首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Boll  G Fuchs  D J Lowe 《Biochemistry》2001,40(25):7612-7620
Benzoyl-CoA reductase (BCR) catalyzes the ATP-driven transport of two electrons from a reduced 2[4Fe-4S] ferredoxin to the aromatic ring of benzoyl-CoA. A mechanism involving radical species and very low potential electrons similar to the Birch reduction of aromatics has been suggested for this reaction. The redox centers of BCR have previously been identified, by EPR- and M?ssbauer spectroscopy, to be three cysteine-ligated [4Fe-4S] clusters [Boll et al. (2000) J. Biol. Chem. 275, 31857-31868] with redox potentials more negative than -500 mV. In this work, the catalytic cycle of BCR was studied by freeze-quench experiments; the dithionite reduced enzyme was rapidly mixed with equimolar amounts of benzoyl-CoA and excess MgATP plus dithionite, and subjected to EPR spectroscopic analysis. The turnover period of the enzyme under the conditions used was 3 s. The total S = (1)/(2) spin concentration increased 3-fold very rapidly (within approximately 25 ms). In the course of a single turnover the extent of enzyme reduction decreased again, finally reaching the starting value. An increased magnetic interaction of [4Fe-4S] clusters and the rise of an S = (7)/(2) high-spin EPR signal occurred as second simultaneous and transient events (at approximately 200 ms). Previous work showed that binding of the nucleotide affects the magnetic interaction of [4Fe-4S] clusters, whereas hydrolysis of MgATP is required for the switch to high-spin EPR signals. Finally, two novel transient EPR signals with an isotropic line-shape developed maximally in the late phase of the catalytic cycle ( approximately 1-2 s). These signals differed from those of typical free radicals by shifted g values at g = 2.015 and g = 2.033 and by an unusually fast relaxation rate, suggesting an interaction of these paramagnetic species with [4Fe-4S](+1) clusters. On the basis of these results, we present a proposal for a catalytic cycle involving radical species.  相似文献   

2.
Several novel enzyme reactions have recently been discovered in the aromatic metabolism of anaerobic bacteria. Many of these reactions appear to be catalyzed by oxygen-sensitive enzymes by means of highly reactive radical intermediates. This contribution deals with two key reactions in this metabolism: the ATP-driven reductive dearomatisation of the benzene ring and the reductive removal of a phenolic hydroxyl group. The two reactions catalyzed by benzoyl-CoA reductase (BCR) and 4-hydroxybenzoyl-CoA reductase (4-HBCR) are both mechanistically difficult to achieve; both are considered to proceed in 'Birch-like' reductions involving single electron and proton transfer steps to the aromatic ring. The problem of both reactions is the extremely high redox barrier for the first electron transfer to the substrate (e.g., -1.9 V in case of a benzoyl-CoA (BCoA) analogue), which is solved in the two enzymes in different manners. Studying these enzymatic reactions provides insights into general principles of how oxygen-dependent reactions are replaced by alternative processes under anoxic conditions.  相似文献   

3.
Matthias Boll 《BBA》2005,1707(1):34-50
Several novel enzyme reactions have recently been discovered in the aromatic metabolism of anaerobic bacteria. Many of these reactions appear to be catalyzed by oxygen-sensitive enzymes by means of highly reactive radical intermediates. This contribution deals with two key reactions in this metabolism: the ATP-driven reductive dearomatisation of the benzene ring and the reductive removal of a phenolic hydroxyl group. The two reactions catalyzed by benzoyl-CoA reductase (BCR) and 4-hydroxybenzoyl-CoA reductase (4-HBCR) are both mechanistically difficult to achieve; both are considered to proceed in ‘Birch-like’ reductions involving single electron and proton transfer steps to the aromatic ring. The problem of both reactions is the extremely high redox barrier for the first electron transfer to the substrate (e.g., −1.9 V in case of a benzoyl-CoA (BCoA) analogue), which is solved in the two enzymes in different manners. Studying these enzymatic reactions provides insights into general principles of how oxygen-dependent reactions are replaced by alternative processes under anoxic conditions.  相似文献   

4.
The ATPase from the inner mitochondrial membrane is known to be inhibited by modification of one of the three catalytic subunits with N,N'-dicyclohexylcarbodiimide (DCCD) or 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. An experimental approach described in this paper shows that most of the residual ATPase activity observed after the usual DCCD or 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole modification is due to the presence of unmodified enzyme, although the large fraction of modified enzyme retains a weak catalytic activity. This weak catalytic activity can be stimulated by methanol or dimethyl sulfoxide. When the modified enzymes are exposed to Mg2+ and [3H]ATP, about equal amounts of [3H]ATP and [3H]ADP appear at catalytic sites. The turnover rate for these enzymes is less than 1/1000 that of the native enzyme when it is calculated from the rate at which the enzyme becomes labeled at the catalytic sites with [3H]ATP and [3H]ADP during steady state hydrolysis. In addition, a higher ATP concentration is required for steady state turnover and, after ATP binding, the principal rate-limiting step is the capacity of the derivatized enzyme to undergo the binding changes necessary for the release of ADP and Pi. When the modified enzymes are not hydrolyzing ATP, they convert to form(s) that show a distinct lag in the replacement of bound nucleotides at catalytic sites. The replacement of bound nucleotides is still promoted by MgATP, even though the enzymes have been converted to sluggish forms. Contrary to a recent suggestion based on the study of the DCCD-modified enzyme (Soong, K.S., and Wang, J.H. (1984) Biochemistry 23, 136-141), our data provide evidence for the existence of catalytic cooperatively between at least two alternating sites in the modified enzyme and are consistent with continued sequential participation of all three sites.  相似文献   

5.
Benzoyl-CoA reductase catalyzes the two-electron transfer from a reduced ferredoxin to the aromatic ring of benzoyl-CoA; this reaction is coupled to stoichiometrical ATP hydrolysis. A very low reduction potential (less than -1 V) is required for the first electron transfer to the aromatic ring. In this work the nature of the redox centers of purified benzoyl-CoA reductase from Thauera aromatica was studied by EPR and M?ssbauer spectroscopy. The results obtained indicated the presence of three [4Fe-4S] clusters. Redox titration studies revealed that the reduction potentials of all three clusters were below -500 mV. The previously reported S = 7/2 state of the enzyme during benzoyl-CoA-independent ATPase activity (Boll, M., Albracht, S. J. P., and Fuchs, G. (1997) Eur. J. Biochem. 244, 840-851) was confirmed by M?ssbauer spectroscopy. Inactivation by oxygen was associated with the irreversible conversion of part of the [4Fe-4S] clusters to [3Fe-4S] clusters. Acetylene stimulated the benzoyl-CoA-independent ATPase activity and induced novel EPR signals with g(av) >2. The presence of simple cubane clusters in benzoyl-CoA reductase as the sole redox-active metal centers demonstrates novel aspects of [4Fe-4S] clusters since they adopt the role of elemental sodium or lithium which are used as electron donors in the analogous chemical Birch reduction of aromatic rings.  相似文献   

6.
Benzoyl coenzyme A (benzoyl-CoA) reductase is a key enzyme in the anaerobic metabolism of aromatic compounds catalyzing the ATP-driven reductive dearomatization of benzoyl-CoA. The enzyme from Thauera aromatica uses a reduced 2[4Fe-4S] ferredoxin as electron donor. In this work, we identified 2-oxoglutarate:ferredoxin oxidoreductase (KGOR) as the ferredoxin reducing enzyme. KGOR activity was increased 10- to 50-fold in T. aromatica cells grown under denitrifying conditions on an aromatic substrate compared to that of cells grown on nonaromatic substrates. The enzyme was purified from soluble extracts by a 60-fold enrichment with a specific activity of 4.8 micromol min(-1) mg(-1). The native enzyme had a molecular mass of 200 +/- 20 kDa (mean +/- standard deviation) and consisted of two subunits with molecular masses of 66 and 34 kDa, suggesting an (alphabeta)(2) composition. The UV/visible spectrum was characteristic for an iron-sulfur protein; the enzyme contained 8.3 +/- 0.5 mol of Fe, 7.2 +/- 0.5 mol of acid-labile sulfur, and 1.6 +/- 0.2 mol of thiamine diphosphate (TPP) per mol of protein. The high specificity for 2-oxoglutarate and the low K(m) for ferredoxin ( approximately 10 microM) indicated that both are the in vivo substrates of the enzyme. KGOR catalyzed the isotope exchange between (14)CO(2) and C(1) of 2-oxoglutarate, representing a typical reversible partial reaction of 2-oxoacid oxidoreductases. The two genes coding for the two subunits of KGOR were found adjacent to the gene cluster coding for enzymes and ferredoxin of the catabolic benzoyl-CoA pathway. Sequence comparisons with other 2-oxoacid oxidoreductases indicated that KGOR from T. aromatica belongs to the Halobacterium type of 2-oxoacid oxidoreductases, which lack a ferredoxin-like module which contains two additional [4Fe-4S](1+/2+) clusters/monomer. Using purified KGOR, ferredoxin, and benzoyl-CoA reductase, the 2-oxoglutarate-driven reduction of benzoyl-CoA was shown in vitro. This demonstrates that ferredoxin acts as an electron shuttle between the citric acid cycle and benzoyl-CoA reductase by coupling the oxidation of the end product of the benzoyl-CoA pathway, acetyl-CoA, to the reduction of the aromatic ring.  相似文献   

7.
P-glycoprotein (Pgp) is a plasma membrane protein whose overexpression confers multidrug resistance to tumor cells by extruding amphipathic natural product cytotoxic drugs using the energy of ATP. An elucidation of the catalytic cycle of Pgp would help design rational strategies to combat multidrug resistance and to further our understanding of the mechanism of ATP-binding cassette transporters. We have recently reported (Sauna, Z. E., and Ambudkar, S. V. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 2515-2520) that there are two independent ATP hydrolysis events in a single catalytic cycle of Pgp. In this study we exploit the vanadate (Vi)-induced transition state conformation of Pgp (Pgp.ADP.Vi) to address the question of what are the effects of ATP hydrolysis on the nucleotide-binding site. We find that at the end of the first hydrolysis event there is a drastic decrease in the affinity of nucleotide for Pgp coincident with decreased substrate binding. Release of occluded dinucleotide is adequate for the next hydrolysis event to occur but is not sufficient for the recovery of substrate binding. Whereas the two hydrolysis events have different functional outcomes vis à vis the substrate, they show comparable t(12) for both incorporation and release of nucleotide, and the affinities for [alpha-(32)P]8-azido-ATP during Vi-induced trapping are identical. In addition, the incorporation of [alpha-(32)P]8-azido-ADP in two ATP sites during both hydrolysis events is also similar. These data demonstrate that during individual hydrolysis events, the ATP sites are recruited in a random manner, and only one site is utilized at any given time because of the conformational change in the catalytic site that drastically reduces the affinity of the second ATP site for nucleotide binding. In aggregate, these findings provide an explanation for the alternate catalysis of ATP hydrolysis and offer a mechanistic framework to elucidate events at both the substrate- and nucleotide-binding sites in the catalytic cycle of Pgp.  相似文献   

8.
To clarify the mechanism of inhibition of (Na+ + K+)-ATPase by cardiac glycosides, we tried to see if ouabain binding alters the properties of the binding sites for Na+, K+, and ATP. Ouabain was bound in the presence of either Na+ + MgATP or MgPi. Ligand-induced changes in the rate of release of ouabain from the two resulting complexes were used as signals to determine the affinities, the numbers, and the interactions of the ligand binding sites. Because the two complexes showed differences in the properties of their ligand binding sites, and since neither complex could be converted to the other, it is concluded that either the enzyme has two dissimilar but mutually exclusive ouabain sites or that it can be frozen in two distinct conformations by ouabain. The following ligand sites were identified on the two complexes: 1) two coexisting ATP sites (K0.5 values, 0.1 and 2 mM) representing altered states of the catalytic and the regulatory sites of the native enzyme; 2) mutually exclusive Na+ and K+ sites whose affinities (K0.5 values, 1.3 mM Na+ and 0.1 mM K+) suggested their identities with the high affinity uptake sites of the native enzyme; and 3) coexisting low affinity Na+ and K+ sites (K0.5 values, 0.2-0.6 M) representing either the discharge sites, or the regulatory sites, or the access channels of the native enzyme. The data suggest that the inability of the ouabain-complexed enzyme to participate in the normal reaction cycle is not because of its lack of ligand binding sites but most likely due to ouabain-induced disruptions of interprotomer site-site interactions.  相似文献   

9.
The mechanism of inhibition of yeast mitochondrial F(1)-ATPase by its natural regulatory peptide, IF1, was investigated by correlating the rate of inhibition by IF1 with the nucleotide occupancy of the catalytic sites. Nucleotide occupancy of the catalytic sites was probed by fluorescence quenching of a tryptophan, which was engineered in the catalytic site (beta-Y345W). Fluorescence quenching of a beta-Trp(345) indicates that the binding of MgADP to F(1) can be described as 3 binding sites with dissociation constants of K(d)(1) = 10 +/- 2 nm, K(d2) = 0.22 +/- 0.03 microm, and K(d3) = 16.3 +/- 0.2 microm. In addition, the ATPase activity of the beta-Trp(345) enzyme followed simple Michaelis-Menten kinetics with a corresponding K(m) of 55 microm. Values for the K(d) for MgATP were estimated and indicate that the K(m) (55 microm) for ATP hydrolysis corresponds to filling the third catalytic site on F(1). IF1 binds very slowly to F(1)-ATPase depleted of nucleotides and under unisite conditions. The rate of inhibition by IF1 increased with increasing concentration of MgATP to about 50 mum, but decreased thereafter. The rate of inhibition was half-maximal at 5 microm MgATP, which is 10-fold lower than the K(m) for ATPase. The variations of the rate of IF1 binding are related to changes in the conformation of the IF1 binding site during the catalytic reaction cycle of ATP hydrolysis. A model is proposed that suggests that IF1 binds rapidly, but loosely to F(1) with two or three catalytic sites filled, and is then locked in the enzyme during catalytic hydrolysis of ATP.  相似文献   

10.
L de Meis  G Inesi 《Biochemistry》1985,24(4):922-925
Sarcoplasmic reticulum ATPase is phosphorylated by ATP in the presence of calcium, with a consequent reduction of the affinity of the binding sites for calcium and dissociation of the divalent cation from the enzyme. ATPase phosphorylation with Pi, on the other hand, requires prior removal of calcium from the enzyme, indicating that the energy requirement for phosphorylation of the enzyme-calcium complex can be met by ATP but not by Pi. We find that when the energy yield of the Pi reaction with the enzyme is increased by the addition of dimethyl sulfoxide to the medium, ATPase phosphorylation with Pi occurs even in the presence of calcium, and the binding sites undergo a reduction in affinity with consequent dissociation of Ca2+ from the enzyme, in analogy to the effect of ATP. It is thereby demonstrated experimentally that an essential step in the coupling of catalytic and transport activities is an interdependence and mutual ligand exclusion of the phosphorylation and calcium sites, in which ATP does not play a direct role. An important difference between the effects of ATP and Pi is that the former produces dissociation of Ca2+ inside the vesicles as the result of advancement of the catalytic cycle in the forward direction, while Pi produces dissociation of calcium into the outer medium as a consequence of equilibration of enzyme states producing a shift in the reverse direction of the enzyme cycle. These observations demonstrate how equilibration of intermediate enzyme states determines extent and direction of overall reaction flow.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A number of Src SH2 domain inhibitors enhance the kinase catalytic activity by switching the closed inactive to the open active conformation. ATP-phosphopeptide conjugates were designed and synthesized as Src tyrosine kinase inhibitors based on a tetrapeptide sequence pTyr-Glu-Glu-Ile (pYEEI) and ATP to block the SH2 domain signaling and substrate phosphorylation by ATP, respectively. In general, ATP-phosphopeptide conjugates with optimal linkers such as compounds 5 and 7 (K(i) = 1.7-2.6 microM) showed higher binding affinities to the ATP-binding site relative to the other ATP-phosphopeptide conjugates having short or long linkers, 1-4 and 6, (K(i) = 10.1-16.1 microM) and ATP (K(m) = 74 microM). These ATP-phosphopeptide conjugates may serve as novel templates for designing protein tyrosine kinase inhibitors to block SH2 mediated protein-protein interactions and to counter the activation of enzyme that resulted from the SH2 inhibition.  相似文献   

12.
Mitochondrial Fo.F1-H+-ATP synthase is the main enzyme responsible for the formation of ATP in aerobic cells. An alternating binding change mechanism is now generally accepted for the operation of the enzyme. This mechanism apparently leaves no room for the participation of nucleotides and Pi other than sequential binding to (release from) the catalytic sites. However, the kinetics of ATP hydrolysis by mitochondrial ATPase is very complex, and it is difficult to explain it in terms of the alternating binding change mechanism only. Fo.F1 catalyzes both delta muH+-dependent ATP synthesis and ATP-dependent delta muH+ generation. It is generally believed that this enzyme operates as the smallest molecular electromechanochemical reversible machine. This essay summarizes data which contradict this simple reversible mechanism and discusses a hypothesis in which different pathways are followed for ATP hydrolysis and ATP synthesis. A model for a reversible switch mechanism between ATP hydrolase and ATP synthase states of Fo. F1 is proposed.  相似文献   

13.
Nucleotide binding to sarcoplasmic reticulum vesicles was investigated in the absence of calcium using both filtration and fluorescence measurements. Filtration assays of binding of radioactive nucleotides at concentrations up to 0.1 mM gave a stoichiometry of one ATP-binding site/sarcoplasmic reticulum ATPase molecule. When measured in the presence of calcium under otherwise similar conditions, ATPase velocity rose 4-8-fold (depending on pH and magnesium concentration) when the ATP concentration was increased from 1 microM to 0.1 mM. Binding of ATP and ADP enhanced the intrinsic fluorescence of sarcoplasmic reticulum ATPase, but AMP and adenosine did not affect it. Both filtration and fluorescence measurements showed that binding of metal-free ATP is independent of pH (Kd = 20-25 microM) but that the presence of magnesium induces pH dependence of the binding of the Mg.ATP complex (Kd = 10 microM at pH 6.0 and 1.5 microM at pH 8.0). Binding of metal-free ADP was pH-dependent but was not affected by magnesium. High magnesium concentrations inhibited nucleotide binding. These results suggest that ATP interacts with two different domains of Ca-ATPase that form the catalytic site. The first domain may bind the adenine moiety of the substrate, and the pH dependence of ADP binding suggests the participation of His683 in this region. The second domain of the catalytic site may bind the gamma-phosphate and the magnesium ion of the Mg.ATP complex and constitute the locus of the electrostatic interactions between the substrate and the enzyme.  相似文献   

14.
The bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase plays an essential role in the regulation of glucose metabolism by both producing and degrading Fru-2,6-P(2) via its distinct catalytic activities. The 6-PF-2-K and Fru-2,6-P(2)ase active sites are located in separate domains of the enzyme. The kinase domain is structurally related to the superfamily of mononucleotide binding proteins that includes adenylate kinase and the G-proteins. We have determined three new structures of the enzymatic monomer, each with a different ligand in the ATP binding site of the 6-PF-2-K domain (AMP-PNP, PO(4), and water). A comparison of these three new structures with the ATPgammaS-bound 6-PF-2-K domain reveals a rearrangement of a helix that is dependent on the ligand bound in the ATP binding site of the enzyme. This helix motion dramatically alters the position of a catalytic residue (Lys172). This catalytic cation is analogous to the Arg residue donated by the rasGAP protein, and the Arg residue at the core of the GTP or GDP sensing switch motion seen in the heterotrimeric G-proteins. In addition, a succinate molecule is observed in the Fru-6-P binding site. Kinetic analysis of succinate inhibition of the 6-PF-2-K reaction is consistent with the structural findings, and suggests a mechanism for feedback inhibition of glycolysis by citric acid cycle intermediates. Alterations in the 6-PF-2-K kinetics of several proteins mutated near both the switch and the succinate binding site suggest a mode of communication between the ATP- and F6P binding sites. Together with these kinetic data, these new structures provide insights into the mechanism of the 6-PF-2-K activity of this important bifunctional enzyme.  相似文献   

15.
Beef heart mitochondrial F1 contains a total of six adenine nucleotide-binding sites including at least two different types of sites. Three "exchangeable" sites exchange rapidly during hydrolysis of MgATP, whereas three "nonexchangeable" sites do not (Cross, R. L. and Nalin, C. M. (1982) J. Biol. Chem. 257, 2874-2881). When F1 that has been stored as a suspension in (NH4)2SO4/ATP/EDTA/sucrose/Tris, pH 8.0, is pelleted, rinsed with (NH4)2SO4, dissolved, and desalted, it retains three bound adenine nucleotides. We find that two of these endogenous nucleotides are bound at nonexchangeable sites and one at an exchangeable site. The vacant nonexchangeable site is highly specific for adenine nucleotide and is rapidly filled by ADP upon addition of ADP or during ATP hydrolysis. ADP bound at this site can be removed by reprecipitating the enzyme with (NH4)2SO4. The single nucleotide retained by desalted F1 at an exchangeable site is displaced during hydrolysis of ATP, GTP, or ITP. The binding of PPi at two sites on the enzyme also promotes its dissociation. Neither procedure affects retention of nucleotide at the nonexchangeable sites. These observations, combined with the finding that PPi is much more easily removed from exchangeable sites than ADP, have led to the development of a procedure for preparing F1 with uniform and well-defined nucleotide site occupancy. This involves sequential exposure to MgATP, PPi, and high concentrations of Pi. Unbound ligand is removed between each step. The resulting enzyme, F1[3,0], has three occupied nonexchangeable sites and three vacant exchangeable sites. Evidence that nonexchangeable and exchangeable sites represent noncatalytic and catalytic sites, respectively, suggest that this form of the enzyme will prove useful in numerous applications, including transient kinetic measurements and affinity labeling of active site residues.  相似文献   

16.
Yeast AMP deaminase is allosterically activated by ATP and MgATP and inhibited by GTP and PO4. The tetrameric enzyme binds 2 mol each of ATP, GTP, and PO4/subunit with Kd values of 8.4 +/- 4.0, 4.1 +/- 0.6, and 169 +/- 12 microM, respectively. At 0.7 M KCl, ATP binds to the enzyme, but no longer activates. Titration with coformycin 5'-monophosphate, a slow, tight-binding inhibitor, indicates a single catalytic site/subunit. ATP and GTP bind at regulatory sites distinct from the catalytic site and their binding is mutually exclusive. Inorganic phosphate competes poorly with ATP for the ATP sites (Kd = 20.1 +/- 4.1 mM). However, near-saturating ATP reduces the moles of phosphate bound per subunit to 1 PO4, which binds with a Kd = 275 +/- 22 microM. In the presence of ATP, PO4 cannot effectively compete with ATP for the nucleotide triphosphate sites. The PO4 which binds in the presence of ATP is competitive with AMP at the catalytic site since the Kd equals the kinetic inhibition constant for PO4. Initial reaction rate curves are a cooperative function of AMP concentration and activation by ATP is also cooperative. However, no cooperativity is observed in the binding of any of the regulator ligands and ATP binding and kinetic activation by ATP is independent of substrate analog concentration. Cooperativity in initial rate curves results, therefore, from altered rate constants for product formation from each (enzyme.substrate)n species and not from cooperative substrate binding. The traditional cooperative binding models of allosteric regulation do not apply to yeast AMP deaminase, which regulates catalytic activity by kinetic control of product formation. The data are used to estimate the rates of AMP hydrolysis under reported metabolite concentrations in yeast.  相似文献   

17.
Application of the pulse-chase procedure to study of the binding and utilization of ATP by glutamine-dependent carbamyl phosphate synthetase from Escherichia coli showed that the enzyme binds the two molecules of ATP used in this reaction at the same time, and that the two ATP-binding sites are functionally different. Thus, ATP bound to the first ATP site is used for carboxy phosphate formation, and ATP bound to the second ATP site is used for phosphorylation of carbamate. The present and previous findings support a mechanism that involves intermediate formation of two highly unstable intermediates: carboxy phosphate and carbamate. It is proposed that the presence of all of the reactants on the enzyme at the start of the catalytic cycle allows immediate utilization of these labile compounds in the carbamyl phosphate synthesis reaction.  相似文献   

18.
K(ATP) channels, (SUR1/Kir6.2)(4) (sulfonylurea receptor type 1/potassium inward rectifier type 6.2) respond to the metabolic state of pancreatic β-cells, modulating membrane potential and insulin exocytosis. Mutations in both subunits cause neonatal diabetes by overactivating the pore. Hyperactive channels fail to close appropriately with increased glucose metabolism; thus, β-cell hyperpolarization limits insulin release. K(ATP) channels are inhibited by ATP binding to the Kir6.2 pore and stimulated, via an uncertain mechanism, by magnesium nucleotides at SUR1. Glibenclamide (GBC), a sulfonylurea, was used as a conformational probe to compare nucleotide action on wild type versus Q1178R and R1182Q SUR1 mutants. GBC binds with high affinity to aporeceptors, presumably in the inward facing ATP-binding cassette configuration; MgATP reduces binding affinity via a shift to the outward facing conformation. To determine nucleotide affinities under equilibrium, non-hydrolytic conditions, Mg(2+) was eliminated. A four-state equilibrium model describes the allosteric linkage. The K(D) for ATP(4-) is ~1 versus 12 mM, Q1178R versus wild type, respectively. The linkage constant is ~10, implying that outward facing conformations bind GBC with a lower affinity, 9-10 nM for Q1178R. Thus, nucleotides cannot completely inhibit GBC binding. Binding of channel openers is reported to require ATP hydrolysis, but diazoxide, a SUR1-selective agonist, concentration-dependently augments ATP(4-) action. An eight-state model describes linkage between diazoxide and ATP(4-) binding; diazoxide markedly increases the affinity of Q1178R for ATP(4-) and ATP(4-) augments diazoxide binding. NBD2, but not NBD1, has a higher affinity for ATP (and ADP) in mutant versus wild type (with or without Mg(2+)). Thus, the mutants spend more time in nucleotide-bound conformations, with reduced affinity for GBC, that activate the pore.  相似文献   

19.
The binding change model for the F(1)-ATPase predicts that its rotation is intimately correlated with the changes in the affinities of the three catalytic sites for nucleotides. If so, subtle differences in the nucleotide structure may have pronounced effects on rotation. Here we show by single-molecule imaging that purine nucleotides ATP, GTP, and ITP support rotation but pyrimidine nucleotides UTP and CTP do not, suggesting that the extra ring in purine is indispensable for proper operation of this molecular motor. Although the three purine nucleotides were bound to the enzyme at different rates, all showed similar rotational characteristics: counterclockwise rotation, 120 degrees steps each driven by hydrolysis of one nucleotide molecule, occasional back steps, rotary torque of approximately 40 piconewtons (pN).nm, and mechanical work done in a step of approximately 80 pN.nm. These latter characteristics are likely to be determined by the rotational mechanism built in the protein structure, which purine nucleotides can energize. With ATP and GTP, rotation was observed even when the free energy of hydrolysis was -80 pN.nm/molecule, indicating approximately 100% efficiency. Reconstituted F(o)F(1)-ATPase actively translocated protons by hydrolyzing ATP, GTP, and ITP, but CTP and UTP were not even hydrolyzed. Isolated F(1) very slowly hydrolyzed UTP (but not CTP), suggesting possible uncoupling from rotation.  相似文献   

20.
The RecBCD-K177Q enzyme has a lysine-to-glutamine mutation in the putative ATP-binding sequence of the RecD protein (Korangy, F., and Julin, D.A. (1992) J. Biol. Chem. 267, 1727-1732). We have compared the enzymatic properties of the RecBCD-K177Q enzyme with those of the wild-type RecBCD enzyme from Escherichia coli. The purified RecBCD-K177Q enzyme has ATP-dependent nuclease activity on double-stranded or denatured DNA which is reduced (4-14-fold less) compared with the wild type. The kcat and Km(ATP) for ATP hydrolysis stimulated by double-stranded DNA are both reduced in RecBCD-K177Q, so that kcat/Km(ATP) is relatively unaffected. The mutant enzyme is impaired in its ability to unwind DNA in an assay where single-stranded DNA is trapped by the single-stranded DNA binding protein and subsequently degraded by S1 nuclease. The mutant enzyme also produces fewer acid-soluble DNA nucleotides per ATP hydrolyzed than does the wild type, at low ATP concentrations (less than 20 microM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号