首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 405 毫秒
1.
In the developing vertebrate retina, nAChR synapses are among the first to appear. This early cholinergic circuitry plays a key role in generating "retinal waves," spontaneously generated waves of action potentials that sweep across the ganglion cell layer. These retinal waves exist for a short period of time during development when several circuits within the visual system are being established. Here I review the cholinergic circuitry of the developing retina and the role these early circuits play in the development of the retina itself and of retinal projections to the lateral geniculate nucleus of the thalamus.  相似文献   

2.
Kerschensteiner D  Wong RO 《Neuron》2008,58(6):851-858
Patterns of coordinated spontaneous activity have been proposed to guide circuit refinement in many parts of the developing nervous system. It is unclear, however, how such patterns, which are thought to indiscriminately synchronize nearby cells, could provide the cues necessary to segregate functionally distinct circuits within overlapping cell populations. Here, we report that glutamatergic retinal waves possess a substructure in the bursting of neighboring retinal ganglion cells with opposite light responses (ON or OFF). Within a wave, cells fire repetitive nonoverlapping bursts in a fixed order: ON before OFF. This pattern is absent from cholinergic waves, which precede glutamate-dependent activity, providing a developmental sequence of distinct activity-encoded cues. Asynchronous bursting of ON and OFF retinal ganglion cells depends on inhibition between these parallel pathways. Similar asynchronous activity patterns could arise throughout the nervous system, as inhibition matures and might help to separate connections of functionally distinct subnetworks.  相似文献   

3.
Dynamics of retinal waves are controlled by cyclic AMP   总被引:7,自引:0,他引:7  
Stellwagen D  Shatz CJ  Feller MB 《Neuron》1999,24(3):673-685
Waves of spontaneous activity sweep across the developing mammalian retina and influence the pattern of central connections made by ganglion cell axons. These waves are driven by synaptic input from amacrine cells. We show that cholinergic synaptic transmission during waves is not blocked by TTX, indicating that release from starburst amacrine cells is independent of sodium action potentials. The spatiotemporal properties of the waves are regulated by endogenous release of adenosine, which sets intracellular cAMP levels through activation of A2 receptors present on developing amacrine and ganglion cells. Increasing cAMP levels increase the size, speed, and frequency of the waves. Conversely, inhibiting adenylate cyclase or PKA prevents wave activity. Together, these results imply a novel mechanism in which levels of cAMP within an immature retinal circuit regulate the precise spatial and temporal patterns of spontaneous neural activity.  相似文献   

4.
Ganglion cells are the output retinal neurons that convey visual information to the brain. There are ~20 different types of ganglion cells, each encoding a specific aspect of the visual scene as spatial and temporal contrast, orientation, direction of movement, presence of looming stimuli; etc. Ganglion cell functioning depends on the intrinsic properties of ganglion cell’s membrane as well as on the excitatory and inhibitory inputs that these cells receive from other retinal neurons. GABA is one of the most abundant inhibitory neurotransmitters in the retina. How it modulates the activity of different types of ganglion cells and what is its significance in extracting the basic features from visual scene are questions with fundamental importance in visual neuroscience. The present review summarizes current data concerning the types of membrane receptors that mediate GABA action in proximal retina; the effects of GABA and its antagonists on the ganglion cell light-evoked postsynaptic potentials and spike discharges; the action of GABAergic agents on centre-surround organization of the receptive fields and feature related ganglion cell activity. Special emphasis is put on the GABA action regarding the ON–OFF and sustained–transient ganglion cell dichotomy in both nonmammalian and mammalian retina.  相似文献   

5.
The adult visual system is highly organized in its patterns of connectivity. Connections between the retina and its central target, the dorsal lateral geniculate nucleus (dLGN), are remodeled during development as inappropriate synaptic inputs are eliminated by a process that requires retinal activity. Multineuronal recordings of the neonatal ferret retina reveal that during the refinement period, retinal ganglion cells spontaneously display rhythmic bursting activity in which the bursts of neighboring cells are correlated by propagating excitatory waves. These spontaneous retinal waves have temporal and spatial properties that appear instructive for the refinement of the early patterns of retinogeniculate connections prior to visual stimulation.  相似文献   

6.
During retinocollicular map development, spontaneous waves of action potentials spread across the retina, correlating activity among neighboring retinal ganglion cells (RGCs). To address the role of retinal waves in topographic map development, we examined wave dynamics and retinocollicular projections in mice lacking the beta2 subunit of the nicotinic acetylcholine receptor. beta2(-/-) mice lack waves during the first postnatal week, but RGCs have high levels of uncorrelated firing. By P8, the wild-type retinocollicular projection remodels into a refined map characterized by axons of neighboring RGCs forming focal termination zones (TZs) of overlapping arbors. In contrast, in P8 beta2(-/-) mice, neighboring RGC axons form large TZs characterized by broadly distributed arbors. At P8, glutamatergic retinal waves appear in beta2(-/-) mice, and later, visually patterned activity appears, but the diffuse TZs fail to remodel. Thus, spontaneous retinal waves that correlate RGC activity are required for retinotopic map remodeling during a brief early critical period.  相似文献   

7.
A fundamental question in neuroscience is how the information relevant to behavior is presented in the activity of neurons[1]. The visual system, especially the retina, offers some advantage to explore the neural code owing to its explicitly layered structure and relatively simple neuron types[2]. However, most of what we know about retinal signaling is derived from single neuron recordings[2,3]. The assumptions underlying this approach are that individual neuron acts as a unique element dedi…  相似文献   

8.
The first stage of visual processing occurs in the retina, the function of which is to process the raw information obtained from the outside world. In the present study, the electrical activities of a group of retinal ganglion cells were recorded from a small functioning piece of retina, using multi-electrode array (MEA), and the action potentials were detected by applying nonlinear algorithm. By analyzing the ensemble retinal ganglion output characteristics, it is revealed that both firing rates and correlated activity between adjacent neurons in the retina contribute to visual information encoding.  相似文献   

9.
Prior to receiving visual stimuli, spontaneous, correlated activity in the retina, called retinal waves, drives activity-dependent developmental programs. Early-stage waves mediated by acetylcholine (ACh) manifest as slow, spreading bursts of action potentials. They are believed to be initiated by the spontaneous firing of Starburst Amacrine Cells (SACs), whose dense, recurrent connectivity then propagates this activity laterally. Their inter-wave interval and shifting wave boundaries are the result of the slow after-hyperpolarization of the SACs creating an evolving mosaic of recruitable and refractory cells, which can and cannot participate in waves, respectively. Recent evidence suggests that cholinergic waves may be modulated by the extracellular concentration of ACh. Here, we construct a simplified, biophysically consistent, reaction-diffusion model of cholinergic retinal waves capable of recapitulating wave dynamics observed in mice retina recordings. The dense, recurrent connectivity of SACs is modeled through local, excitatory coupling occurring via the volume release and diffusion of ACh. In addition to simulation, we are thus able to use non-linear wave theory to connect wave features to underlying physiological parameters, making the model useful in determining appropriate pharmacological manipulations to experimentally produce waves of a prescribed spatiotemporal character. The model is used to determine how ACh mediated connectivity may modulate wave activity, and how parameters such as the spontaneous activation rate and sAHP refractory period contribute to critical wave size variability.  相似文献   

10.
Developing amphibians need vision to avoid predators and locate food before visual system circuits fully mature. Xenopus tadpoles can respond to visual stimuli as soon as retinal ganglion cells (RGCs) innervate the brain, however, in mammals, chicks and turtles, RGCs reach their central targets many days, or even weeks, before their retinas are capable of vision. In the absence of vision, activity-dependent refinement in these amniote species is mediated by waves of spontaneous activity that periodically spread across the retina, correlating the firing of action potentials in neighboring RGCs. Theory suggests that retinorecipient neurons in the brain use patterned RGC activity to sharpen the retinotopy first established by genetic cues. We find that in both wild type and albino Xenopus tadpoles, RGCs are spontaneously active at all stages of tadpole development studied, but their population activity never coalesces into waves. Even at the earliest stages recorded, visual stimulation dominates over spontaneous activity and can generate patterns of RGC activity similar to the locally correlated spontaneous activity observed in amniotes. In addition, we show that blocking AMPA and NMDA type glutamate receptors significantly decreases spontaneous activity in young Xenopus retina, but that blocking GABA(A) receptor blockers does not. Our findings indicate that vision drives correlated activity required for topographic map formation. They further suggest that developing retinal circuits in the two major subdivisions of tetrapods, amphibians and amniotes, evolved different strategies to supply appropriately patterned RGC activity to drive visual circuit refinement.  相似文献   

11.
Schnitzer MJ  Meister M 《Neuron》2003,37(3):499-511
Population codes in the brain have generally been characterized by recording responses from one neuron at a time. This approach will miss codes that rely on concerted patterns of action potentials from many cells. Here we analyze visual signaling in populations of ganglion cells recorded from the isolated salamander retina. These neurons tend to fire synchronously far more frequently than expected by chance. We present an efficient algorithm to identify what groups of cells cooperate in this way. Such groups can include up to seven or more neurons and may account for more than 50% of all the spikes recorded from the retina. These firing patterns represent specific messages about the visual stimulus that differ significantly from what one would derive by single-cell analysis.  相似文献   

12.
In amphibians and teleosts, retina and tectum grow incongruently. In order to maintain the retinotopy of the retinotectal projection, Gaze, Keating, and Chung (1974) postulated a shifting of terminals throughout growth. In order to test the possibility that ingrowing retinal fibers are the driving force for this shifting, we induced a permanent retinal projection into the ipsilateral tectum in juveniles of the cichlid fish Haplochromis burtoni. The surface of the tectum had increased (11-18 months later) 2.5-5.8 times, and the surface of the retina 8.6-14 times. Filling of ganglion cells with horseradish peroxidase (HRP) retrogradely from the tectum showed ipsilaterally regenerating ganglion cells only in the center of the retina. The position of ganglion cells indicated that the ipsilateral projection derived only from axotomized and regenerating retinal ganglion cells but not from those newly born. Ipsilaterally projecting retinal fibers showed terminals only in the rostral half of the tectum. Comparison of area of terminations of ipsilaterally projecting ganglion cells at various times after the crush provided no evidence for expansion or a shift into caudal tectal areas throughout the period of growth. These findings are compatible with the idea that newly ingrowing fibers induce older terminals to move caudally.  相似文献   

13.
In amphibians and teleosts, retina and tectum grow incongruently. In order to maintain the retinotopy of the retinotectal projection, Gaze, Keating, and Chung (1974) postulated a shifting of terminals throughout growth. In order to test the possibility that ingrowing retinal fibers are the driving force for this shifting, we induced a permanent retinal projection into the ipsilateral tectum in juveniles of the cichlid fish Haplochromis burtoni. The surface of the tectum had increased (11–18 months later) 2.5–5.8 times, and the surface of the retina 8.6–14 times. Filling of ganglion cells with horseradish peroxidase (HRP) retrogradely from the tectum showed ipsilaterally regenerating ganglion cells only in the center of the retina. The position of ganglion cells indicated that the ipsilateral projection derived only from axotomized and regenerating retinal ganglion cells but not from those newly born. Ipsilaterally projecting retinal fibers showed terminals only in the rostral half of the tectum. Comparison of area of terminations of ipsilaterally projecting ganglion cells at various times after the crush provided no evidence for expansion or a shift into caudal tectal areas throughout the period of growth. These findings are compatible with the idea that newly ingrowing fibers induce older terminals to move caudally.  相似文献   

14.

Background

Visual stimuli elicit action potentials in tens of different retinal ganglion cells. Each ganglion cell type responds with a different latency to a given stimulus, thus transforming the high-dimensional input into a temporal neural code. The timing of the first spikes between different retinal projection neurons cells may further change along axonal transmission. The purpose of this study is to investigate if intraretinal conduction velocity leads to a synchronization or dispersion of the population signal leaving the eye.

Methodology/Principal Findings

We ‘imaged’ the initiation and transmission of light-evoked action potentials along individual axons in the rabbit retina at micron-scale resolution using a high-density multi-transistor array. We measured unimodal conduction velocity distributions (1.3±0.3 m/sec, mean ± SD) for axonal populations at all retinal eccentricities with the exception of the central part that contains myelinated axons. The velocity variance within each piece of retina is caused by ganglion cell types that show narrower and slightly different average velocity tuning. Ganglion cells of the same type respond with similar latency to spatially homogenous stimuli and conduct with similar velocity. For ganglion cells of different type intraretinal conduction velocity and response latency to flashed stimuli are negatively correlated, indicating that differences in first spike timing increase (up to 10 msec). Similarly, the analysis of pair-wise correlated activity in response to white-noise stimuli reveals that conduction velocity and response latency are negatively correlated.

Conclusion/Significance

Intraretinal conduction does not change the relative spike timing between ganglion cells of the same type but increases spike timing differences among ganglion cells of different type. The fastest retinal ganglion cells therefore act as indicators of new stimuli for postsynaptic neurons. The intraretinal dispersion of the population activity will not be compensated by variability in extraretinal conduction times, estimated from data in the literature.  相似文献   

15.
Sun L  Han X  He S 《PloS one》2011,6(5):e19477
The ON-OFF direction selective ganglion cells (DSGCs) in the mammalian retina code image motion by responding much more strongly to movement in one direction. They do so by receiving inhibitory inputs selectively from a particular sector of processes of the overlapping starburst amacrine cells, a type of retinal interneuron. The mechanisms of establishment and regulation of this selective connection are unknown. Here, we report that in the rat retina, the morphology, physiology of the ON-OFF DSGCs and the circuitry for coding motion directions develop normally with pharmacological blockade of GABAergic, cholinergic activity and/or action potentials for over two weeks from birth. With recent results demonstrating light independent formation of the retinal DS circuitry, our results strongly suggest the formation of the circuitry, i.e., the connections between the second and third order neurons in the visual system, can be genetically programmed, although emergence of direction selectivity in the visual cortex appears to require visual experience.  相似文献   

16.
The estimation of motion direction from time varying retinal images is a fundamental task of visual systems. Neurons that selectively respond to directional visual motion are found in almost all species. In many of them already in the retina direction selective neurons signal their preferred direction of movement. Scientific evidences suggest that direction selectivity is carried from the retina to higher brain areas. Here we adopt a simple integrate-and-fire neuron model, inspired by recent work of Casti et al. (2008), to investigate how directional selectivity changes in cells postsynaptic to directional selective retinal ganglion cells (DSRGC). Our model analysis shows that directional selectivity in the postsynaptic cells increases over a wide parameter range. The degree of directional selectivity positively correlates with the probability of burst-like firing of presynaptic DSRGCs. Postsynaptic potentials summation and spike threshold act together as a temporal filter upon the input spike train. Prior to the intricacy of neural circuitry between retina and higher brain areas, we suggest that sharpening is a straightforward result of the intrinsic spiking pattern of the DSRGCs combined with the summation of excitatory postsynaptic potentials and the spike threshold in postsynaptic neurons.  相似文献   

17.
18.
In mammalian development, apoptosis spreads over the retina in consecutive waves and induces a remarkable amount of cell loss. No evidence for such consecutive waves has been revealed in the fish retina so far. As the zebrafish is of growing importance as a model for retinal development and for degenerative retinal diseases, we examined the onset and time course of apoptosis in the developing zebrafish retina and in adult fish. We found that apoptosis peaked in the ganglion cell layer (GCL) and inner nuclear layer (INL) in early developmental stages (3-4 days post-fertilization; dpf) followed by a second, but clearly smaller wave at 6-7dpf. Apoptosis in the outer nuclear layer (ONL) started at 5dpf and peaked at 7dpf. This late-onset high peak of apoptosis of photoreceptors is different from that of all other species examined to date. With 1.09% of cells in the GCL and 1.10% in the ONL being apoptotic, the rate of apoptosis in the developing zebrafish retina was conspicuously lower than that observed in other vertebrates (up to 50% in GCL). During development (2-21dpf), apoptotic waves were most obvious in the central retina, whereas in the periphery near the marginal zone (MZ), apoptosis was much lower; in adult animals, practically no apoptosis was present in the central retina but it still occurred near the MZ. Our data show that the onset and time course of apoptosis in the GCL and INL of the zebrafish is comparable with other vertebrates; however, the amount of apoptosis is clearly reduced. Thus, apoptosis in the zebrafish retina may serve more as a mechanism for the fine tuning of the retinal neuronal network after mitotic waves during development or in remaining mitotic areas than as a mechanism for eliminating large numbers of excess cells.  相似文献   

19.
20.
Application of desglycine-argininvasopressin (DG-AVP) differently influenced different types of cells of snail isolated central nervous system. In neurosecretory cells an increase of spontaneous impulse activity took place and, as a rule, bursts of impulses appeared, most often of synaptic origin, excluding PPa1 neurones and one of the neurosecretory cells of the left parietal ganglion. The increase of the bursts activity in these cells was based on the increase of the amplitude of membrane potential waves. Under the influence of neurosecretory cells system activation, EPSPs frequency and amplitude in secondary-sensory neurones increased, which led to a greater probability of the action potentials appearance. At prolonged action the spontaneous EPSPs in these cells began to group in bursts. Excitability and membrane resistance of these cells remained unchanged. DG-AVP had no influence on primary-sensory neurones and motoneurones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号