首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The interactions of cyanide with two copper-containing amine oxidases (CuAOs) from pea seedlings (PSAO) and the soil bacterium Arthrobacter globiformis (AGAO) have been investigated by spectroscopic and kinetic techniques. Previously, we rationalized the effects of azide and cyanide for several CuAOs in terms of copper coordination by these exogenous ligands and their effects on the internal redox equilibrium TPQamr-Cu(II)TPQsq-Cu(I). The mechanism of cyanide inhibition was proposed to occur through complexation to Cu(I), thereby directly competing with O2 for reoxidation of TPQ. Although cyanide readily and reversibly reacts with quinones, no direct spectroscopic evidence for cyanohydrin derivatization of TPQ has been previously documented for CuAOs. This work describes the first direct spectroscopic evidence, using both model and enzyme systems, for cyanohydrin derivatization of TPQ. Kd values for Cu(II)-CN and Cu(I)-CN, as well as the Ki for cyanide inhibition versus substrate amine, are reported for PSAO and AGAO. In spite of cyanohydrin derivatization of the TPQ cofactor in these enzymes, the uncompetitive inhibition of amine oxidation is determined to arise almost exclusively through CN complexation of Cu(I).Abbreviations AGAO Arthrobacter globiformis amine oxidase - APAO Arthrobacter P1 amine oxidase - APT attached proton test - BPAO bovine plasma amine oxidase - CuAO quinone-copper containing amine oxidase - LTQ lysyl tyrosylquinone - MAO monoamine oxidase - PKAO porcine kidney amine oxidase - PPAO porcine plasma amine oxidase - PSAO pea seedling amine oxidase - TPQ 2,4,5-trihydroxyphenylalaninequinone - TPQamr TPQ aminoresorcinol - TPQimq TPQ iminoquinone - TPQox TPQ oxidized - TPQsq TPQ semiquinone - WT wild-typeE.M. Shepard and G.A. Juda contributed equally to this workThis revised version was published online in February 2004: Hansenula polymorpha was not italicised at the end of the Introduction, Equation 3 appeared twice, and the resolution of Scheme 3 was insufficient.An erratum to this article can be found at  相似文献   

2.
Copper amine oxidases (CAOs) are a large family of proteins that use molecular oxygen to oxidize amines to aldehydes with the concomitant production of hydrogen peroxide and ammonia. CAOs utilize two cofactors for this reaction: topaquinone (TPQ) and a Cu(II) ion. Two mechanisms for oxygen reduction have been proposed for these enzymes. In one mechanism (involving inner-sphere electron transfer to O2), Cu(II) is reduced by TPQ, forming Cu(I), to which O2 binds, forming a copper–superoxide complex. In an alternative mechanism (involving outer-sphere electron transfer to O2), O2 is directly reduced by TPQ, without reduction of Cu(II). Substitution of Cu(II) with Co(II) has been used to distinguish between the two mechanisms in several CAOs. Because it is unlikely that Co(II) could be reduced to Co(I) in this environment, an inner-sphere mechanism, as described above, is prevented. We adapted metal replacement methods used for other CAOs to the amine oxidase from pea seedlings (PSAO). Cobalt-substituted PSAO (CoPSAO) displayed nominal catalytic activity: k cat is 4.7% of the native k cat, and K M (O2) for CoPSAO is substantially (22-fold) higher. The greatly reduced turnover number for CoPSAO suggests that PSAO uses the inner-sphere mechanism, as has been predicted from 18O isotope effect studies (Mukherjee et al. in J Am Chem Soc 130:9459–9473, 2008), and is catalytically compromised when constrained to operate via outer-sphere electron transfer to O2. This study, together with previous work, provides strong evidence that CAOs use both proposed mechanisms, but each homolog may prefer one mechanism over the other.  相似文献   

3.
Four substrate analogs, 4-(2-naphthyloxy)-2-butyn-1-amine (1), 1,4-diamino-2-chloro-2-butene (2), 1,6-diamino-2,4-hexadiyne (3), and 2-chloro-5-phthalimidopentylamine (4) have been tested as inhibitors against mammalian, plant, bacterial, and fungal copper-containing amine oxidases: bovine plasma amine oxidase (BPAO), equine plasma amine oxidase (EPAO), pea seedling amine oxidase (PSAO), Arthrobacter globiformis amine oxidase (AGAO), Escherichia coli amine oxidase (ECAO), and Pichia pastoris lysyl oxidase (PPLO). Reactions of 1,4-diamino-2-butyne with selected amine oxidases were also examined. Each substrate analog contains a functional group that chemical precedent suggests could produce mechanism-based inactivation. Striking differences in selectivity and rates of inactivation were observed. For example, between two closely related plasma enzymes, BPAO is more sensitive than EPAO to 1 and 3, while the reverse is true for 2 and 4. In general, inactivation appears to arise in some cases from TPQ cofactor modification and in other cases from alkylation of protein residues in a manner that blocks access of substrate to the active site. Notably, 1 completely inhibits AGAO at stoichiometric concentrations and is not a substrate, but is an excellent substrate of PSAO and inhibition is observed only at very high concentrations. Structural models of 1 in Schiff base linkage to the TPQ cofactor in AGAO and PSAO (for which crystal structures are available) reveal substantial differences in the degree of interaction of bound 1 with side-chain residues, consistent with the widely divergent activities. Collectively, these results suggest that the development of highly selective amine oxidase inhibitors is feasible.  相似文献   

4.
Kinetic properties of novel amine oxidase isolated from sainfoin (Onobrychis viciifolia) were compared to those of typical plant amine oxidase (EC 1.4.3.6) from lentil (Lens culinaris). The amine oxidase from sainfoin was active toward substrates, such as 1,5-diaminopentane (cadaverine) with K(m) of 0.09 mM and 1,4-diaminobutane (putrescine) with K(m) of 0.24 mM. The maximum rate of oxidation for cadaverine at saturating concentration was 2.7 fold higher than that of putrescine. The amine oxidase from lentil had the maximum rate for putrescine comparable to the rate of sainfoin amine oxidase with the same substrate. Both amine oxidases, like other plant Cu-amine oxidases, were inhibited by substrate analogs (1,5-diamino-3-pentanone, 1,4-diamino-2-butanone and aminoguanidine), Cu2+ chelating agents (diethyltriamine, 1,10-phenanthroline, 8-hydroxyquinoline, 2,2'-bipyridyl, imidazole, sodium cyanide and sodium azide), some alkaloids (L-lobeline and cinchonine), some lathyrogens (beta-aminopropionitrile and aminoacetonitrile) and other inhibitors (benzamide oxime, acetone oxime, hydroxylamine and pargyline). Tested by Ouchterlony's double diffusion in agarose gel, polyclonal antibodies against the amine oxidase from sainfoin, pea and grass pea cross-reacted with amine oxidases from several other Fabaceae and from barley (Hordeum vulgare) of Poaceae, while amine oxidase from the filamentous fungus Aspergillus niger did not cross-react at all. However, using Western blotting after SDS-PAGE with rabbit polyclonal antibodies against the amine oxidase from Aspergillus niger, some degree of similarity of plant amine oxidases from sainfoin, pea, field pea, grass pea, fenugreek, common melilot, white sweetclover and Vicia panonica with the A. niger amine oxidase was confirmed.  相似文献   

5.
Juda GA  Shepard EM  Elmore BO  Dooley DM 《Biochemistry》2006,45(29):8788-8800
Copper amine oxidases (CuAOs) catalyze the oxidative deamination of primary amines operating through a ping-pong bi-bi mechanism. In this work, azide (an exogenous monodentate ligand) was used to probe the role of copper during the oxidative half-reaction of CuAO catalysis. The effects of azide on both the reductive and oxidative half-reactions of pea seedling amine oxidase (PSAO), the recombinant human kidney diamine oxidase (rhDAO), Arthrobacter globiformis amine oxidase (AGAO), and Pichia pastoris amine oxidase (PPLO) have been examined. For the reductive half-reaction, defined as the oxidation of amine substrate to an aldehyde, azide was discovered to exhibit either noncompetitive or competitive inhibition with respect to the amine, depending on the enzyme source. With regard to the oxidative half-reaction, defined as the reoxidation of the enzyme via reduction of O(2) to H(2)O(2), azide has been determined to exhibit competitive inhibition with respect to O(2) in PSAO with a calculated K(i) value that is in excellent agreement with the experimentally determined K(d) value for the Cu(II)-N(3)(-) complex. Azide was found to exhibit mixed-type/partially competitive inhibition with respect to substrate O(2) in rhDAO, with an apparent K(i) that is similar to the K(d) value for the Cu(II)-N(3)(-) complex. The competitive inhibition for PSAO and the partially competitive inhibition for rhDAO are consistent with O(2) interacting directly with copper during enzymatic reoxidation. For the enzymes AGAO and PPLO, pure noncompetitive and mixed-type/partially competitive inhibition is observed. K(i) values for reductive and oxidative half-reactions are equivalent and are lower than measured K(d) values for the Cu(II)-N(3)(-) complexes in oxidized and substrate-reduced forms of these enzymes. Given these observations, it appears that substantial inhibition of the reductive half-reaction occurs at the concentrations of azide used for the oxidative half-reaction experiments, thereby complicating kinetic interpretation. At this time, the data do not permit us to distinguish between two possibilities: (1) inhibition by azide with respect to O(2) is intrinsically competitive in CuAOs, but this effect cannot always be deconvolved experimentally from the effects of azide on the reductive half-reaction; or (2) CuAOs differ in some steps of their reoxidation mechanisms.  相似文献   

6.
The electrochemical behavior of redox centers in the active site of amine oxidases from lentil seedlings and Euphorbia characias latex was investigated using a mercury film electrode. Tyrosine-derived 6-hydroxydopa quinone (TPQ) and copper ions in the active site are redox centers of these amine oxidases. The enzymes undergo two reduction processes at negative potentials related to the reduction of the TPQ cofactor to the corresponding hydroquinones and the reduction of copper ions, (Cu(II)-->Cu(I)). Copper depleted enzymes, prepared by reduction with dithionite followed by dialysis against cyanide, undergo only one reduction process. Nyquist diagrams, recorded at potentials corresponding to the reduction of cofactors as dc-offset, represent charge transfer impedance followed by a Warburg-type line at low frequencies, indicating the occurrence of a diffusion controlled process in the rate-limiting step of the reduction process.  相似文献   

7.
Copper, a mediator of redox chemistries in biology, is often found in enzymes that bind and reduce dioxygen. Among these, the copper amine oxidases catalyze the oxidative deamination of primary amines utilizing a type(II) copper center and 2,4,5-trihydroxyphenylalanine quinone (TPQ), a covalent cofactor derived from the post-translational modification of an active site tyrosine. Previous studies established the dependence of TPQ biogenesis on Cu(II); however, the dependence of cofactor formation on the biologically relevant Cu(I) ion has remained untested. In this study, we demonstrate that the apoform of the Hansenula polymorpha amine oxidase readily binds Cu(I) under anaerobic conditions and produces the quinone cofactor at a rate of 0.28 h(-1) upon subsequent aeration to yield a mature enzyme with kinetic properties identical to the protein product of the Cu(II)-dependent reaction. Because of the change in magnetic properties associated with the oxidation of copper, electron paramagnetic resonance spectroscopy was employed to investigate the nature of the rate-limiting step of Cu(I)-dependent cofactor biogenesis. Upon aeration of the unprocessed enzyme prebound with Cu(I), an axial Cu(II) electron paramagnetic resonance signal was found to appear at a rate equivalent to that for the cofactor. These data provide strong evidence for a rate-limiting release of superoxide from a Cu(II)(O(2)(.)) complex as a prerequisite for the activation of the precursor tyrosine and its transformation for TPQ. As copper is trafficked to intracellular protein targets in the reduced, Cu(I) state, these studies offer possible clues as to the physiological significance of the acquisition of Cu(I) by nascent H. polymorpha amine oxidase.  相似文献   

8.
Longu S  Mura A  Padiglia A  Medda R  Floris G 《Phytochemistry》2005,66(15):1751-1758
Copper/quinone amine oxidases contain Cu(II) and the quinone of 2,4,5-trihydroxyphenylalanine (topaquinone; TPQ) as cofactors. TPQ is derived by post-translational modification of a conserved tyrosine residue in the protein chain. Major advances have been made during the last decade toward understanding the structure/function relationships of the active site in Cu/TPQ amine oxidases using specific inhibitors. Mechanism-based inactivators are substrate analogues that bind to the active site of an enzyme being accepted and processed by the normal catalytic mechanism of the enzyme. During the reaction a covalent modification of the enzyme occurs leading to irreversible inactivation. In this review mechanism-based inactivators of plant Cu/TPQ amine oxidases from the pulses lentil (Lens esculenta), pea (Pisum sativum), grass pea (Lathyrus sativus) and sainfoin (Onobrychis viciifolia,) are described. Substrates forming, in aerobiotic and in anaerobiotic conditions, killer products that covalently bound to the quinone cofactor or to a specific amino acid residue of the target enzyme are all reviewed.  相似文献   

9.
Welford RW  Lam A  Mirica LM  Klinman JP 《Biochemistry》2007,46(38):10817-10827
The mechanism of the first electron transfer from reduced cofactor to O2 in the catalytic cycle of copper amine oxidases (CAOs) remains controversial. Two possibilities have been proposed. In the first mechanism, the reduced aminoquinol form of the TPQ cofactor transfers an electron to the copper, giving radical semiquinone and Cu(I), the latter of which reduces O2 (pathway 1). The second mechanism invokes direct transfer of the first electron from the reduced aminoquinol form of the TPQ cofactor to O2 (pathway 2). The debate over these mechanisms has arisen, in part, due to variable experimental observations with copper amine oxidases from plant versus other eukaryotic sources. One important difference is the position of the aminoquinol/Cu(II) to semiquinone/Cu(I) equilibrium on anaerobic reduction with amine substrate, which varies from almost 0% to 40% semiquinone/Cu(I). In this study we have shown how protein structure controls this equilibrium by making a single-point mutation at a second-sphere ligand to the copper, D630N in Hansenula polymorpha amine oxidase, which greatly increases the concentration of the cofactor semiquinone/Cu(I) following anaerobic reduction by substrate. The catalytic properties of this mutant, including 18O kinetic isotope effects, point to a conservation of pathway 2, despite the elevated production of the cofactor semiqunone/Cu(I). Changes in kcat/Km[O2] are attributed to an impact of D630N on an increased affinity of O2 for its hydrophobic pocket. The data in this study indicate that changes in cofactor semiquinone/Cu(I) levels are not sufficient to alter the mechanism of O2 reduction and illuminate how subtle features are able to control the reduction potential of active site metals in proteins.  相似文献   

10.
Hirota S  Iwamoto T  Tanizawa K  Adachi O  Yamauchi O 《Biochemistry》1999,38(43):14256-14263
Carbon monoxide complexes have been generated for copper/topa quinone (TPQ)-containing amine oxidases from Arthrobactor globiformis (AGAO) and Aspergillus niger (AO-I) and characterized by various spectroscopic measurements. Addition of CO to AGAO anaerobically reduced with its substrate 2-phenylethylamine led to a slight increase of absorption bands at 440 and 470 nm derived from the semiquinone form (TPQ(sq)) of the TPQ cofactor, concomitantly giving rise to new CO-related absorption bands at 334 and 434 nm. The intensity of the TPQ(sq) radical EPR signal at g = 2.004 also increased in the presence of CO, while its hyperfine coupling structure was affected insignificantly. FT-IR measurements revealed C-O stretching bands (nu(CO)) at 2063 and 2079 cm(-1) for the CO complex of the substrate-reduced AGAO (at 2085 cm(-1) for AO-I), which shifted nearly 100 cm(-1) to lower frequencies upon using (13)C(18)O. Collectively, these results suggest that CO is bound to the Cu(I) ion in the Cu(I)/TPQ(sq) species formed in the reductive half-reaction of amine oxidation, thereby shifting the Cu(II)/aminoresorcinol right arrow over left arrow Cu(I)/semiquinone equilibrium toward the latter. When AGAO was reduced with dithionite, an intermediary form of the enzyme with Cu(II) reduced to Cu(I) but TPQ still in the oxidized state (TPQ(ox)) was produced. Dithionite reduction of AGAO in the presence of CO resulted in the immediate formation of FT-IR bands at 2064 and 2083 cm(-1), which were assigned to the nu(CO) bands of the CO bound to the TPQ(ox) enzyme. The intense 2083 cm(-1) band was then displaced by a new band at 2077 cm(-1), corresponding to the formation of the fully reduced topa. Significant variation of these nu(CO) frequencies indicates that vibrational properties of CO bound to copper amine oxidases are sensitively influenced by the coordination structure of the Cu(I) ion, which may be modulated by the chemical and redox states of the TPQ cofactor.  相似文献   

11.
This study presents the first detailed examination by resonance Raman (RR) spectroscopy of the rates of solvent exchange for the C5 and C3 positions of the TPQ cofactor in several wild-type copper-containing amine oxidases and mutants of the amine oxidase from Hansenula polymorpha (HPAO). On the basis of crystal structure analysis and differing rates of C5 [double bond] O and C3 [bond] H exchange within the enzyme systems, but equally rapid rates of C5 [double bond] O and C3 [bond] H exchange in a TPQ model compound, it is proposed that these data can be used to determine the TPQ cofactor orientation within the active site of the resting enzyme. A rapid rate of C5 [double bond] O exchange (t(1/2) < 30 min) and a slow (t(1/2) = 6 h) to nonexistent rate of C3 [bond] H exchange was observed for wild-type HPAO, the amine oxidase from Arthrobacter globiformis, pea seedling amine oxidase at pH 7.1, and the E406Q mutant of HPAO. This pattern is ascribed to a productive TPQ orientation, with the C5 [double bond] O near the substrate-binding site and the C3 [bond] H near the Cu. In contrast, a slow rate of C5 [double bond] O exchange (t(1/2) = 1.6-3.3 h) coupled with a fast rate of C3 [bond] H exchange (t(1/2) < 30 min) was observed for the D319E and D319N catalytic base mutants of HPAO and for PSAO at pH 4.6 (t(1/2) = 4.5 h for C5 [double bond] O exchange). This pattern identifies a flipped orientation, involving 180 degrees rotation about the C alpha-C beta bond, which locates the C3 [bond] H near the substrate-binding site and the C5 double bond] O near the Cu. Finally, fast rates of both C5 [double bond] O and C3 [bond] H exchange (t(1/2) < 30 min) were observed for the amine oxidase from Escherichia coli and the N404A mutant of HPAO, suggesting a mobile cofactor, with multiple TPQ orientations between productive and flipped. These results demonstrate that opposing sides of the TPQ ring possess different degrees of solvent accessibility and that the rates of C5 [double bond] O and C3 [bond] H exchange can be used to predict the TPQ cofactor orientation in the resting forms of these enzymes.  相似文献   

12.
Copper amine oxidases (CuAO), from Escherichia coli (ECAO) and pea seedling (PSAO) were reacted with an excess of the hydrazine derivative 2-hydrazinopyridine (2HP) to form an initial, strongly absorbing adduct, (adduct 1; λmax 420–430 nm) formed by the covalent binding of 2HP with the active site cofactor 2,4,5-trihydroxyphenylalanine quinone (TPQ). Thermal incubation of buffered solutions of adduct 1 (pH 5.65–10.7) or addition of KOH solution (giving a final pH of 13–15) led isosbestically to a dramatic λmax shift yielding adduct 2 (λmax 520–530 nm). For both ECAO and PSAO, an increase in pH resulted in increased formation of adduct 2 with concomitant loss of adduct 1. Maximum adduct 2 formation occurred at pH 9.84 in ECAO and at pH 10.7 in PSAO. Beyond these pH levels, adduct 2 formation occurred to a much lesser extent which was independent of pH, suggesting enzyme denaturation. It is proposed that the conversion of adduct 1 to adduct 2 occurs as a result of hydrazone to azo conversion mediated by loss of a single proton, possibly to the active site base. It is further postulated that adduct formation and subsequent deprotonation can be likened to the substrate and product Schiff base complexes in the reductive half cycle of copper/TPQ containing amine oxidases. As part of this study an extinction coefficient at 280 nm was determined for ECAO by gravimetric analysis. This yielded a value of 2.1×105 M−1 cm−1 giving rise to the need of a correction factor when estimating the protein concentration from an absorbance reading at 280 nm. Using the estimated molecular mass of 160 kDa for the homodimeric ECAO, a correction factor of 0.76 must be applied.  相似文献   

13.
A series of compounds derived from a previously identified substrate analogue of copper amine oxidases (CuAOs) (Shepard et al. (2002) Eur. J. Biochem. 269, 3645-3658) has been screened against six different CuAOs with a view to designing potent and selective inhibitors. The substrate analogues investigated were 4-(1-naphthyloxy)-2-butyn-1-amine, 4-(2-methylphenoxy)-2-butyn-1-amine, 4-(3-methylphenoxy)-2-butyn-1-amine, 4-(4-methylphenoxy)-2-butyn-1-amine, and 4-phenoxy-2-butyn-1-amine. These compounds were screened against equine plasma amine oxidase (EPAO), Pisum sativum amine oxidase (PSAO), Pichia pastoris lysyl oxidase (PPLO), bovine plasma amine oxidase (BPAO), human kidney diamine oxidase (KDAO), and Arthrobacter globiformis amine oxidase (AGAO) to examine the effect of different substituent groups on potency. Despite the similar structures of the 4-aryloxy analogues evaluated, striking differences in potency were observed. In addition, crystal structures of AGAO derivitized with 4-(2-naphthyloxy)-2-butyn-1-amine and 4-(4-methylphenoxy)-2-butyn-1-amine were obtained at a resolution of 1.7 A. The structures reveal a novel and unprecedented reaction mechanism involving covalent attachment of the alpha,beta-unsaturated aldehyde turnover product to the amino group of the reduced 2,4,5-trihydroxyphenylalanine quinone (TPQ) cofactor. Collectively, the structural and inhibition results support the feasibility of designing selective mechanism-based inhibitors of copper amine oxidases.  相似文献   

14.
《Inorganica chimica acta》1986,123(4):231-236
Complexes of pig kidney diamine oxidase with azide, thiocyanate, and cyanide have been characterized by EPR and circular dichroism spectroscopy. Cu(II) d-d bands are observed in the CD spectrum of the resting enzyme at ≈800 nm (12 500 cm−1) and 575 nm (17 400 cm−1). Anion binding produces characteristic changes in the CD spectra. N3/SCN → Cu(II) ligand-to-metal charge-transfer transitions are located at 390 nm (25 600 cm−1) and 365 nm (27 400 cm−1), respectively. In addition, an intense new band grew in at ≈500 nm (20 000 cm−1) when azide or thiocyanate were added, which may be assigned as a Cu(II) electronic transition that gains rotational strength in the anion complex. EPR spectra established that the Cu(II)-anion complexes are tetragonal; however, the magnitudes of the anion-induced shifts in the EPR parameters were consistent with substantial perturbations of the Cu(II) electronic ground state in the thiocyanate and cyanide complexes. Prominent superhyperfine splitting was apparent in the EPR spectra of the diamine oxidase complexes with thiocyanate and cyanide. The superhyperfine structure is (at least) partially attributable to endogenous Cu(II) ligands, probably from imidazole.  相似文献   

15.
Copper amine oxidases catalyze the oxidative deamination of primary amines operating through a ping-pong bi bi mechanism, divided into reductive and oxidative half-reactions. Considerable debate still exists regarding the role of copper in the oxidative half-reaction, where O2 is reduced to H2O2. Substrate-reduced amine oxidases display an equilibrium between a Cu(II) aminoquinol and a Cu(I) semiquinone, with the magnitude of the equilibrium constant being dependent upon the enzyme source. The initial electron transfer to dioxygen has been proposed to occur from either the reduced Cu(I) center or the reduced aminoquinol cofactor. In order for Cu(I) to be involved, it must be shown that the rate of electron transfer (k ET) between the aminoquinol and Cu(II) is sufficiently rapid to place the Cu(I) semiquinone moiety on the mechanistic pathway. To further explore this issue, we measured the intramolecular electron transfer rate for the Cu(II) aminoquinol ⇆ Cu(I) semiquinone equilibrium in Arthrobacter globiformis amine oxidase (AGAO) by temperature-jump relaxation techniques. The results presented herein establish that k ET is greater than the rate of catalysis (k cat) for the preferred amine substrate β-phenylethylamine at three pH values, thereby permitting the Cu(I) semiquinone to be a viable catalytic intermediate during enzymatic reoxidation in this enzyme. The data show that k ET is approximately equivalent at pH 6.2 and 7.2, being 2.5 times k cat for these pH values. At pH 8.2, however, k ET decreases, becoming comparable to k cat. Potential reasons for the decreased k ET at basic pH are presented. The implications of these results in light of a previously published study measuring reoxidation rates of substrate-reduced AGAO are also addressed.  相似文献   

16.
Medda R  Mura A  Longu S  Anedda R  Padiglia A  Casu M  Floris G 《Biochimie》2006,88(7):827-835
Plant copper/quinone amine oxidases are homodimeric enzymes containing Cu(II) and a quinone derivative of a tyrosyl residue (2,4,5-trihydroxyphenylalanine, TPQ) as cofactors. These enzymes catalyze the oxidative deamination of primary amines by a classical ping-pong mechanism, i.e. two distinct half-reactions, enzyme reduction by substrate followed by its re-oxidation by molecular oxygen. In the first half-reaction two forms of the reduced TPQ have been observed, the colorless Cu(II)-aminoquinol and the yellow Cu(I)-semiquinolamine radical so that this enzyme may be referred to as a "protein-radical enzyme". The interaction of xenon, in aqueous solutions, with the copper/TPQ amine oxidase from lentil (Lens esculenta) seedlings has been investigated by NMR and optical spectroscopy. NMR data indicate that xenon binds to the protein. Under 10 atm gaseous xenon and in the absence of substrates more than 60% native enzyme is converted into Cu(I)-semiquinolamine radical species, showing for the first time that both monomers in the dimer can generate the radical. Under the same experimental conditions the copper-free lentil enzyme is able to generate an intermediate absorbing at about 360 nm, which is assigned to the product Schiff base quinolaldimine which, to the best of our knowledge, has never been observed during the catalytic mechanism of plant amine oxidases. A possible role of the lysine residue responsible for the formation of Cu(I)-semiquinolamine and quinolaldimine, is proposed.  相似文献   

17.
Aqueous Cu2+ and Cu(II) complexes of salicylate, lysine, and tyrosine decrease the rate of benzylamine oxidation by bovine plasma amine oxidase. Bissalicylato Cu(II) and Cu2+ inhibit non-competitively with respect to benzylamine. Lysine, tyrosine, Cu(EDTA)2?, Zn2+, and Co2+ do not inhibit, and erythrocyte Cu, Zn superoxide dismutase shows only slight inhibition of the amine oxidase. The data are most consistent with an inhibitory mechanism involving dismutation of O2? by the Cu(II) complexes within a site relatively inaccessible to the enzyme superoxide dismutase. Excess lysine significantly decreases inhibition by the bis-lysine complex of Cu(II).  相似文献   

18.
Interactions of pea seedlings amine oxidase (PSAO, EC 1.4.3.6) with sedamine derivatives were studied. All compounds exhibited a competitive inhibition with the inhibition constants in the range 0.03-1.0 mM. The inhibition effect increased in the order allosedamine < sedamine < norallosedamine < norsedamine. The nor-derivatives are about five-fold stronger inhibitors and the allo-isomers are slightly weaker inhibitors than the others. Interestingly, the (-)-diastereomers of the studied sedamines were considerably stronger inhibitors than the (+)-antipodes. Absorption spectroscopy was used to differentiate between two known groups of competitive inhibitors of PSAO. A representative of substrate analogues, 1,5-diamino-3-pentanone, bleached the spectrum of the TPQ cofactor producing a very stable intermediate of the enzyme catalytic cycle that was only slowly converted to the product. On the other hand, the alkaloids did not perturb the spectrum of TPQ so they may interact with some other residue near the active site.  相似文献   

19.
1. Cell-free extracts of the marine bacterium Beneckea natriegens, derived by sonication, were separated into particulate and supernatant fractions by centrifugation at 150 000 × g.2. NADH, succinate, d(?)- and l(+)-lactate oxidase and dehydrogenase activities were located in the particles, with 2- to 3-fold increases in specific activity over the cell free extract. The d(?)- and l(+)-lactate dehydrogenases were NAD+ and NADP+ independent. Ascorbate-N,N,N′,N′-tetramethylphenylenediamine (TMPD) oxidase was also present in the particulate fraction; it was 7–12 times more active than the physiological substrate oxidases.3. Ascorbate-TMPD oxidase was completely inhibited by 10 μM cyanide. Succinate, NADH, d(?)-lactate and l(+)-lactate oxidases were inhibited in a biphasic manner, with 10 μM cyanide causing only 10–50 % inhibition; further inhibition required more than 0.5 mM cyanide, and 10 mM cyanide caused over 90 % inhibition. Low sulphide (5 μM) and azide (2 mM) concentrations also totally inhibited ascorbate-TMPD oxidase, but only partially inhibited the other oxidases. High concentrations of sulphide but not azide caused a second phase inhibition of NADH, succinate, d(?)-lactate and l(+)-lactate oxidases.4. Low oxidase activities of the physiological substrates, obtained by using non-saturating substrate concentrations, were more inhibited by 10 μM cyanide and 2 mM azide than high oxidase rates, yet ascorbate-TMPD oxidase was completely inhibited by 10 μM cyanide over a wide range of rates of oxidation.5. These results indicate terminal branching of the respiratory system. Ascorbate-TMPD is oxidised by one pathway only, whilst NADH, succinate, d(?)-lactate and l(+)-lactate are oxidised via both pathways. Respiration of the latter substrates occurs preferentially by the pathway associated with ascorbate-TMPD oxidase and which is sensitive to low concentrations of cyanide, azide and sulphide.6. The apparent Km for O2 for each of the two pathways was detected using ascorbate-TMPD and NADH or succinate plus 10 μM cyanide respectively. The former pathway had an apparent Km of 8–17 (average 10.6) μM and the latter 2.2–4.0 (average 3.0) μM O2.  相似文献   

20.
Bovine serum amine oxidase (BSAO), reduced by excess amine under limited turnover conditions, was over 80% inactivated by H(2)O(2) upon oxygen exhaustion. The UV-Vis spectrum and the reduced reactivity with carbonyl reagents showed that the cofactor topaquinone (TPQ) was stabilized in reduced form. The protein large M(r) (170 kDa) prevented the identification of modified residues by amino acid analyses. Minor changes of the Cu(2+) EPR signal and the formation of a radical at g = 2.001, with intensity a few percent of that of the Cu(2+) signal, unaffected by a temperature increase, suggest that Cu(2+)-bound histidines were not oxidized and the radical was not the Cu(+)-semiquinolamine in equilibrium with Cu(2+)-aminoquinol. It may derive from the modification of a conserved residue in proximity of the active site, possibly the tyrosine at hydrogen-bonding distance of TPQ C-4 ionized hydroxyl. The inactivation reaction appears to be a general feature of copper-containing amine oxidases. It may be part of an autoregulatory process in vivo, possibly relevant to cell adhesion and redox signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号