首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
F Jensch  H Kosak  N C Seeman    B Kemper 《The EMBO journal》1989,8(13):4325-4334
We have purified a cruciform DNA resolving endonuclease (Endo X3) greater than 1000-fold from crude extracts of mitotically growing Saccharomyces cerevisiae. The enzyme shows high specificity for DNAs with secondary structures and introduces characteristic patterns of staggered 'nicks' in the immediate vicinity of the structure. The following substrates were analyzed in detail: (i) naturally occurring four-way X junctions in cruciform DNA of a supercoiled plasmid; (ii) synthetic four-way X junctions with arms of 9 bp; (iii) synthetic three-way Y junctions with arms of 10 bp; and (iv) heteroduplex loops with 19 nucleotides in the loop. Cleavages were always found in the double stranded portion of the DNA, located immediately adjacent to the junction of the respective structure. The Endo X3 induced cleavage patterns are identical or very similar to the cleavage patterns induced in the same substrates by endonuclease VII (Endo VII) from phage T4. Furthermore, the activity of Endo X3 is completely inhibited in the presence of anti-Endo VII antiserum. Endo X3 has an apparent mol. wt of 43,000 daltons, determined by gel filtration and of approximately 18,000 daltons in SDS--polyacrylamide gels. Maximum activity of the enzyme was obtained in the presence of 10 mM MgCl2 at 31 degrees C in Tris-HCl buffer over a broad pH range with a maximum approximately 8.0. About 70% of maximal activity was obtained when Mg2+ was replaced by equimolar amounts of Mn2+ or Ca2+.  相似文献   

2.
Gardner AF  Guan C  Jack WE 《PloS one》2011,6(8):e23668
Sulfolobus islandicus rod shaped virus 2 (SIRV2) infects the archaeon Sulfolobus islandicus at extreme temperature (70°C-80°C) and acidity (pH 3). SIRV2 encodes a Holliday junction resolving enzyme (SIRV2 Hjr) that has been proposed as a key enzyme in SIRV2 genome replication. The molecular mechanism for SIRV2 Hjr four-way junction cleavage bias, minimal requirements for four-way junction cleavage, and substrate specificity were determined. SIRV2 Hjr cleaves four-way DNA junctions with a preference for cleavage of exchange strand pairs, in contrast to host-derived resolving enzymes, suggesting fundamental differences in substrate recognition and cleavage among closely related Sulfolobus resolving enzymes. Unlike other viral resolving enzymes, such as T4 endonuclease VII or T7 endonuclease I, that cleave branched DNA replication intermediates, SIRV2 Hjr cleavage is specific to four-way DNA junctions and inactive on other branched DNA molecules. In addition, a specific interaction was detected between SIRV2 Hjr and the SIRV2 virion body coat protein (SIRV2gp26). Based on this observation, a model is proposed linking SIRV2 Hjr genome resolution to viral particle assembly.  相似文献   

3.
Genetic evidence suggests that the Escherichia coli ruvC gene is involved in DNA repair and in the late step of RecE and RecF pathway recombination. To study the biochemical properties of RuvC protein, we overproduced and highly purified the protein. By employing model substrates, we examined the possibility that RuvC protein is an endonuclease that resolves the Holliday structure, an intermediate in genetic recombination in which two double-stranded DNA molecules are linked by single-stranded crossover. RuvC protein cleaves cruciform junctions, which are formed by the extrusion of inverted repeat sequences from a supercoiled plasmid and which are structurally analogous to Holliday junctions, by introducing nicks into strands with the same polarity. The nicked ends are ligated by E.coli or T4 DNA ligases. Analysis of the cleavage sites suggests that DNA topology rather than a particular sequence determines the cleavage site. RuvC protein also cleaves Holliday junctions which are formed between gapped circular and linear duplex DNA by the function of RecA protein. However, it does not cleave a synthetic four-way junction that does not possess homology between arms. The active form of RuvC protein, as studied by gel filtration, is a dimer. This is mechanistically suited for an endonuclease involved in swapping DNA strands at the crossover junctions. From these properties of RuvC protein and the phenotypes of the ruvC mutants, we infer that RuvC protein is an endonuclease that resolves Holliday structures in vivo.  相似文献   

4.
Junction-resolving enzymes are nucleases that exhibit structural selectivity for the four-way (Holliday) junction in DNA. In general, these enzymes both recognize and distort the structure of the junction. New insight into the molecular recognition processes has been provided by two recent co-crystal structures of resolving enzymes bound to four-way DNA junctions in highly contrasting ways. T4 endonuclease VII binds the junction in an open conformation to an approximately flat binding surface whereas T7 endonuclease I envelops the junction, which retains a much more three-dimensional structure. Both proteins make contacts with the DNA backbone over an extensive area in order to generate structural specificity. The comparison highlights the versatility of Holliday junction resolution, and extracts some general principles of recognition.  相似文献   

5.
E6 is an oncoprotein implicated in cervical cancers produced by " high risk " human papillomaviruses. E6 binds specifically to several cellular proteins, including the tumour suppressor p53 and the ubiquitin ligase E6-AP. However, E6 is also a DNA-binding protein which recognizes a structural motive present in four-way junctions. Here, we demonstrate that the C-terminal zinc-binding domain of E6, expressed separately from the rest of the protein, fully retains the selective four-way junction recognition activity. The domain can bind to two identical and independent sites on a single junction, whereas full-length E6 can only bind to one site. The junction bound to either one or two domains adopts an extended square conformation. These results allow us to assign the structure-dependent DNA recognition activity of E6 to its C-terminal domain, which therefore represents a new class of zinc-stabilized DNA-binding module. Comparison with the binding characteristics of other junction-specific proteins enlightens the rules which govern protein-induced deformation of four-way DNA junctions.  相似文献   

6.
Extracts of calf thymus have been fractionated to reveal a nuclease activity that specifically cleaves model Holliday junctions in vitro. The products of cleavage are unbranched linear duplex DNA molecules. Using synthetic four-way junctions, we show that the major sites of cutting are diametrically opposed, at sites one nucleotide from the base of the junction. Other types of four-way junctions, including pseudo-cruciform structures and cruciforms extruded from supercoiled plasmids, are also cleaved by the nuclease. The Mr of the partially purified activity, determined by gel filtration, is approximately 75,000. The calf thymus enzyme provides the first example of an endonuclease from a higher eukaryote that acts specifically on branch points in DNA, and indicates that junction-resolving proteins are normal constituents of somatic cells.  相似文献   

7.
The rearrangement and repair of DNA by homologous recombination often involves the creation of Holliday junctions, which must be cleaved by junction-specific endonucleases to yield recombinant duplex DNA products. Holliday junction resolving enzymes are a ubiquitous class of proteins with diverse structural and mechanistic characteristics. We have characterised an endonuclease (Hje) from the thermophilic crenarchaeote Sulfolobus solfataricus that exhibits a high degree of specificity for Holliday junctions via an apparently novel mechanism. Hje resolves four-way DNA junctions by the introduction of paired nicks in a reaction that is independent of the local nucleotide sequence, but is restricted solely to strands that are continuous in the stacked-X form of the junction. Three-way DNA junctions are cleaved only when the presence of a bulge in one strand allows the junction to stack in an analogous manner to four-way junctions. These properties differentiate Hje from all other known junction resolving enzymes.  相似文献   

8.
In common with a number of other DNA junction-resolving enzymes, endonuclease VII of bacteriophage T4 binds to a four-way DNA junction as a dimer, and cleaves two strands of the junction. We have used a supercoil-stabilized cruciform substrate to probe the simultaneity of cleavage at the two sites. Active endonuclease VII converts the supercoiled circular DNA directly into linear product, indicating that the two cleavage reactions must occur within the lifetime of the protein-junction complex. By contrast, a heterodimer of active enzyme and an inactive mutant endonuclease VII leads to the formation of nicked circular product, showing that the subunits operate fully independently.  相似文献   

9.
Interaction of a four-way junction in DNA with T4 endonuclease VII   总被引:26,自引:0,他引:26  
The binding of a synthetic four-way junction in DNA by T4 endonuclease VII has been studied using gel retardation and footprint analysis. Two specific protein-DNA complexes have been observed, but only one is stable in the presence of moderate concentrations of salt. The footprint of T4 endonuclease VII in the salt-resistant complex has been probed using hydroxyl radicals generated by the reaction of iron(II)/EDTA with hydrogen peroxide. The hydroxyl radical cleavage pattern indicates protection of approximately 5 residues in two strands that are diametrically opposed across the junction point.  相似文献   

10.
The four-way (Holliday) DNA junction is the central intermediate in homologous recombination. It is ultimately resolved into two nicked-duplex species by the action of a junction-resolving enzyme. These enzymes are highly selective for the structure of branched DNA, yet as a class these proteins impose significant distortion on their target junctions. Bacteriophage T7 endonuclease I selectively binds and cleaves DNA four-way junctions. The protein is an extremely stable dimer, comprising two globular domains joined by a β-strand bridge with each active site including amino acids from both polypeptides. The crystal structure of endonuclease I has been solved both as free protein and in complex with a DNA junction, showing that the protein, as well as the junction, becomes distorted on binding. We have therefore used site-specific spin-labeling in conjunction with EPR distance measurements to analyze induced fit in the binding of endonuclease I to a DNA four-way junction. The results support the change in protein structure as it binds to the junction. In addition, we have examined the structure of wild type and catalytically inactive mutants alone and in complex with DNA. We demonstrate the presence of hitherto undefined metastable conformational states within endonuclease I, showing how these states can be influenced by DNA-junction binding or mutations within the active sites. In addition, we demonstrate a previously unobserved instability in the N-terminal α1-helix upon active site mutation. These studies reveal that structural changes in both DNA and protein occur in the action of this junction-resolving enzyme.  相似文献   

11.
B Müller  C Jones    S C West 《Nucleic acids research》1990,18(19):5633-5636
T7 endonuclease I is known to bind and cleave four-way junctions in DNA. Since these junctions serve as analogues of Holliday junctions that arise during genetic recombination, we have investigated the action of T7 endonuclease I on recombination intermediates containing Holliday junctions. We find that addition of T7 endonuclease I to strand exchange reactions catalysed by RecA protein of Escherichia coli leads to the formation of duplex products that correspond to 'patch' and 'splice' type recombinants. Resolution of the recombination intermediates occurs by the introduction of nicks at the site of the Holliday junction. The recombinant molecules contain 5'-phosphate and 3'-hydroxyl termini which may be ligated to restore the integrity of the DNA.  相似文献   

12.
Cce1 is a magnesium-dependent Holliday junction endonuclease involved in the resolution of recombining mitochondrial DNA in Saccharomyces cerevisiae. Cce1 binds four-way DNA junctions as a dimer, opening the junction into an extended, 4-fold symmetric structure, and resolves junctions by the introduction of paired nicks in opposing strands at the point of strand exchange. In the present study, we have examined the interactions of wild-type Cce1 with a noncleavable four-way DNA junction and metal ions (Mg(2+) and Mn(2+)) using isothermal titration calorimetry, EPR, and gel electrophoresis techniques. Mg(2+) or Mn(2+) ions bind to Cce1 in the absence of DNA junctions with a stoichiometry of two metal ions per Cce1 monomer. Cce1 binds to four-way junctions with a stoichiometry of two Cce1 dimers per junction molecule in the presence of EDTA, and one dimer of Cce1 per junction in 15 mM magnesium. The presence of 15 mM Mg(2+) dramatically reduces the affinity of Cce1 for four-way DNA junctions, by about 900-fold. This allows an estimation of DeltaG degrees for stacking of four-way DNA junction 7 of -4.1 kcal/mol, consistent with the estimate of -3.3 to -4.5 kcal/mol calculated from branch migration and NMR experiments [Overmars and Altona (1997) J. Mol. Biol. 273, 519-524; Panyutin et al. (1995) EMBO J. 14, 1819-1826]. The striking effect of magnesium ions on the affinity of Cce1 binding to the four-way junction is predicted to be a general one for proteins that unfold the stacked X-structure of the Holliday junction on binding.  相似文献   

13.
Phage T4 endonuclease VII (Endo VII), the first enzyme shown to resolve Holliday junctions, recognizes a broad spectrum of DNA substrates ranging from branched DNAs to single base mismatches. We have determined the crystal structures of the Ca2+-bound wild-type and the inactive N62D mutant enzymes at 2.4 and 2.1 A, respectively. The Endo VII monomers form an elongated, highly intertwined molecular dimer exhibiting extreme domain swapping. The major dimerization elements are two pairs of antiparallel helices forming a novel 'four-helix cross' motif. The unique monomer fold, almost completely lacking beta-sheet structure and containing a zinc ion tetrahedrally coordinated to four cysteines, does not resemble any of the known junction-resolving enzymes, including the Escherichia coli RuvC and lambda integrase-type recombinases. The S-shaped dimer has two 'binding bays' separated by approximately 25 A which are lined by positively charged residues and contain near their base residues known to be essential for activity. These include Asp40 and Asn62, which function as ligands for the bound calcium ions. A pronounced bipolar charge distribution suggests that branched DNA substrates bind to the positively charged face with the scissile phosphates located near the divalent cations. A model for the complex with a four-way DNA junction is presented.  相似文献   

14.
15.
Dietrich Suck 《Biopolymers》1997,44(4):405-421
The nucleases discussed in this review show little sequence specificity but instead recognize certain structural features of their respective DNA substrates. The level of their structural selectivity ranges from simple discrimination between single- and double-stranded DNA (nucleases P1 and S1), the recognition of helical parameters like groove width and flexibility (DNase I), the recognition of helical distortions caused by abasic sites (exonuclease III, HAP1), to the recognition of specialized structures like flap DNA (5′-nucleases of eukaryotes, phages, and eubacterial DNA polymerases) and four-way junctions (T4 endonuclease VII, RuvC). The discussion is focused on the structural basis of the recognition process. In most cases the available x-ray structures of the nucleases and/or their DNA complexes have revealed the presence of structural motifs explaining the observed structural selectivity. © 1998 John Wiley & Sons, Inc. Biopoly 44: 405–421, 1997  相似文献   

16.
Holliday junction-resolving enzymes are ubiquitous, structure-specific endonucleases that resolve four-way DNA junctions by the introduction of paired nicks in opposing strands, and are required for homologous recombination, double-strand break repair, recombination-dependent restart of stalled or collapsed DNA replication forks, and phage DNA processing. Here, we present the first steady-state kinetic characterisation of a junction-resolving enzyme; the Hje endonuclease from Sulfolobus solfataricus. We demonstrate that substrate turnover by Hje is sequence-independent and limited largely by the rate of cleavage of the phosphodiester bonds of the bound Holliday junction substrate, rather than substrate association or product dissociation. Reaction rates under multiple turnover conditions compare favourably with type II restriction enzymes. These properties, coupled with a high level of specificity for four-way junctions over all other DNA substrates, make Hje a suitable enzyme for applications requiring the detection and cleavage of Holliday junctions in vitro.  相似文献   

17.
During homologous recombination, genetic information is physically exchanged between parental DNAs via crossing single strands of the same polarity within a four-way DNA junction called a Holliday structure. This process is terminated by the endonucleolytic activity of resolvases, which convert the four-way DNA back to two double strands. To achieve productive resolution, the two subunits of the dimeric enzymes introduce two single-strand cuts positioned symmetrically in opposite strands across the DNA junction. Covalently linked dimers of endonuclease VII from phage T4, whether a homodimer with two or a heterodimer with only one functional catalytic centre, reacted with a synthetic cruciform DNA to form a DNA-enzyme complex immediately after addition of the enzyme. Analysis of the complexes from both reactions revealed that the bound junction contained one nick. While the active homodimer processed this nicked junction consecutively to duplex DNAs by making the second cut, the complex with the heterodimer stayed stable for the whole reaction time. Thus the high affinity of endonuclease VII for the junction containing one nick is part of the mechanism to ensure productive resolution of Holliday structures, by giving the enzyme time to make the second cut, whereupon the complex dissociates into the two duplex DNAs and the free enzyme.  相似文献   

18.
Endonuclease VII resolves Y-junctions in branched DNA in vitro.   总被引:14,自引:3,他引:11       下载免费PDF全文
Endonuclease VII (gp 49 of phage T4) resolves four-way junctions in branched DNAs. We have extended our investigations of the specificity of endo VII and tested its activity with three-way junctions (Y-structures) constructed in vitro. Both 'closed' and 'open' Y-structures were made, absolutely identical in sequence but differing from each other by a single nick in one of the three arms. Pure Y-structures were obtained on a preparative scale by annealing plus and minus strands from two M13mp strains. One strain has an inverted repeat of 2 X 31 nucleotides cloned into the single EcoRI site while in the other strain this repeat is absent. The structures were used in reactions with endo VII, which recognizes the branch point of both structures and introduces a characteristic number of nicks, 3' to the junction in each arm of the structure. Strong and weak sites could be distinguished and the cleavage pattern differed significantly between the two structures. The observed resolution of Y-junctions by endo VII in vitro is compatible with a model for the resolution of recombinant Y-branches in DNA.  相似文献   

19.
A novel Holliday junction resolving activity has been identified in fractionated cell extracts of the fission yeast Schizosaccharomyces pombe . The enzyme catalyses endonucleolytic cleavage of Holliday junction-containing chi DNA and synthetic four-way DNA junctions. The activity cuts with high specificity a synthetic four-way junction containing a 12 bp core of homologous sequences but has no activity on another four-way junction (with a fixed crossover point), a three-way junction, linear duplex DNA or duplex DNA containing six mismatched nucleotides in the centre. The major cleavage sites map as single nicks in the vicinity of the crossover point, 3' of a thymidine residue. These data indicate that the activity has a strong DNA structure selectivity as well as a limited sequence preference; features similar to the Holliday junction resolving enzymes RuvC of Escherichia coli and the mitochondrial CCE1 (cruciform-cuttingenzyme 1) of Saccharomyces cerevisiae. A putative homologue of CCE1 in S.pombe (YDC2_SCHPO) has been identified through a search of the sequence database. The open reading frame of this gene has been cloned and the encoded protein, YDC2, expressed in E.coli . The purified recombinant YDC2 exhibits Holliday junction resolvase activity and is, therefore, a functional S.pombe homologue of CCE1. The resolvase YDC2 shows the same substrate specificity and produces identical cleavage sites as the activity obtained from S. pombe cells. Both YDC2 and the cellular activity cleave Holliday junctions in both orientations to give nicks that can be ligated in vitro. The partially purified Holliday junction resolving enzyme in fission yeast is biochemically indistinguishable from recombinant YDC2 and appears to be the same protein.  相似文献   

20.
E6 is a viral oncoprotein implicated in cervical cancers, produced by high-risk human papillomaviruses (HPVs). Structural data concerning this protein are scarce due to the difficulty of producing recombinant E6. Recently, we described the expression and purification of a stable, folded, and biologically active HPV16 E6 mutant called E6 6C/6S. Here, we analyzed the domain substructure of this mutated E6. Nonspecific proteolysis of full-length E6 6C/6S (158 residues) yielded N-terminal and C-terminal fragments encompassing residues 7-83 and 87-158, respectively. The C-terminal fragment of residues 87-158 was cloned, overexpressed, and purified at concentrations as high as 1 mM. The purified domain retains the selective four-way DNA junction recognition activity of the full-length E6 protein. Using UV absorption, UV fluorescence, circular dichroism, and nuclear magnetic resonance, we show that the peptide is primarily monomeric and folded with equal proportions of alpha-helix and beta-sheet secondary structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号