首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells of Streptococcus salivarius subsp. thermophilus and Lactococcus lactis subsp. lactis entrapped in k-carrageenan-locust bean gum gel performed similarly to free cells in the conversion of lactose to lactic acid. Bead diameter influenced the fermentation rate. Cells entrapped in smaller beads (0.5 to 1.0 mm) showed higher release rates, higher lactose, glucose, and formic acid utilization, higher galactose accumulation, and higher lactic acid production than did cells entrapped in larger beads (1.0 to 2.0 mm). Values for smaller beads were comparable with those for free cells. Immobilization affected the fermentation rate of lactic acid bacteria, especially Lactobacillus delbrueckii subsp. bulgaricus. Entrapped cells of L. delbrueckii subsp. bulgaricus demonstrated a lower lactic acid production than did free cells in batch fermentation. The kinetics of the production of formic and pyruvic acids by L. lactis subsp. lactis and S. salivarius subsp. thermophilus are presented.  相似文献   

2.
The effective diffusion coefficient, D(e), and the distribution constant, K(i), for selected mono- and disaccharides and organic acids were determined in homogeneous calcium-alginate gel with and without entrapped bacteria. Results were obtained from transient concentration changes in well-stirred solutions of limited volume, in which the gel beads were suspended. The effective diffusioncoefficients and the distribution constants were estimated by fitting mathematical model predictions to the experimental data using a nonlinear model fitting program (MODFIT). Both single solute diffusion and multiple solute diffusion were performed. A small positive effect was obtained onthe values of D(e) for the system of multiple solute diffusion; however, the values of K(i) were not significantly influenced. For the nine solutes tested, D(e) for 2% Ca-alginate gel beads was found to be approximately 85% of the diffusivity measured in water. The effects on D(e) and K(i), for lactose and lactic acid were determined for variations of alginate concentration, pH, temperature, and biomass content in the beads. D(e) decreased linearly for both lactose and lactic acid with increasing cell concentration in the Ca-alginate gel. K(i), was constant for both lactose and lactic acid with increasing cell concentration. D(e) was significantly lower at pH 4.5 than at pH 5.5 and 6.5 for both lactose and lactic acid. Furthermore, D(e) seemed to decrease with increased alginate concentration in the range of 1% to 4%. The diffusion rate increased with increasing temperature, and the activation energy for the diffusion process for both lactose and lactic acid was constant in the temperature range tested. (c) 1995 John Wiley & Sons Inc.  相似文献   

3.
AIMS: To investigate the growth and release of Lactococcus lactis subsp. lactis in gel beads and to affect rates of cell release by changing the growth conditions. METHODS AND RESULTS: The rate of release and the distribution of immobilized L. lactis subsp. lactis in alginate beads were studied in continuous fermentations for 48 h. A change in operating pH from 6.5 to 9.25 initially reduced the ratio of the rates of cell release to lactate production by almost a factor of 105. Compared with fermentations at pH 6.5, growth at pH 9.25 also increased the final internal bead biomass concentration by a factor of 5 and increased the final rate of lactate production by 25%. After 48 h, the ratio of the rates of cell release to lactate production was still 10 times lower than in fermentations at pH 6.5. CONCLUSIONS: A change in the operating pH from 6.5 to 9.25 reduced rates of cell release throughout 48 h of fermentation and increased the final rates of lactate production and internal bead biomass concentration. SIGNIFICANCE AND IMPACT OF THE STUDY: These data illustrate that diffusional limitations and corresponding pH gradients can be exploited in affecting the distribution of immobilized growing cells and their concomitant release.  相似文献   

4.
Effective diffusion coefficients (De) of lactose in kappa-carrageenan (2.75% wt/wt)/locust bean gum (0.25% wt/wt) (LBG) gel beads (1.5-2.0-mm diameter)with or without entrapped lactic acid bacteria (LAB) were determined at 40 degrees C. The effects of lactose concentration, bacteria strain (Streptococcus salivarius subsp. thermophilus and Lactobacillus casei subsp. casei) and cell content at various steps of the fermentation process (after immobilization, pre-incubation of the beads and successive fermentations) were measured on De as a first step for process modelling. Results were obtained from transiend concentration changes n well-stirred lactose solutions in which the beads were suspended. A mathematical model of unsteady-state diffusion in a sphere was used, and De was obtained from the best fit of the experimental data. Diffusivity of lactose in cell-tree beads was significantly lower than in pure water mainly because of the obstruction effect of the polymer chains and the hydration region. Furthermore, effective diffusivity and equilibrium partition factor were independent of lactose concentration in the range from 12.5 to 50 g/L. No significant difference was found for De (effective diffusivity) and Kp (partition) coefficients between beads entrapping S. thermophilus (approximately 5 x 10(9) CFU/mL) and cell-free beads. On the other hand higher cell counts obtained with L. casei (close to 1.8 x 10(11) CFU/mL) increased mass transfer resistance resulting in lower effective diffusivities and Kp. Finally, the effects of the type of bacteria and their distribution in the beads on the diffusivity were also discussed.  相似文献   

5.
Lactococcus lactis release from calcium alginate beads.   总被引:1,自引:0,他引:1  
Cell release during milk fermentation by Lactococcus lactis immobilized in calcium alginate beads was examined. Numbers of free cells in the milk gradually increased from 1 x 10(6) to 3 x 10(7) CFU/ml upon successive reutilization of the beads. Rinsing the beads between fermentations did not influence the numbers of free cells in the milk. Cell release was not affected by initial cell density within the beads or by alginate concentration, although higher acidification rates were achieved with increased cell loading. Coating alginate beads with poly-L-lysine (PLL) did not significantly reduce the release of cells during five consecutive fermentations. A double coating of PLL and alginate reduced cell release by a factor of approximately 50. However, acidification of milk with beads having the PLL-alginate coating was slower than that with uncoated beads. Immersing the beads in ethanol to kill cells on the periphery reduced cell release, but acidification activity was maintained. Dipping the beads in aluminum nitrate or a hot CaCl2 solution was not as effective as dipping them in ethanol. Ethanol treatment or heating of the beads appears to be a promising method for maintaining acidification activity while minimizing viable cell release due to loosely entrapped cells near the surface of the alginate beads.  相似文献   

6.
Lactococcus lactis release from calcium alginate beads.   总被引:1,自引:0,他引:1       下载免费PDF全文
Cell release during milk fermentation by Lactococcus lactis immobilized in calcium alginate beads was examined. Numbers of free cells in the milk gradually increased from 1 x 10(6) to 3 x 10(7) CFU/ml upon successive reutilization of the beads. Rinsing the beads between fermentations did not influence the numbers of free cells in the milk. Cell release was not affected by initial cell density within the beads or by alginate concentration, although higher acidification rates were achieved with increased cell loading. Coating alginate beads with poly-L-lysine (PLL) did not significantly reduce the release of cells during five consecutive fermentations. A double coating of PLL and alginate reduced cell release by a factor of approximately 50. However, acidification of milk with beads having the PLL-alginate coating was slower than that with uncoated beads. Immersing the beads in ethanol to kill cells on the periphery reduced cell release, but acidification activity was maintained. Dipping the beads in aluminum nitrate or a hot CaCl2 solution was not as effective as dipping them in ethanol. Ethanol treatment or heating of the beads appears to be a promising method for maintaining acidification activity while minimizing viable cell release due to loosely entrapped cells near the surface of the alginate beads.  相似文献   

7.
The effective diffusion coefficient (De) and equilibrium partition factor (Kp) for lactose and lactic acid in k-carrageenan (2.75% w/w)/locust bean gum (0.25% w/w) (LBG) gel beads (1.5-2.0 mm diameter), with or without entrapped Lactobacillus casei subsp. casei (L. casei), were determined at 40 degrees C. Results were obtained from transient concentration changes in well-stirred solutions of finite volume in which the beads were suspended. Mathematical models of unsteady-state diffusion into and/or from a sphere and appropriate boundary conditions were used to calculate effective diffusion coefficients of lactose and lactic acid from the best fit of the experimental solute concentration changes. The effective diffusivities of lactose and lactic acid were 5.73 x 10(-10) and 9.96 x 10(-10) m2 s-1, respectively. Furthermore, lactic acid was found to modify gel structure since lactose diffusion characteristics (De and Kp) differed significantly from an earlier study and in the literature. In gel beads heavily colonized with L. casei, the effective diffusion coefficients of lactose and lactic acid were respectively 17% and 24% lower than for cell-free beads. Partition coefficients also confirmed the obstruction effect due to the cells, and decreased from 0.89 to 0.79, and from 0.98 to 0.87, for lactose and lactic acid, respectively. External mass transfer was estimated by an unsteady-state model in infinite volume using the Biot number. The effect of external mass transfer resistance on De results and the data reported in the literature are discussed.  相似文献   

8.
Viable cells of Kluyveromyces lactis, transformed with the glucoamylase gene from Arxula adeninivorans, were entrapped in beads of Ca-alginate and employed on a lab scale in a continuous stirred and a fluidised bed reactor (FBR), both fed with a rich medium (YEP) containing lactose as carbon source. Experiments with freely suspended cells in batch and chemostat had demonstrated that glucoamylase production was favoured in the presence of lactose and YEP medium. Employing controlled-sized beads having a 2.13 mm diameter, specific glucoamylase productivity was higher in the stirred reactor (CSTR) than in the FBR; in the latter a higher volumetric productivity was achieved, due to the lower void degree. The performance of the immobilised cell systems, in terms of specific glucoamylase productivity, was strongly affected by mass transfer limitations occurring throughout the gel due to the high molecular weight of the product. In the perspective to improve and scale-up the immobilised cell system proposed, a mathematical model, which takes into account substrate transfer limitations throughout the gel, has been developed. The effective lactose diffusivity was related to the bead reactive efficiency by means of the Thiele modulus. The regression of the model parameters on the experimental data of substrate consumption obtained both in the CSTR and in the FBR allowed to estimate lactose diffusivity and the kinetic parameters of the immobilised yeast.  相似文献   

9.
Summary A cell entrapment process using -carrageenan — locust bean gum gel is presented. Streptococcus thermophilus, Lactobacillus bulgaricus and S. lactis were immobilized in small gel beads (0.5–1.0 mm and 1.0–2.0 mm diameter) and fermentations in bench bioreactors were conducted. Viability of entrapped cells, lactose utilization, lactic acid production and cell release rates were measured during fermentation. The procedure was effective for S. thermophilus, L. bulgaricus and S. lactis, and the viability of these bacteria remained very high throughout entrapment steps and subsequent storage. Bead diameter influenced the fermentation rate: smaller beads (0.5–1.0 mm) permitted an increase in release rates, lactose utilization and acid production by entrapped cells, approximating values attained with free cells.  相似文献   

10.
Lactococcus lactis subsp. lactis biovar. diacetylactis was selected to study the physiological influences of immobilization and growth to high cell densities. Cells were cultivated on glucose or lactose medium in the presence and absence of citrate. With excess glucose the cells produced mainly lactate as the fermentation product (homofermentative) providing that not all of the substrate was consumed. The population so cultivated was exposed to extreme gradients of pH and lactate concentrations. When the glucose concentration was reduced the population showed a mixed product profile with half of the glucose being fermented to lactate, the remainder to formate, acetate, ethanol and 2,3-butanediol. Inclusion of citrate in the medium shifted the population to homofermentation, with respect to the amount of glucose or lactose consumed. The citrate was metabolized via the pyruvate-formate lyase and -acetolactate synthase routes. The pH of the medium was shown to strongly influence the product profile from citrate, presumably by affecting the activity of the key enzymes of pyruvate metabolism. The lactococci immobilized at high cell densities show product profiles typical of carbohydrate limitation at low dilution rates. Correspondence to: M. R. Smith  相似文献   

11.
When lactic streptococci were embedded in agar gels and incubated at 30°C, the end products of carbohydrate fermentation depended on the initial cell density, which determined the subsequent distribution and size of colonies in the gel. With high initial cell densities, microcolonies formed close together and lactose and glucose were converted almost entirely to lactate. However, inoculation with a small number of cells, which then grew to form widely spaced and comparatively large colonies, resulted in up to 30% diversion of end product, usually to formate, ethanol, and acetate. In these “low-colony-density” gel cultures, the initial rate of fermentation was exponential and only lactate was formed. However, this rate then became linear and fermentation became progressively more heterolactic. Streptococcus lactis ML8 was the only strain among the 10 tested which remained homolactic. Incubation at temperatures either above or below the optimum for growth and metabolism decreased the diversion to end products other than lactate. The change from homo- to heterolactic fermentation appears to be caused by carbohydrate depletion in the vicinity of the colony, so that fermentation is then limited by the diffusion of substrate. Growth of cells on gel surfaces exposed to air resulted in up to 40% diversion of end product from lactate, mainly to CO2, acetoin, 2,3-butanediol, and acetate. Six of the 12 Streptococcus cremoris strains tested remained homolactic under these aerobic conditions, whereas all 8 of the S. lactis strains tested, including ML8, were heterolactic.  相似文献   

12.
Citrate Fermentation by Lactococcus and Leuconostoc spp   总被引:1,自引:0,他引:1  
Citrate and lactose fermentation are subject to the same metabolic regulation. In both processes, pyruvate is the key intermediate. Lactococcus lactis subsp. lactis biovar diacetylactis homofermentatively converted pyruvate to lactate at high dilution (growth) rates, low pH, and high lactose concentrations. Mixed-acid fermentation with formate, ethanol, and acetate as products was observed under conditions of lactose limitation in continuous culture at pH values above 6.0. An acetoin/butanediol fermentation with alpha-acetolactate as an intermediate was found upon mild aeration in continuous culture and under conditions of excess pyruvate production from citrate. Leuconostoc spp. showed a limited metabolic flexibility. A typical heterofermentative conversion of lactose was observed under all conditions in both continuous and batch cultures. The pyruvate produced from either lactose or citrate was converted to d-lactate. Citrate utilization was pH dependent in both L. lactis and Leuconostoc spp., with maximum rates observed between pH 5.5 and 6.0. The maximum specific growth rate was slightly stimulated by citrate, in L. lactis and greatly stimulated by citrate in Leuconostoc spp., and the conversion of citrate resulted in increased growth yields on lactose for both L. lactis and Leuconostoc spp. This indicates that energy is conserved during the metabolism of citrate.  相似文献   

13.
An aroma-imparting mesophilic lactic starter (Lactococcus lactis ssp. lactis biovar. diacetylactis) was studied in batch culture in medium with 50 g·l–1 lactose and 2 g·l–1 citrate. The effect of pH on the physiology of growth and the production of flavour compounds was investigated with a mathematical model. The specific rates of growth and of lactose fermentation obeyed a law of non-competitive inhibition by lactic acid produced, inhibition increasing as the pH of the medium decreased. The pH thus acted indirectly by increasing the proportion of non-dissociated lactic acid, identified as the inhibiting form of lactic acid. The generalized model, taking into account the effect of pH, was tested using fermentations at pH controlled at different values (4.5–6.5), as well as with a fermentation conducted at non-regulated pH. These simulations supported the working hypotheses. The effect of pH on the fermentation of citric acid resulted in an increase in the maximal specific rate of citrate utilization, in the bioconversion yield, and in the constant of diacetyl and acetoin reduction at acid pH. The production of flavour compounds is a complex phenomenon resulting from the interaction of pH, citric acid concentration, and the physiological state of the cells. These results are discussed with respect to the use of this strain in the preparation of manufactured dairy products.  相似文献   

14.
Summary Calcium alginate beads containingLactococcus lactis cells were used for three batch fermentations of milk or a commercially available growth medium (Gold Complete, Nordica) with the aim of producing concentrated cultures. Repeated fermentations did not significantly increase bead CFU counts which were between 3.3–7.8×1010 CFU/g. During the second and third fermentations, which lasted 6 h each, the bead populations decreased if the incubation was extended over 2 h. There was cell release from the beads. Fermentation media and fermentation time all had an effect on free cell counts, but none of these factors statistically interacted. Free cell counts were higher at the end of fermentations 2 and 3 than in the first fermentation and approximately 50% of the population was in the free state. Free cell counts were higher when the beads were incubated in Gold complete than in milk. Although the total bacterial population of a standard free cell fermentation was always higher than those having immobilized cells, immobilized cell technology did enable the production of dense cultures.  相似文献   

15.
The production of a mixed lactic culture containing Lactococcus lactis subsp. lactis biovar. diacetylactis MD and Bifidobacterium longum ATCC 15707 was studied during a 17-day continuous immobilized-cell culture at different temperatures between 32 and 37 degrees C. The two-stage fermentation system was composed of a first reactor (R1) containing cells of the two strains separately immobilized in kappa-carrageenan/locust bean gum gel beads and a second reactor (R2) operated with free cells released from the first reactor. The system allowed continuous production of a concentrated mixed culture with a strain ratio whose composition depended on temperature and fermentation time. A stable mixed culture (with a 22:1 ratio of L. diacetylactis and B. longum) was produced at 35 degrees C in the effluent of R2, whereas the mixed culture was rapidly unbalanced in favor of B. longum at a higher temperature (37 degrees C) or L. diacetylactis at a lower temperature (32 degrees C). Strain redistribution in beads originally immobilizing pure cultures of L. diacetylactis or B. longum was observed. At the end of culture, the strain ratio (7:1 L. diacetylactis/B. longum) in bulk bead samples was similar to that of individual beads. The determination of the spatial distribution of the two strains in gel beads by immunofluorescence and confocal laser-scanning microscopy showed that bead cross-contamination was limited to a 100 microm peripheral layer. Data from this study validate a previous model for population dynamics and cell release in gel beads during mixed immobilized-cell cultures.  相似文献   

16.
Summary Streptococcus salivarius subsp. thermophilus and Lactobacillus delbrueckii subsp. Bulgaricus were immobilized separately in -carrageenan-locust bean gum gel beads. The beads were prepared by a dispersion process in a two-phase system (water in oil) and two ranges of bead diameter selected by sieving (0.5–1.0 mm and 1.0–2.0 mm). Fermentations with the two strains were conducted in bench bioreactors in a supplemented whey permeate medium. Free and entrapped cells (two ranges of bead diameter and two levels of initial bead cell load) were grown in mixed culture, and carbohydrate utilization, acid production and cell growth or cell release rate measured. Fermentation rates were influenced by bead diameter and initial cell load of the beads. Beads with high initial cell density increased fermentation rates compared to low cell density beads or free cells. Smaller diameter beads (0.5–1.0 mm) showed a stable tendency (not statistically significant p a > 0.05) towards higher cell release rates, lactose utilization, galactose accumulation and lactic acid production than did larger diameter beads (1.0–2.0 mm). Immobilization of S. salivarius subsp. thermophilus and L. delbrueckii subsp. bulgaricus in separate beads did not seem to affect protocooperation during batch fermentation, and allowed for high cell release rates into the medium.  相似文献   

17.
Streptococcus lactis plasmid DNA, which is required for the fermentation of lactose (plasmid pLM2001), and a potential streptococcal cloning vector plasmid (pDB101) which confers resistance to erythromycin were evaluated by transformation into Streptococcus sanguis Challis. Plasmid pLM2001 transformed lactose-negative (Lac-) mutants of S. sanguis with high efficiency and was capable of conferring lactose-metabolizing ability to a mutant deficient in Enzyme IIlac, Factor IIIlac, and phospho-beta-galactosidase of the lactose phosphoenolpyruvate-phosphotransferase system. Plasmid pDB101 was capable of high-efficiency transformation of S. sanguis to antibiotic resistance, and the plasmid could be readily isolated from transformed strains. However, when 20 pLM2001 Lac+ transformants were analyzed by a variety of techniques for the presence of plasmids, none could be detected. In addition, attempts to cure the Lac+ transformants by treatment with acriflavin were unsuccessful. Polyacrylamide gel electrophoresis was used to demonstrate that the transformants had acquired a phospho-beta-galactosidase characteristic of that normally produced by S. lactis and not S. sanguis. It is proposed that the genes required for lactose fermentation may have become stabilized in the transformants due to their integration into the host chromosome. The efficient transformation into and expression of pLM2001 and pDB101 genes in S. sanguis provides a model system which could allow the development of a system for cloning genes from dairy starter cultures into S. sanguis to examine factors affecting their expression and regulation.  相似文献   

18.
Growth of Lactococcus lactis subsp. lactis biovar diacetylactis was observed on media with citrate as the only energy source. At pH 5.6, steady state was achieved in a chemostat on a citrate-containing medium in the absence of a carbohydrate. Under these conditions, pyruvate, acetate, and some acetoin and butanediol were the main fermentation products. This indicated that energy was conserved in L. lactis subsp. lactis biovar diacetylactis during citrate metabolism and presumably during the conversion of citrate into pyruvate. The presumed energy-conserving step, decarboxylation of oxaloacetate, was studied in detail. Oxaloacetate decarboxylase was purified to homogeneity and characterized. The enzyme has a native molecular mass of approximately 300 kDa and consists of three subunits of 52, 34, and 12 kDa. The enzyme is apparently not sodium dependent and does not contain a biotin moiety, and it seems to be different from the energy-generating oxaloacetate decarboxylase from Klebsiella pneumoniae. Energy-depleted L. lactis subsp. lactis biovar diacetylactis cells generated a membrane potential and a pH gradient immediately upon addition of citrate, whereas ATP formation was slow and limited. In contrast, lactose energization resulted in rapid ATP formation and gradual generation of a proton motive force. These data were confirmed during studies on amino acid uptake. α-Aminoisobutyrate uptake was rapid but glutamate uptake was slow in citrate-energized cells, whereas lactose-energized cells showed the reverse tendency. These data suggest that, in L. lactis subsp. lactis bv. diacetylactis, a proton motive force could be generated during citrate metabolism as a result of electrogenic citrate uptake or citrate/product exchange together with proton consumption by the intracellular oxaloacetate decarboxylase.  相似文献   

19.
A mathematical model has been developed for the unsteady-state operation of an immobilized cell reactor. The substrate solution flows through a mixed-flow reactor in which cells immobilized in gel beads are retained. The substrate diffuses from the external surface of the gel beads to some internal location where reaction occurs. The product diffuses from the gel beads into liquid medium which flows out of the reactor. The model combines simultaneous diffusion and reaction, as well as cell growth, and it can predict how the rates of substrate consumption, product formation, and cell growth vary with time and with initial conditions. Ethanol fermentation was chosen as a representative reaction in the immobilized cell reactor, and numerical calculations were carried out. Excellent agreement was observed between model predictions and experimental data available in the literature.  相似文献   

20.
The effects of agitation rate (50 to 150 rpm) on cell metabolism and cell release rates were studied during continuous fermentation of de Man, Rogosa and Sharpe medium (MRS) by immobilizedLactobacillus casei subsp.casei in κ-carrageenan/locust bean gum gel beads. Biomass concentration in the outflow was significantly higher at high agitation rates. Shear forces promoted cell loss from the beads by disrupting cell-filled cavities in the gel, near the particle surface. Moreover, high agitation rates enhanced fluid-to-particle mass transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号