infection in susceptible BALB/c and RAG-2-/- mice. L. major infection caused the development of a nodular type of skin lesion at the infection site in mice and a massive accumulation of macrophages was observed in the lesions at four weeks after the infection. Immunohistochemical analyses showed MRP8+ and MRP14+ macrophages are predominant cell types in the skin lesions in both mouse strains. In contrast, F4/80+ cells, which correspond to mature macrophages, were rarely found in the skin lesions. These data suggest that the accumulation of inflammatory subtype of macrophages in BALB/c mice during L. major infection can be induced without acquired immune responses.  相似文献   

17.
RNase MRP cleaves the yeast pre-rRNA at a site in internal transcribed spacer 1 (ITS1) and this cleavage can be reproducedin vitro by the highly purified enzyme. Two protein components (Pop1p and Pop2p) have been identified which are common to yeast RNase MRP and RNase P. Moreover, purified RNase P can also cleave the pre-rRNA substratein vitro, underlining the similarities between these particles. Genetic evidence suggests that RNase MRP functionally interacts with the snoRNPs which are required for other pre-rRNA processing reactions.Abbreviations pre-rRNA ribosomal RNA precursor - snoRNA small nucleolar RNA - snoRNP small nucleolar ribonucleoprotein particle  相似文献   

18.
Multidrug resistance-associated protein 4 (MRP4/ABCC4) makes a vital contribution to the bodily distribution of drugs and endogenous compounds because of its cellular efflux abilities. However, little is known about the mechanism regulating its cell surface expression. MRP4 has a PDZ-binding motif, which is a potential sequence that modulates the membrane expression of MRP4 via interaction with PDZ adaptor proteins. To investigate this possible relationship, we performed GST pull-down assays and subsequent analysis with matrix-assisted laser desorption/ionization-time of flight mass spectrometry. This method identified sorting nexin 27 (SNX27) as the interacting PDZ adaptor protein with a PDZ-binding motif of MRP4. Its interaction was confirmed by a coimmunoprecipitation study using HEK293 cells. Knockdown of SNX27 by siRNA in HEK293 cells raised MRP4 expression on the plasma membrane, increased the extrusion of 6-[(14)C]mercaptopurine, an MRP4 substrate, and conferred resistance against 6-[(14)C]mercaptopurine. Cell surface biotinylation studies indicated that the inhibition of MRP4 internalization was responsible for these results. Immunocytochemistry and cell surface biotinylation studies using COS-1 cells showed that SNX27 localized to both the early endosome and the plasma membrane. These data suggest that SNX27 interacts with MRP4 near the plasma membrane and promotes endocytosis of MRP4 and thereby negatively regulates its cell surface expression and transport function.  相似文献   

19.
MRP Subfamily Transporters and Resistance to Anticancer Agents   总被引:17,自引:0,他引:17  
The MRP subfamily of ABC transporters from mammals consists of at least seven members, six of which have been implicated in the transport of amphipathic anions. MRP1, MRP2, and MRP3 bear a close structural resemblance, confer resistance to a variety of natural products as well as methotrexate, and have the facility for transporting glutathione and glucuronate conjugates. MRP1 is a ubiquitously expressed efflux pump for the products of phase II of xenobiotic detoxification, while MRP2, whose hereditary deficiency results in Dubin–Johnson syndrome, functions to extrude organic anions into the bile. MRP3 is distinguished by its capacity to transport the monoanionic bile constituent glycocholate, and may function as a basolateral back-up system for the detoxification of hepatocytes when the usual canalicular route is impaired by cholestatic conditions. MRP4 and MRP5 resemble each other more closely than they resemble MRPs 1–3 and confer resistance to purine and nucleotide analogs which are either inherently anionic, as in the case of the anti-AIDS drug PMEA, or are phosphorylated and converted to anionic amphiphiles in the cell, as in the case of 6-MP. Given their capacity for transporting cyclic nucleotides, MRP4 and MRP5 have also been implicated in a broad range of cellular signaling processes. The drug resistance activity and physiological substrates of MRP6 are unknown. However, its hereditary deficiency results in pseudoxanthoma elasticum, a multisystem disorder affecting skin, eyes, and blood vessels. It is hoped that elucidation of the resistance profiles and physiological functions of the different members of the MRP subfamily will provide new insights into the molecular basis of clinical drug resistance and spawn new strategies for combating this phenomenon.  相似文献   

20.
RNase P, the enzyme responsible for 5-end processing of tRNAs and 4.5S RNA, has been extensively characterized fromE. coli. The RNA component ofE. coli RNase P, without the protein, has the enzymatic activity and is the first true RNA enzyme to be characterized. RNase P and MRP are two distinct nuclear ribonucleoprotein (RNP) particles characterized in many eukaryotic cells including human, yeast and plant cells. There are many similarities between RNase P and MRP. These include: (1) sequence specific endonuclease activity; (2) homology at the primary and secondary structure levels; and (3) common proteins in both the RNPs. It is likely that RNase P and MRP originated from a common ancestor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号