首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
S Uzawa  I Samejima  T Hirano  K Tanaka  M Yanagida 《Cell》1990,62(5):913-925
Mutations in the fission yeast cut1+, cut2+, and cut10+ genes uncouple normally coordinated mitotic events and deregulate, rather than arrest, mitosis. DNA synthesis continues, making polyploid nuclei with several spindles. Multiple, aberrant spindle pole bodies (SPBs) are produced in cut1 mutant cells. The cut1+ and cut2+ genes are cloned by transformation. High gene dosage of cut1+ also complements cut2 and cut10 mutants. The cut2+ gene, however, complements only cut2. The 210 kd cut1+ gene product contains putative ATP binding and helical coil regions followed by a COOH-terminal domain homologous to the S. cerevisiae gene ESP1. Mutations in the ESP1 gene also result in many SPBs. The cut1+ product is shown by anti-cut1 antibody to be a rare component of the insoluble nuclear fraction. It may play a key role in coupling chromosome disjunction with other cell cycle events and is potentially a component, regulator, or motor for the SPB and/or kinetochores.  相似文献   

2.
Cyclin-dependent kinase (CDK) Tyr15 phosphorylation plays a major role in regulating G(2)/M CDKs, but the role of this phosphorylation in regulating G(1)/S CDKs is less clear. We have studied the regulation and function of Cdc2-Tyr15 phosphorylation in the fission yeast Schizosaccharomyces pombe G(1)/S CDK Cig2/Cdc2. This complex is subject to high level Cdc2-Tyr15 phosphorylation inhibiting its kinase activity in hydroxyurea-treated cells blocked in S-phase. We show that this Tyr15 phosphorylation is required to maintain efficient mitotic checkpoint arrest, because Cig2 accumulates during the block and this accumulation can advance mitotic onset. This mitotic induction operates, at least in part, through activation of the normal G(2)/M CDK complex Cdc13/Cdc2. Thus, Tyr15 phosphorylation of G(1)/S CDK complexes is important in the checkpoint control blocking mitotic onset when DNA replication is inhibited.  相似文献   

3.
The product of the cdc2 gene encodes the p34cdc2 protein kinase that controls entry of yeast cells into S phase and mitosis. In higher eukaryotes, at least two cdc2 -like genes appear to be involved in these processes. A cdc2 homologous gene has previously been isolated from alfalfa and shown to complement a fission yeast cdc2 ts mutant. Here the isolation of cdc2MsB , a cognate cdc2 gene from alfalfa ( Medicago sativa ) is reported. Southern blot analysis shows that cdc2MsA and cdc2MsB are present as single copy genes in different tetraploid Medicago species. cdc2MsB encodes a slightly larger mRNA (1.5 kb) than cdc2MsA (1.4 kb). Both genes were found to be expressed at similar steady state levels in different alfalfa organs. Expression levels of both cdc2Ms genes correlate with the proliferative state of the organs. Complementation studies revealed that in contrast to cdc2MsA, cdc2MsB was not able to rescue a cdc2 ts fission yeast mutant. cdc2MsB was also unable to rescue a G2/M-arrested cdc28 ts budding yeast mutant which could be rescued by expression of the cdc2MsA gene. Conversely, cdc2MsB but not cdc2MsA was found to complement the G1/S block of another cdc28 ts budding yeast mutant. These results suggest that cdc2MsA and cdc2MsB function at different control points in the cell cycle.  相似文献   

4.
《The Journal of cell biology》1995,129(4):1033-1047
Spindle formation in fission yeast occurs by the interdigitation of two microtubule arrays extending from duplicated spindle pole bodies which span the nuclear membrane. By screening a bank of temperature-sensitive mutants by anti-tubulin immunofluorescence microscopy, we previously identified the sad1.1 mutation (Hagan, I., and M. Yanagida. 1990. Nature (Lond.). 347:563-566). Here we describe the isolation and characterization of the sad1+ gene. We show that the sad1.1 mutation affected both spindle formation and function. The sad1+ gene is a novel essential gene that encodes a protein with a predicted molecular mass of 58 kD. Deletion of the gene was lethal resulting in identical phenotypes to the sad1.1 mutation. Sequence analysis predicted a potential membrane-spanning domain and an acidic amino terminus. Sad1 protein migrated as two bands of 82 and 84 kD on SDS-PAGE, considerably slower than its predicted mobility, and was exclusively associated with the spindle pole body (SPB) throughout the mitotic and meiotic cycles. Microtubule integrity was not required for Sad1 association with the SPB. Upon the differentiation of the SPB in metaphase of meiosis II, Sad1-staining patterns similarly changed from a dot to a crescent supporting an integral role in SPB function. Moderate overexpression of Sad1 led to association with the nuclear periphery. As Sad1 was not detected in the cytoplasmic microtubule-organizing centers activated at the end of anaphase or kinetochores, we suggest that Sad1 is not a general component of microtubule-interacting structures per se, but is an essential mitotic component that associates with the SPB but is not required for microtubule nucleation. Sad1 may play a role in SPB structure, such as maintaining a functional interface with the nuclear membrane or in providing an anchor for the attachment of microtubule motor proteins.  相似文献   

5.
The fission-yeast gene cdc28+ was originally identified in a screen for temperature-sensitive mutants that exhibit a cell-division cycle arrest and was found to be required for mitosis. We undertook a study of this gene to understand more fully the general requirements for entry into mitosis. Cells carrying the conditional lethal cdc28-P8 mutation divide once and arrest in G2 after being shifted to the restrictive temperature. We cloned the cdc28+ gene by complementation of the temperature-sensitive growth arrest in cdc28-P8. DNA sequence analysis indicated that cdc28+ encodes a member of the DEAH-box family of putative RNA-dependent ATPases or helicases. The Cdc28 protein is most similar to the Prp2, Prp16, and Prp22 proteins from budding yeast, which are required for the splicing of mRNA precursors. Consistent with this similarity, the cdc28-P8 mutant accumulates unspliced precursors at the restrictive temperature. Independently, we isolated a temperature-sensitive pre-mRNA splicing mutant prp8-1 that exhibits a cell-cycle phenotype identical to that of cdc28-P8. We have shown that cdc28 and prp8 are allelic. These results suggest a connection between pre-mRNA splicing and progression through the cell cycle.  相似文献   

6.
Proteins involved in the initiation of DNA replication play critical roles in the assembly and loading of replication complexes at replication origins. To gain further insight into the regulation of initiation, we screened in fission yeast for temperature-sensitive mutants which arrested at the G1/S boundary, and isolated nine mutants which arrested with a 1C DNA content at 36 degrees C. By linkage analysis, two complementation groups were identified which were not allelic to known G1 arrest mutations. One of the mutants isolated, sna41goul, arrested with a G1 DNA content and expressed a pleiomorphic phenotype, i.e., a mixture of cut and cdc phenotypes, at 36 degrees C. The point of arrest was identified as after START but before the hydroxyurea-induced block, by taking advantage of the mutant rad26.a14, which has a defect in an early S phase-specific checkpoint, and by performing reciprocal shift experiments. sna41 goal is allelic to sna41+, which is homologous to the CDC45 gene of budding yeast, and the mutation lies in a motif that is highly conserved in Cdc45-related proteins. The temperature sensitivity of the sna41goal mutant can be suppressed to some extent by ts mutations in polalpha. Our genetic results are consistent with a model in which Cdc45 plays crucial roles in the assembly of the replication apparatus at replication origins.  相似文献   

7.
Budding yeast Dpb11 (human TopBP1, fission yeast Cut5) is an essential protein required for replisome assembly and for the DNA damage checkpoint. Previous studies with the temperature-sensitive dpb11-1 allele, truncated at amino acid 583 of the 764-amino acid protein, have suggested the model that Dpb11 couples DNA replication to the replication checkpoint. However, the dpb11-1 allele shows distinct replication defects even at permissive temperatures. Here, we determine that the 1-600-amino acid domain of DPB11 is both required and sufficient for full replication function of Dpb11 but that this domain is defective for activation of the principal checkpoint kinase Mec1 (human ataxia telangiectasia and Rad3-related) in vitro and in vivo. Remarkably, mutants of DPB11 that leave its replication function intact but abrogate its ability to activate Mec1 are proficient for the replication checkpoint, but they are compromised for the G(2)/M DNA damage checkpoint. These data suggest that replication checkpoint defects may result indirectly from defects in replisome assembly. Two conserved aromatic amino acids in the C terminus of Dpb11 are critical for Mec1 activation in vitro and for the G(2)/M checkpoint in yeast. Together with aromatic motifs identified previously in the Ddc1 subunit of 9-1-1, another activator of Mec1 kinase, they define a consensus structure for Mec1 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号