首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heavy metal contamination of agricultural soils resulting from rapid industrialization and urbanization is of great concern because of potential health risk due to dietary intake of contaminated vegetables. The present study aims to evaluate the status of heavy metals contamination of agricultural soils and food crops around an urban-industrial region in India. Transfer factor values of Cu, Cr, Pb, Cd, Zn, and Ni from soil to vegetable was estimated. The mean heavy metal concentrations (mg/kg) in agricultural soils (Cu: 17.8, Cr: 27.3, Pb: 29.8, Cd: 0.43, Zn: 87, Mn: 306.6, Fe: 16984, and Ni: 53.8) were within allowable concentrations for Indian agricultural soil. The concentrations of Pb, Cd, Zn, and Ni in crops/vegetables exceeded the World Health Organization/Food and Agriculture Organization safe limits. Relative orders of transfer of metals from soil to edible parts of the crops/vegetables were Cd > Pb > Ni > Zn > Cu > Cr. The enrichment factors of heavy metals in soil indicated minor to moderately severe enrichment for Pb, Cd, and Ni; minor to moderate enrichment for Zn; no enrichment to minor enrichment for Mn; and no enrichment to moderate enrichment for Cu at different sites. Ecological risk index of soil showed considerable contamination in one of the wastewater irrigated sites.  相似文献   

2.
Concentrations and spatial distribution of Zn, Cu, Cd, and Pb along two landscapes including a wastewater-irrigated area and a control area were determined to assess the impact of long-term wastewater irrigation and landscape properties on heavy metal contamination. Some disturbed and undisturbed soil samples were taken from soil trenches and soil cores, located on three main landscape positions (upper slope, midslope, and lower slope) in northwestern Iran. The investigation showed that the mean concentration of the heavy metals followed the order Zn > Cu > Pb > Cd in the wastewater-irrigated soil and Pb > Zn > Cu > Cd in the control soils. On average, compared to similar positions in the control region, the wastewater-irrigated regions contained 3.0 (midslope) to 4.9 (lower slope), 2.7 (midslope) to 4.6 (lower slope), 3.3 (upper slope) to 4.1 (lower slope), and 1.7 (upper slope) to 2.6 (lower slope) times higher amounts of Zn, Cu, Cd, and Pb, respectively. Significant positive relationships (P < 0.05) were recorded between the heavy metals concentration with <0.002 mm particle-size fraction and organic matter content, the fractions linked to runoff and soil erosion. It is believed that the two soil fractions play a crucial role in the distribution of the metals along the wastewater-irrigated landscape. Despite the significant increase of heavy metals (P < 0.05) in the wastewater-irrigated soils compared with control soils, the concentration of all evaluated metals was below the maximum accepted limits (Zn < 300 mg/kg, Cu < 100 mg/kg, Cd < 5 mg/kg, and Pb < 100 mg/kg), and grouped as “not-enriched” to “moderately-enriched” categories regarding the topsoil enrichment index. Overall, the lower slope was shown to be more contaminated with the heavy metals compared to the other positions.  相似文献   

3.
广东大中型水库底泥重金属含量特征及潜在生态风险评价   总被引:17,自引:1,他引:17  
广东省45宗大中型水库底泥重金属含量分析评价结果表明:除Cr外,广东省大中型水库底泥中Cu、Zn、Pb和Cd含量均高于广东省土壤重金属含量背景值.广东省四大地理区域中,粤北地区大中型水库底泥Cu、Zn、Pb和Cd平均含量均为最高,分别为89.71、321.21、154.95mg/kg和1.46mg/kg;其次是粤东和粤中地区;粤西大中型水库底泥Cu、Zn、Pb和Cd平均含量均为最低,但Cr平均含量居四大区域之首,为130.81mg/kg.粤东和粤北大中型水库底泥重金属富集系数以Cd最高;粤中和粤西大中型水库底泥重金属富集系数则以Cu最大.总体而言,粤北大中型水库底泥重金属具有很强的潜在生态风险,粤东和粤中大中型水库底泥重金属潜在生态风险程度为中等;粤西大中型水库底泥重金属属于轻微生态风险程度.结果说明,广东省大部分地区大中型水库底泥的重金属潜在生态风险主要是由于底泥中Cd的潜在生态风险系数过高所造成.人为生产活动,特别是矿产开采造成的污染是广东省大中型水库底泥重金属潜在生态风险等级提高的主要原因.  相似文献   

4.
Abstract

In this study, the concentrations and health risks of heavy metals (Cu, Pb, Zn, Ni, Co, Cd, and Cr) in indoor dust are investigated in the vicinity of the Xinqiao mining area, Tongling, China. Results indicate that heavy metals except Co were clearly enriched in indoor dust. Especially Cd was extremely enriched, followed by Zn, Cu, and Pb. However, no significant regional differences (p?>?0.05) were found in other elemental contents aside from Cu. Statistical analysis revealed that metal elements except Co were presumed to originate primarily from mining activities. Health risk assessment indicated that the hazard quotients and hazard indices of all studied metal elements were less than 1 and thus posed no potential noncancer health risks to adults and children. Moreover, the cancer risks of Ni, Cr, Cd, and Co were within acceptable ranges, implying no cancer risk to local residents; however, the noncarcinogenic risk of Pb and the carcinogenic risk of Cr and Cd warrant close attention.  相似文献   

5.
Risk element (As, Cd, Cu, Pb, and Zn) contamination in soils and in two edible vegetables (Solanum melongena L. and Capsicum annum L.) was investigated in the vicinity of Guixi Smelter, South China. Soil As concentrations averaged 23.9 mg/kg. Sites near the smelter tailings recorded the highest levels of As and heavy metals in soils. The concentration order of heavy metals in soils was Cd < Pb < Zn < Cu. Cu and Cd in soils were abundant in the exchangeable and bound to carbonate fraction, while Pb and Zn were in the residual fraction, limiting their potential toxicity as pollutants. The proportions of the metals in the mobile fraction followed the order Pb < Zn < Cu < Cd. In Solanum melongena L. and Capsicum annum L., Zn concentration was the highest, followed by Cu, Cd, and Pb, different from that in soils and in the mobile fraction. Concentrations of heavy metals in the labile fractions in soils and in vegetables presented significant correlation (p < 0.05). Both of the two vegetables are not the Cu and Zn accumulators. As for Cd and As, Capsicum annum L. poses a higher risk to animal and human health than Solanum melongena L., with soil-plant transfer coefficients more than three. Root-stem is the main barrier for most of the heavy metals and As in the two vegetables, resulting in higher metal concentrations in roots relative to other plant tissues. The low stem-fruit transfer coefficients for Zn in Solanum melongena L. and for Pb in Capsicum annum L. suggested that very few of them could reach the fruits.  相似文献   

6.
Abstract

The purpose of the study was to acquire the source and evaluate the risk posed by heavy metals in road dust of steel industrial city (Anshan), Liaoning, Northeast China. Potential ecological risk index (RI), pollution index (PI) and geo-accumulation index (Igeo) were applied to evaluate the heavy metal pollution level, and the carcinogenic risk (RI) and hazard index (HI) were calculated to estimate the human health risk. The geographic information system maps clearly reveal the hot spots of heavy metal spatial distribution. Principle component analysis (PCA) and cluster analysis (CA) classified heavy metals into three groups. The metal Zn and Pb originate from the traffic emission, while Cd, Cr, Fe, Mn, Ni and Sb primarily come from industrial activities. These two pathways were the major source of heavy metals pollution by positive matrix factorization (PMF). The Igeo and PI values of heavy metals were decreased in the following order: Cd?>?Sb?>?Zn?>?Fe?>?Pb?>?Cu?>?Cr?>?Sn?>?Mn?>?Ni. The RI index showed the heavy metals were moderate to very high potential ecological risk. The HI values for children and adults presented a decreasing order of Cr?>?Pb?>?Ni?>?Cu?>?Cd?>?Zn. The HI also predicted a possibility of non-carcinogenic risk for children living in urban areas in comparison with adults.  相似文献   

7.
Due to rapid industrialization and urbanization, human activities like industrial and agricultural production, transportation, aggravate heavy metal pollution in soil and continue to endanger vegetables and human health. In this study, three contaminated areas affected by heavy metal pollution in Guangdong Province were investigated in terms of Cu, Zn, Pb, and Cd concentrations in soil and vegetables. Further analyses of the contamination status and potential risks to the health of residents consuming these vegetables were conducted. Results showed the following average heavy metal concentrations in vegetables and soil: Shaoguan > Guangzhou > Dongguan, indicating that mining has caused massive soil-heavy metal pollution. The heavy metal concentrations and Bioconcentration factors (BCFs) showed the following trend: leaf-vegetables > fruit-vegetables > root-vegetables, and those of vegetable type were as follows: Cd > Zn > Cu > Pb. The Nemero pollution index (PI) of all research region soils and hazard index (HI) exceeded 1. Hence, more attention should be paid to the potential for adverse health effects caused by the consumption of vegetables produced in these sites . Thus, effective measures are encouraged, with a focus on children due to their vulnerability to these heavy metals.  相似文献   

8.
This investigation was conducted to survey the levels of cadmium (Cd), lead (Pb), chromium (Cr), copper (Cu), zinc (Zn), and manganese (Mn) in polished rice collected at supermarkets located in Hengyang, China. The surveyed rice samples were grouped according to their production areas into four different groups—Hunan, Jiangxi, Jilin, and Thailand. The data showed that the highest means of Cd, Pb, Cr, Cu, Zn, and Mn contents were in rice samples produced from Hunan (0.215 mg/kg), Thailand (0.537 mg/kg), Hunan (0.348 mg/kg), Jiangxi (2.472 mg/kg), Thailand (17.259 mg/kg), and Jinlin (9.326 mg/kg), respectively. Average daily intake dose for the six elements through consumption of rice was lower than the oral reference dose. Although the hazard quotient values for all six elements were <1.0, hazard index values in all the production areas (except Thailand) were >1.0, and cancer risk (CR) and total CR values were >10?4, respectively. Certainly, there are inherent limitations for these health risk values, including actual ingestion rate, exposure duration, and bioavailability of heavy metals. These results indicate that long-term heavy metal exposure by consumption of rice in Hengyang could pose both potential non-carcinogenic and carcinogenic health risks to the local residents.  相似文献   

9.
The pollution and potential health risk due to lifetime exposure to heavy metals in urban soil of China were evaluated, based on the urban soil samples collected from published papers from 2005 to 2014. The contamination levels were in the order of Cd > Hg > Cu > Zn > Pb >As > Ni > Cr, and Hg and Cd fell into the category of “moderately contaminated” to “heavily contaminated.” The non-carcinogenic risk for different populations varied greatly, among which children faced high risk, and then the adult female and adult male followed. The hazard index (non-carcinogenic risk) higher than 1.00 occurred in Shanghai, Gansu, Qinghai, Hunan, and Anhui, whereas most of those in northern and western China had low risks. For the carcinogenic risk, Anhui and Ningxia provinces had urban soils exceeding the safe reference (1 × 10?6–1 × 10?4). Qinghai and Gansu had high carcinogenic risks since their risk indexes were much closer to the reference, and the others were in low risk.  相似文献   

10.
A total of 30 surface soil samples were collected from the typical polluted area of Bengbu, Anhui province, Eastern China. The content characteristics, source identification, and risk assessment of heavy metals (Cd, Cu, Mn, Ni, Pb, and Zn) were studied based on the field investigation, sampling, indoor test, and statistical analysis. Results showed that the concentrations of Cd, Cu, Mn, Ni, Pb, and Zn showed different spatial variation and ranged from 0.48 to 1.84, 12.78 to 239.07, 287.14 to 491.96, 15.29 to 52.99, 13.28 to 68.82, and 28.83 to 184.79 mg/kg, respectively. Besides Mn, the contents of other metals have exceeded the local background value to a certain extent, and the higher concentrations recorded were found in the east of Bali channel. Source analyses indicated that Cd, Cu, Pb, and Zn were attributed to industrial emissions, vehicle exhaust pollution, and phosphate uses in agriculture, whereas Ni and Mn were mainly of natural origin. Among the six heavy metals, Cd posed the highest ecological risk with the proportion of 3.3% at a considerable level, 36.7% at a high level, and 60% at a very high level, Cu presented a low-to-moderate ecological risk, while others presented a relatively low risk in surface soils, suggesting that Cd and Cu, especially for Cd, should draw environmental concern.  相似文献   

11.

Aims and methods

Concentrations of heavy metals such as Cd, As, Hg, Pb, Cr, Cu, Zn and Ni in different tissues (seeds, roots and shoots) of the mature canola (Brassica napus L.) plants and in the associated rhizosphere soils from Yangtze River Delta (YRD) region of China, were determined to evaluate the heavy metals’ pollution in the soils and the canola seeds, and to discuss their accumulation and translocation characteristics in canola plants. At the same time, the phytoextraction potential of the canola plant for the above heavy metals was theoretically calculated and discussed on the basis of above measured data.

Results

The results showed that the concentration ranges of Cd, As, Hg, Pb, Cr, Cu, Zn and Ni in the rhizosphere soils were 0.115–0.481, 3.40–20.5, 0.069–0.682, 9.92–27.4, 46.8–86.6, 17.7–253.3, 65.2–511.7 and 16.0–37.8?mg?kg?1, respectively. The concentrations of Cu, Zn and Hg at some sampling sites exceeded the 2nd grade threshods of Chinese national environmental quality standard for soils. The potential ecological risk of heavy metals in the canola rhizosphere soils decreased in the order of Zhejiang > Shanghai > Jiangsu provinces. The concentration ranges of above heavy metals in the canola seeds were 0.032–0.067, 0.002–0.005, 0.001–0.005, 0.053–0.165, 0.191–0.855, 3.01–13.20, 34.82–96.95 and 0.343–2.86?mg?kg?1, respectively, with Cu and Zn at some sampling sites exceeding the permissible concentrations in foods of China. Heavy metals’ concentrations in canola seeds didn’t increase with their increasing concentrations in the rhizosphere soils. The bioconcentration factors (BCFs) of most heavy metals in the canola seeds decreased with their increasing concentrations in the associated rhizosphere soils. The average BCFs of heavy metals decreased in the order of Zn (0.488)>Cd (0.241)>Cu (0.145)>Ni (0.038)>Hg (0.021)>Pb (0.005)=Cr (0.005)>As (0.000) in the canola seeds, Cd (1.550)>Cu (0.595)>Zn (0.422)>Hg (0.138)>Ni (0.085)>Pb (0.080)>As (0.035)>Cr (0.031) in the roots, and Cd (0.846)>Zn (0.242)>Cu (0.205)>Hg (0.159)>Ni (0.031)>Pb (0.025)>As (0.012)>Cr (0.007) in the shoots, respectively. The accumulation capacity for most of the above heavy metals in the mature canola tissues was root > shoot > seed, with the exceptions of seed > root > shoot for Zn and shoot > root > seed for Hg. Except Hg from root to shoot and Zn from root to seed, translocation factors (TFs) of above heavy metals were lower than 1.0.

Conclusions

The concentrations, BCFs and TFs of above heavy metals in the canola tissues indicated that the investigated canola plants did not meet the criteria of hyperaccumulators for the above heavy metals. The phytoextracton potential of the studied canola plants for the above heavy metals from the polluted soils was very limited. It would take 920, 3,170 and 3,762?years (assuming two crops per year) to reduce the initial soil Zn, Cu and Hg concentrations, respectively, from the most polluted soil concentrations to the 2nd grade thresholds of Chinese national environmental quality standard for soils.  相似文献   

12.
In this study, paddy soil and rice grain samples were collected from the vicinity around the Xinqiao mine in Tongling, China to test for the presence of heavy metals (Cd, Ni, Cr, Cu, Zn, and Pb) in soil-rice system. Results indicated that the soil samples were primarily contaminated with Cd and Cu and followed with Zn and Pb. In rice grains, Cd, Cu, and Cr concentrations exceeded recommended guidelines. However, the regional distribution of heavy metals in rice grains and soil was inconsistent. The bioaccumulation factor of heavy metals in rice grains decreased in the order of Cd > Zn > Cu > Ni > Cr > Pb. The BAF was significantly positively correlated with TCLP-extractable metals and significantly negatively correlated with soil pH. However, the relationship between soil organic matter and the BAF in rice grains was complex. Health risk assessment through rice intake showed that hazard quotients of Cu and Cd were greater than 1 and could pose a considerable non-cancer health risk to adults and children; meanwhile, Cr, Ni, and Cd could pose an unacceptable cancer risk. The results indicated that the government must take measures to reduce heavy metal contents in paddy soil and rice.  相似文献   

13.
为了解华南地区典型燃煤电厂周边表层土壤重金属空间分布特征,对韶关市燃煤电厂周边20处农田表层土壤中7种重金属(镍(Ni)、铜(Cu)、锌(Zn)、镉(Cd)、铅(Pb)、铬(Cr)及砷(As))的总量进行检测,并分析了其相应的空间分布规律,同时评估了周边土壤重金属的生态风险并分析其来源。结果表明:该燃煤电厂周边土壤中重金属Ni、Cu、Zn、Cd、Pb、Cr及As的平均含量分别是17.79、19.59、159.08、3.14、111.01、96.61 mg/kg和21.48 mg/kg,Cd、Pb污染情况突出,重金属Zn、Cd、Pb、Cr的分布与盛行风向密切相关。综合污染指数法表明,Cd、Pb及Zn处于重污染状态;潜在生态风险指数法表明,Cd处于严重潜在生态风险状态;地累积指数法表明,Ni、Cu整体处于无污染状态,Cd整体处于高污染状态。多种统计方法表明,Zn、Cd、Pb及Cr受燃煤电厂影响明显,Cu、As的来源不仅受燃煤电厂等工业的影响,还与该地区农业灌溉用水密切相关,Ni的分布最为均匀,受自然因素影响明显。  相似文献   

14.
Abstract

A detailed investigation was conducted to understand the contamination characteristics of a selected set of heavy metals (HMs) in 34 campus dust samples from Huaxi University Town. The HMs spatial distribution analysis based on ArcGIS software, the geo-accumulation index (Igeo) and health risk model were employed for evaluation, and multivariate statistical methods were used to identify possible sources. Results showed that the mean concentrations of Cu, Zn, Pb, Cr, Ni, and Cd were 68.18, 123.81, 45.26, 140.36, 47.26, and 0.47?mg/kg, respectively. The spatial distribution characteristics displayed that the relatively large concentrations for the analyzed HMs were mainly located at both teaching areas and students’ dormitory areas. The average values of Igeo indicated that HMs contamination level followed the decreasing trend of Cd?>?Cu?>?Cr?>?Pb?>?Ni?>?Zn. The health risk assessment results indicated that HMs in campus dust generally do not pose any immediate health risk for both adult males and adult females but the cumulative effect is a matter of concern. The sources analyses demonstrated that Cu, Zn, Cr, and Cd, primarily from motor vehicle emission and waste incineration, Pb predominantly originated from construction source, while Ni had the mixed sources of nature and traffic.  相似文献   

15.
A study on identification of hotspots, spatial patterns, and risk evaluation of heavy metals in urban soils of Malayer city (Iran) was carried out. Fifty-nine composite surface soil samples were collected from six different land uses (urban parks, streets, and squares, boulevards, residential and agricultural areas) in Malayer city, and the total heavy metals were measured by atomic absorption spectroscopy. Average concentrations of Cd, Pb, Cu, and Zn, As, Cd, and Pb were 0.66, 15.51, 12.25, and 96.8 mg/kg, respectively. Among the six land uses, heavy metal contamination was heavier for street, while low contamination could be found for residential and urban parks. The spatial distribution of Pb in surface soil was similar to those of Cd, and Cu was similar to those of Zn with decreasing values from the central areas to the suburb. Also, there were several hotspots for studied heavy metals that Cd and Pb were mainly occurred in locations of heavy traffic in the city center and Cu and Zn in the west and northwestern in the city. The calculated result of risk evaluation showed that much of the city suffered from moderate to severe pollution by four of these heavy metals.  相似文献   

16.
Xijiang River is the main surface water source in Guangxi province, South China. This study was carried out to investigate the distribution and potential ecological risks of seven heavy metals (Cu, Pb, Zn, As, Cd, Ni, and Cr) in surface sediments in Xijiang River basin. The results illustrated that the average concentrations of Zn, Pb, Cd, Cu, As, Ni, and Cr were 483.9, 207.5, 13.35, 23.50, 312.1, 28.75, and 50.62 mg/kg, respectively. Among them, Zn, Pb, Cd, and As were the major heave metals with concentration exceeding Class 3 threshold value of Chinese national standard. The result also showed samples with high ecological risk were mainly located in the upstream of Xijiang River basin as Diaojiang River, Hongshui River, Jincheng River, and Dahuan River. Based on the pollution risk assessment, the area manifested composite pollution of heavy metals in the sediments, signifying As, Pb, and Cd as the dominant heavy metals, and there were high ecological risk in sediments for these metals. According to correlation matrix and factor analysis (FA), the seven heavy metals were divided into three types/classes, Cd, as and Zn attributed by anthropogenic sources, natural sources corresponds for Ni and Cr while both natural and anthropogenic sources were attributed to Cu.  相似文献   

17.
Abstract

The accumulation of heavy metals in soil is a serious environmental problem. The risk of metals in soil is associated critically with their species. Operationally determined speciation analysis of Cr, Mn, Ni, Cu, Zn, Sb, Cd and Pb was carried out in the area of non-ferrous metals-smelting in the North China Plain, using inductively coupled plasma-mass spectroscopy after sequential chemical extraction. The average potential mobility fraction was calculated. The average potential mobility of the metals had the following order: Cd(44.7%) > Pb(29.6%) > Mn(14.8%) > Zn(12.5%) > Cu(5.9%) > Sb(5.0%) > Ni(2.1%) > Cr(0.8%). It is concluded that there is a distinct spatial heterogeneity in the concentration of heavy metals in the studied area. The results indicate that the polluting heavy metals, in particular Cd and Pb, have high potential mobility.  相似文献   

18.
This study was done to evaluate heavy metal concentrations in street dust samples, to compare measured concentrations in samples to background concentrations in order to make evaluations for pollution indices, and to describe the quality of street dust in the studied area in relation to pollution. A total of 30 cumulative samples were collected from the streets of Eslamshahr City. Concentrations of heavy metals were determined using an Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). Results determined mean concentrations (mg/kg) of the heavy metals Cd, Cr, Cu, Ni, Pb, and Zn, in collected samples of street dust as 0.34, 35.1, 239, 42.4, 71.3, and 573, respectively. Igeo values for Cd and Cr, Cu, Ni, Pb, and Zn showed level of moderately polluted, unpolluted, moderately to strongly polluted, unpolluted, moderately polluted and moderately to strongly polluted, respectively. The pattern of total metal concentrations in the studied area was ranked as follows: Zn and Cu>Pb>Cd>Ni>Cr. The highest values for the monomial potential ecological risk (Er) were observed for Cd (114). The mean level of RI for the studied soil samples was 192 (91.3–244), which is classed as presenting a strong potential ecological risk.  相似文献   

19.
The reclamation of subsidence area was regarded as a useful pathway to rebuild landscape and ecosystem. However, the elevated concentrations of heavy metals in the reclaimed area may lead to potential environmental and health risks. This study was aimed at investigating the accumulation of heavy metals in the soils and vegetables, and evaluate the potential health risks to human beings via consuming these vegetables. The concentrations of heavy metals (Cd, Cu, Pb, and Zn) were measured by using inductively coupled plasma mass spectrometry. The elevated concentrations of heavy metals were found in the soil from the reclaimed area when compared with the background value. The concentrations of heavy metals were various among the different vegetable species. The heavy metal tolerance could be found in all the selected vegetables. The elevated concentrations of Cu, Pb, and Zn in the edible part of the selected vegetables indicated that the consumption of these vegetables may lead to potential health risk. The intake of soybean, radish, sweet potato, and mugwort may lead to potential health risks due to the elevated target health quotients. Chinese cabbage and pepper were regarded as the suitable vegetables which may help in reducing the potential health risk.  相似文献   

20.
湖南省主要水系底泥重金属污染特征及其生态风险评价   总被引:1,自引:0,他引:1  
为全面了解湖南省主要水系底泥中重金属含量及其潜在生态风险,在湖南省内的湘、资、沅、澧以及洞庭湖5个主要水系共采集了75个位点的底泥样品,分析了重金属元素含量和来源分布特征,并采用地累积指数法、内梅罗指数法和潜在生态风险指数法对其污染程度和潜在生态风险进行评价。结果表明,As、Cd、Cr、Cu、Mn、Pb和Zn的平均含量分别为32.87、7.59、78.09、70.69、1182.60、85.64 mg/kg和482.44 mg/kg。湘江和洞庭湖的污染相对严重,底泥中重金属含量明显高于资江、沅江和澧水;相关性分析表明多种重金属具有相同污染来源;地累积指数评价结果显示,湖南省主要水系底泥中Cd为重污染水平,Zn为中度污染,Cu、Mn和Pb均为轻度污染,而As和Cr污染程度为清洁;内梅罗指数法评价结果表明,除Cr为轻度污染外,湖南省主要水系底泥中其他6种重金属污染均为重污染级别;潜在生态风险评价结果显示,湖南省总体潜在生态风险属于中等级别,各水系潜在生态风险大小顺序为洞庭湖>资江>湘江>澧水>沅江,重金属Cd的潜在生态风险级别为很强,其他重金属元素都属于轻微级别。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号