首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel and efficient immobilization of β-d-galactosidase from Aspergillus oryzae has been developed by using magnetic Fe3O4–chitosan (Fe3O4–CS) nanoparticles as support. The magnetic Fe3O4–CS nanoparticles were prepared by electrostatic adsorption of chitosan onto the surface of Fe3O4 nanoparticles made through co-precipitation of Fe2+ and Fe3+. The resultant material was characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometry and thermogravimetric analysis. β-d-Galactosidase was covalently immobilized onto the nanocomposites using glutaraldehyde as activating agent. The immobilization process was optimized by examining immobilized time, cross-linking time, enzyme concentration, glutaraldehyde concentration, the initial pH values of glutaraldehyde and the enzyme solution. As a result, the immobilized enzyme presented a higher storage, pH and thermal stability than the soluble enzyme. Galactooligosaccharide was formed with lactose as substrate by using the immobilized enzyme as biocatalyst, and a maximum yield of 15.5% (w/v) was achieved when about 50% lactose was hydrolyzed. Hence, the magnetic Fe3O4–chitosan nanoparticles are proved to be an effective support for the immobilization of β-d-galactosidase.  相似文献   

2.
Magnetic Fe3O4-chitosan nanoparticles are prepared by the coagulation of an aqueous solution of chitosan with Fe3O4 nanoparticles. The characterization of Fe3O4-chitosan is analyzed by FTIR, FESEM, and SQUID magnetometry. The Fe3O4-chitosan nanoparticles are used for the covalent immobilization of lipase from Candida rugosa using N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS) as coupling agents. The response surface methodology (RSM) was employed to search the optimal immobilization conditions and understand the significance of the factors affecting the immobilized lipase activity. Based on the ridge max analysis, the optimum immobilization conditions were immobilization time 2.14 h, pH 6.37, and enzyme/support ratio 0.73 (w/w); the highest activity obtained was 20 U/g Fe3O4-chitosan. After twenty repeated uses, the immobilized lipase retains over 83% of its original activity. The immobilized lipase shows better operational stability, including wider thermal and pH ranges, and remains stable after 13 days of storage at 25 °C.  相似文献   

3.
Glucose oxidase (GOD) was covalently immobilized onto Fe3O4/SiO2 magnetic nanoparticles (FSMNs) using glutaraldehyde (GA). Optimal immobilization was at pH 6 with 3-aminopropyltriethoxysilane at 2% (v/v), GA at 3% (v/v) and 0.143 g GOD per g carrier. The activity of immobilized GOD was 4,570 U/g at pH 7 and 50°C. The immobilized GOD retained 80% of its initial activity after 6 h at 45°C while free enzyme retained only 20% activity. The immobilized GOD maintained 60% of its initial activity after 6 cycles of repeated use and retained 75% of its initial activity after 1 month at 4°C whereas free enzymes retained 62% of its activity.  相似文献   

4.
The scope of this study is to achieve carrier-bound immobilization of catalase onto magnetic particles (Fe3O4 and Fe2O3NiO2 · H2O) to specify the optimum conditions of immobilization. Removal of H2O2 and the properties of immobilized sets were also investigated. To that end, adsorption and then cross-linking methods onto magnetic particles were performed. The optimum immobilization conditions were found for catalase: immobilization time (15 min for Fe3O4; 10 min for Fe2O3NiO2 · H2O), the initial enzyme concentration (1 mg/mL), amount of magnetic particles (25 mg), and glutaraldehyde concentration (3%). The activity reaction conditions (optimum temperature, optimum pH, pH stability, thermal stability, operational stability, and reusability) were characterized. Also kinetic parameters were calculated by Lineweaver–Burk plots. The optimum pH values were found to be 7.0, 7.0, and 8.0 for free enzyme, Fe3O4-immobilized catalases, and Fe2O3NiO2 · H2O-immobilized catalases, respectively. All immobilized catalase systems displayed the optimum temperature between 25 and 35°C. Reusability studies showed that Fe3O4-immobilized catalase can be used 11 times with 50% loss in original activity, while Fe2O3NiO2 · H2O-immobilized catalase lost 67% of activity after the same number of uses. Furthermore, immobilized catalase systems exhibited improved thermal and pH stability. The results transparently indicate that it is possible to have binding between enzyme and magnetic nanoparticles.  相似文献   

5.
In this study, a unique carrier magnetic chitosan microspheres (MCTS) was simply synthesized by anchoring Fe3O4 onto chitosan for direct immobilization of cellulases cross-linked by gluteraldehye. The structure and morphology were characterized using FT-IR, TGA, VSM and SEM. The optimum immobilization conditions were investigated: immobilized pH 7.0, amount of enzyme 15?mL (0.1?mg/mL), immobilization temperature 30?°C, immobilization time 5?h. At optimum conditions, MCTS achieved maximum enzyme solid loading rate of 73.5?mg/g, while recovery of enzyme activity approached to 71.6%. In the recycle test, immobilized cellulases operated without significant loss in its initial performances after 3 cycles, which indicated that immobilized cellulases can be regenerated and reused. The immobilized enzyme has better values of thermal and storage stability than that of free enzyme. Therefore, MCTS may be considered as a candidate with potential value of application in large-scale operations for cellulases immobilization.  相似文献   

6.
The thermotolerant, ethanol producing yeast strain, K. marxianus IMB3 was immobilized in calcium alginate containing magnetically responsive Fe3O4 particles. In these studies the β-galactosidase derived from K. marxianus IMB3 was immobilized onto the Fe3O4 particles prior to inclusion into the alginate matrix. Ethanol production by the immobilized microorganism in the presence of Fe3O4 reached a maximum of 16?g/L on 40?g/L lactose whereas prior immobilization of the enzyme to the particles and inclusion into the alginate matrix increased ethanol production to a maximum concentration of 18 g/L. When Mn2+ was incorporated into fermentations containing the immobilized enzyme in the alginate matrix, ethanol production increased further to a maximum concentration of 20?g/L. In addition, the behaviour of the magnetically responsive biocatalyst containing the co-immobilized enzyme was examined in a batch-fed system in the presence and absence of Mn2+.  相似文献   

7.
In the present study, Rhus vernicifera laccase (RvLac) was immobilized through covalent methods on the magnetic nanoparticles. Fe2O3 and Fe3O4 nanoparticles activated by 3-aminopropyltriethoxysilane followed with glutaraldehyde showed maximum immobilization yields and relative activity up to 81.4 and 84.3% at optimum incubation and pH of 18 h and 5.8, respectively. The maximum RvLac loading of 156 mg/g of support was recorded on Fe2O3 nanoparticles. A higher optimum pH and temperature of 4.0 and 45 °C were noted for immobilized enzyme compared to values of 3.5 and 40 °C for free form, respectively. Immobilized RvLac exhibited better relative activity profiles at various pH and temperature ranges. The immobilized enzyme showed up to 16-fold improvement in the thermal stability, when incubated at 60 °C, and retained up to 82.9% of residual activity after ten cycles of reuses. Immobilized RvLac exhibited up to 1.9-fold higher bisphenol A degradation efficiency potential over free enzyme. Previous reports have demonstrated the immobilization of RvLac on non-magnetic supports. This study has demonstrated that immobilization of RvLac on magnetic nanoparticles is very efficient especially for achieving high loading, better pH and temperature profiles, and thermal- and solvents-stability, high reusability, and higher degradation of bisphenol A.  相似文献   

8.
Paramagnetic aldehyde-functionalized mesostructured cellular foams (PAMCFs), synthesized by grafting 3-aminopropyltriethoxysilane modified Fe3O4 (NH2-Fe3O4) nanoparticles with larger particle size than the window pore size of MCFs on the outer surface of aldehyde-functionalized mesostructured cellular foams (AMCFs), were investigated as efficient supports for immobilization of penicillin G acylase (PGA). The results show that NH2-Fe3O4 nanoparticles were successfully grafted on the outer surface of AMCFs and PGA molecules were mainly immobilized covalently on the inner surface of PAMCFs, which was because amino groups of NH2-Fe3O4 nanoparticles or PGA molecules reacted with aldehyde groups of AMCFs or PAMCFs to form imine bonds. PGA/PAMCFs-15 showed a rather high initial activity of 9563 U g−1 and retained 89.1% of its initial activity after recycled for 10 times. PGA/PAMCFs are easily recycled by magnetic field in order to replace tedious separation of high-speed centrifugation for mesoporous materials.  相似文献   

9.
Candida antarctica lipase B (CALB) was immobilized on Fe3O4/SiOx-g-P(GMA) polymer carrier to catalyzed the transesterification of soybean oil and phytosterol. The enzyme loading of the obtained particles was 98.7 mg/g supports and the enzyme activity was 1226.5 U/g. The average particle size was 100.5?±?1.30 nm and the magnetization was 15.80 emu/g. The immobilized enzyme showed higher activities at a wider range of pH and temperatures. Its optimum reaction temperature was up to 50 °C; increased by 5 °C compared to the free enzyme. The obtained magnetic immobilized Fe3O4/SiOx-g-P(GMA) lipase was nanoscale. First-grade soybean oils were used as a substrate. System pH was adjusted to 7.0. The optimal reaction temperature was 50 °C and the reaction time was 3 h. The phytosterol concentration of 5% and immobilized CALB of 2% were obtained. The conversion rate of transesterification reaction between soybean oil and phytosterol was 86.2%. The use of magnets can quickly separate the immobilized enzymes from the substrates. The relative activity of the immobilized enzymes was 83.0% when reused seven times. The prepared immobilized CALB can improve efficiently enzyme activity and reutilization.  相似文献   

10.
Magnetic nanoparticles, covered by a polymeric hydrophilic nanolayer containing reactive amino groups, were obtained via Hoffman degradation of the polyacrylamide-coated Fe3O4 nanoparticles synthesized by photochemical in situ polymerization, and then conjugated the model enzyme––α-chymotrypsin (CT) by use of EDC· HCl and NHS at room temperatures. The mechanism of photochemical in situ polymerization was briefly proposed in this paper. Superparamagnetic properties were retained for Fe3O4 after enzyme immobilization while slightly reducing the value of saturation magnetization. Crystalline structure of Fe3O4 after CT immobilization was consistent with that of the freshly prepared Fe3O4 by X-ray diffraction (XRD) analysis. The binding capacity was 69 and 61 mg enzyme/g nanogel determined by thermogravimetric (TG) analysis and by standard BCA protein assay, respectively. Specific activity of the immobilized CT was 0.93 U/(mg min), only 59.3% as that of free CT. Thermal stability of CT was improved after being bound to the amine-functionalized magnetic nanogel.  相似文献   

11.
Glucose oxidase (GOD) and lactate dehydrogenase (LDH) were immobilized onto magnetic nanoparticles, viz. Fe3O4, via carbodiimide and glutaraldehyde. The immobilization efficiency was largely dependent upon the immobilization time and concentration of glutaraldehyde. The magnetic nanoparticles had a mean diameter of 9.3 nm and were superparamagnetic. The immobilization of GOD and LDH on the nanoparticles slightly decreased their saturation magnetization. However, the FT-IR spectra showed that GOD and LDH were immobilized onto the nanoparticles by different binding mechanisms, the reason for which was not well explained. The optimum pH values of the immobilized GOD and LDH were changed to 8 and 10, respectively. The free and immobilized enzyme kinetic parameters (Km and Vmax) were determined by Michaelis-Menten enzyme kinetics. The Km values for free and immobilized GOD were 0.168 and 0.324 mM, respectively, while those for free and immobilized LDH were 0.19 and 0.163 mM for NAD, and 2.976 and 4.785 mM for lactate, respectively. High operational stability was observed, with more than 80% of the initial enzyme activity being retained for the immobilized GOD up to 12 h and for the immobilized LDH up to 24 h. The immobilized GOD was applied to a sequential injection analysis system for the application of bioprocess monitoring.  相似文献   

12.
A flow-through quartz crystal microbalance (QCM) immunoassay method has been developed based on aflatoxin B1 antibody (anti-AFB1)-functionalized magnetic core-shell Fe3O4/SiO2 composite nanoparticles (bionanoparticles) in this study. To construct such an assay protocol, anti-AFB1, as a model protein, was initially covalently immobilized onto the Fe3O4/SiO2 surface, and then the functionalized nanoparticles were attached to the surface of the QCM probe with an external magnet. The binding of target molecules onto the immobilized antibodies decreased the sensor’s resonant frequency, and the frequency shift was proportional to the AFB1 concentration in the range of 0.3–7.0 ng/ml. The regeneration of the developed immunosensor was carried out via attaching or detaching the external magnet from the detection cell. In addition, the selectivity, reproducibility, and stability of the proposed immunoassay system were acceptable. Compared with the conventional ELISAs, the proposed immunoassay system was simple and rapid without multiple labeling and separation steps. Importantly, the proposed immunoassay method could be further developed for the immobilization of other antigens or biocompounds.  相似文献   

13.
Co–B/SiO2/NH2 magnetic nanoparticles (NPs) were prepared from a silica shell-coated Co–B core using the Stöber method and amine-modification on the surface. Glucose oxidase (GOD) was covalently immobilized on the surface of Co–B/SiO2/NH2 NPs using N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide (EDC) as an activating agent. The magnetic NPs characteristics, such as the synthesis of Co–B/SiO2/NH2 NPs, effect of pH, temperature, and concentration of buffer for enzyme immobilization, were investigated. The optimal reaction conditions for immobilization were determined to be 0.1 M of phosphate buffer solution, pH 7.0, and 5 °C. In the case of immobilized GOD without d-glucose and with 0.1 M of d-glucose for blocking, 22.98 U/g and 24.83 U/g of their original activity were retained after 7 reuses, respectively.  相似文献   

14.
A novel and simple method was developed for the preparation of magnetic Fe3O4 nanoparticles by chemical co-precipitation method and subsequent coating with 3-aminopropyltrimethoxysilane (APTMS) through silanization process. Magnetic Fe3O4-chitosan particles were prepared by the suspension cross-linking and covalent technique to be used in the application of magnetic carrier technology. The synthesized immobilization supports were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). Using glutaraldehyde as the coupling agent, the lipase from R. oryzae was successfully immobilized onto the functionalized magnetic Fe3O4-chitosan beads. The results showed that 86.60% of R. oryzae lipase was bound on the synthesized immobilization support. This immobilized lipase was successfully used for the esterification of phenolic acid which resulted in esterification of phenolic acid in isooctane solvent reaction system for 8 consecutive cycles (totally 384 h), 72.6% of its initial activity was retained, indicating a high stability in pharmaceutical and industrial applications.  相似文献   

15.
Polycyclic aromatic heterocycles, such as carbazole, are environmental contaminants suspected of posing human health risks. In this study, we investigated the degradation of carbazole by immobilized Sphingomonas sp. strain XLDN2-5 cells. Four kinds of polymers were evaluated as immobilization supports for Sphingomonas sp. strain XLDN2-5. After comparison with agar, alginate, and κ-carrageenan, gellan gum was selected as the optimal immobilization support. Furthermore, Fe3O4 nanoparticles were prepared by a coprecipitation method, and the average particle size was about 20 nm with 49.65-electromagnetic-unit (emu) g−1 saturation magnetization. When the mixture of gellan gel and the Fe3O4 nanoparticles served as an immobilization support, the magnetically immobilized cells were prepared by an ionotropic method. The biodegradation experiments were carried out by employing free cells, nonmagnetically immobilized cells, and magnetically immobilized cells in aqueous phase. The results showed that the magnetically immobilized cells presented higher carbazole biodegradation activity than nonmagnetically immobilized cells and free cells. The highest biodegradation activity was obtained when the concentration of Fe3O4 nanoparticles was 9 mg ml−1 and the saturation magnetization of magnetically immobilized cells was 11.08 emu g−1. Additionally, the recycling experiments demonstrated that the degradation activity of magnetically immobilized cells increased gradually during the eight recycles. These results support developing efficient biocatalysts using magnetically immobilized cells and provide a promising technique for improving biocatalysts used in the biodegradation of not only carbazole, but also other hazardous organic compounds.  相似文献   

16.
A simple preparation process for the monodispersed pH-sensitive core-shell magnetic microspheres was carried out consisting of chitosan self-assembled on magnetic iron oxide nanoparticles. Meanwhile, glucoamylase was immobilized as a model enzyme on this carrier of Fe3O4/CS microspheres by ionic adsorption. The morphology, inner structure, and high magnetic sensitivity of the resulting magnetic chitosan microspheres were studied, respectively, with a field emission scanning electron microscope (SEM), transmission electron microscope (TEM), FT-IR spectroscopy, thermogravimetric analysis (TGA), and a vibrating sample magnetometer (VSM). Subsequently, the properties of glucoamylase immobilized on the regenerated supports were also investigated by determining storage stability, pH stability, reusability, magnetic response, and regeneration of supports. The results from characterization and determination remarkably indicated that the immobilized glucoamylase obtained presents excellent storage stability, pH stability, reusability, magnetic response, and regeneration of supports. Therefore, this kind of magnetic Fe3O4/CS microspheres with perfect monodispersity should be an ideal support for enzyme immobilization.  相似文献   

17.
Enzymatic degradation of emerging contaminants has gained great interest for the past few years. However, free enzyme often incurs high costs in practice. The immobilized laccase on the polyethylenimine (PEI)‐functionalized magnetic nanoparticles (Fe3O4–NH2–PEI–laccase) was fabricated to efficiently degrade phenolic compounds continuously in a newly fixed bed reactor under a high‐gradient magnetic field. The degradation rate of continuous treatment in the bed after 18 h was 2.38 times as high as that of batch treatment after six successive operations with the same treatment duration. Under the optimal conditions of volume fraction of nickel wires mesh, flow rate of phenol solution, phenol concentration, and Fe3O4–NH2–PEI–laccase amount, the degradation rate of phenol kept over 70.30% in 48 h continuous treatment. The fixed bed reactor filled with Fe3O4–NH2–PEI–laccase provided a promising avenue for the continuous biodegradation of phenolic compounds for industrial wastewater in practice.  相似文献   

18.
Lipase from Rhizomucor miehei (RML) and Thermomyces lanuginosa lipase (TLL) were immobilized on silica core-shell magnetic nanoparticles (Fe3O4@SiO2) produced by coating Fe3O4 core with silica shell. The nanoparticles were functionalized with aldehyde groups followed by immobilization of RML and TLL by using a multi-component reaction in an extremely mild condition. Rapid immobilization of both enzymes (1.5−12 h) with high immobilization yields (81–100%) was observed. The maximum loading capacity of the support was determined to be 81 mg for RML and 97 mg for TLL. The thermal stability of the immobilized derivatives of RML and TLL were greatly improved by retaining 54 and 97 % of their initial activities at 65 °C, respectively. The immobilized preparations were used to produce biodiesel by transesterification of waste cooking oil. In an optimization study, Response Surface Methodology (RSM) and a central composite rotatable design (CCRD) were used to study the effect of amount of biocatalyst, temperature, reaction time, water adsorbent (wt.%) and ratio of t-butanol to oil (wt.%) on the yield of biodiesel production. Biodiesel production yield by immobilized TLL reached 93.1 % under optimal conditions while the maximum yield for RML was 57.5 %. Both immobilized derivatives showed high reusability after 5 cycles of the reaction.  相似文献   

19.
Abstract

In this study, 6-phosphogluconate dehydrogenase was covalently immobilized onto the N-2-aminoethyl-3-aminopropyltriethoxysilane (APTES) modified core-shell Fe3O4@SiO2 magnetic nanoparticles (ASMNPs) using glutaraldehyde (GA). Immobilization of 6PGDH on ASMNPs was confirmed using fourier transform-infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) analysis. The NADP+ conversion ratio, the reusability, thermal, and storage stability of the immobilized 6PGDH were determined and compared with those of the free enzyme. The maximum retention of enzyme activity reached to 96% when the enzyme was immobilized on ASMNPs activated with monomer form of GA. Although the thermal stability of free and immobilized enzymes was similar, at 30?°C, the immobilized 6PGDH showed the improved thermal stability at 40?°C and 50?°C compared with free 6PGDH. While the free 6PGDH only converted 33% of NADP+ in reaction medium upon 480?s, the immobilized 6PGDH performed 56% conversion of NADP+ at same time. The immobilized 6PGDH retained 62% of its initial activity up to the fifth cycle and 35% of its initial activity after 22?days of storage at 4?°C.  相似文献   

20.
Yeast alcohol dehydrogenase (YADH) was immobilized covalently on Fe3O4 magnetic nanoparticles (10.6 nm) via carbodiimide activation. The immobilization process did not affect the size and structure of magnetic nanoparticles. The YADH-immobilized magnetic nanoparticles were superparamagnetic with a saturation magnetization of 61 emu g–1, only slightly lower than that of the naked ones (63 emu g–1). Compared to the free enzyme, the immobilized YADH retained 62% activity and showed a 10-fold increased stability and a 2.7-fold increased activity at pH 5. For the reduction of 2-butanone by immobilized YADH, the activation energies within 25–45 °C, the maximum specific activity, and the Michaelis constants for NADH and 2-butanone were 27 J mol–1, 0.23 mol min–1 mg–1, 0.62 mM, and 0.43 M, respectively. These results indicated a structural change of YADH with a decrease in affinity for NADH and 2-butanone after immobilization compared to the free enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号