首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Process Biochemistry》2014,49(1):38-46
Biomolecules labeled with superparamagnetic nanoparticles can be selectively removed from complex reaction mixtures using an external magnetic field. Amino-functionalized superparamagnetic iron oxide nanoparticles (amino-SPION) were co-aggregated with penicillin G acylase and then cross-linked, generating magnetic cross-linked enzymes aggregates (M-CLEAs) that were quickly and efficiently recovered from the reaction medium by applying an external magnetic field. M-CLEAs and cross-linked enzymes aggregates (CLEAs) prepared under the same reaction conditions were characterized and compared. The best recovered activities were obtained for M-CLEAs prepared using polyethylene glycol 600 as precipitant and the most stable M-CLEA were obtained using tert-butanol. Successive penicillin G hydrolysis reactions were carried out using the same M-CLEA in a 50 mL reactor (3 reaction cycles), after the reactions the derivate was magnetically recovered without loss of activity demonstrating a total magnetic recovery. Line-scan energy dispersive X-ray spectroscopy showed that the amino-SPIONs were homogeneously dispersed within the structure of the M-CLEA.  相似文献   

2.
为了提高游离果胶酶的稳定性,对罗布麻脱胶具有特异性的枯草芽孢杆菌(FM208849)进行产果胶酶发酵时,采用交联酶聚集体(CLEAs)技术制备固定化果胶酶,并对交联果胶酶聚集体的制备条件、酶学性质进行研究。结果表明,游离果胶酶经80%饱和硫酸铵沉淀后,在30℃,经4%的戊二醛溶液交联135 min,所形成的交联果胶酶聚集体的活回收率为61.5%,其最适反应温度45℃和最适pH10,在对交联果胶酶聚集体的热稳定性和有机溶剂稳定性分析中,均显示了比游离酶更高的稳定性。  相似文献   

3.
Carrier free immobilization, especially crosslinked enzyme aggregates (CLEAs), has become an important design for biocatalysis in several areas. Adding amino acids during formation of CLEAs was found to give biocatalysts more stable at 55 °C and in the presence of 60% acetonitrile. The half-lives of CLEAs prepared with and without Arg addition were 21 and 15 h (subtilisin) and 4 and 1.6 h (α-chymotrypsin) at 55 °C, respectively. The corresponding half-lives during acetonitrile presence were 4.1 and 3.0 h (subtilisin) and 39 and 22 min (α-chymotrypsin), respectively. CLEAs made with Arg had higher percentages of alpha helix. CLEAs made by adding Lys, Ala, or Asp also were more stable. In the case of Thermomyces lanuginosus lipase (TLL), CLEA with Ala was even more stable than CLEA with Arg. The addition of a suitable amino acid, thus, enhances CLEA stabilities. The results are discussed in the light of earlier results on chemical modification of proteins and the observation that the Arg/Lys ratio is invariably high in the case of enzymes from thermophiles.  相似文献   

4.
Novel hybrid magnetic cross-linked enzyme aggregates of phenylalanine ammonia lyase (HM-PAL-CLEAs) were developed by co-aggregation of enzyme aggregates with magnetite nanoparticles and subsequent crosslinking with glutaraldehyde. The HM-PAL-CLEAs can be easily separated from the reaction mixture by using an external magnetic field. Analysis by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) indicated that PAL-CLEAs were inlayed in nanoparticle aggregates. The HM-PAL-CLEAs revealed a broader limit in optimal pH compared to free enzyme and PAL-CLEAs. Although there is no big difference in Km of enzyme in CLEAs and HM-PAL-CLEAs, Vmax of HM-PAL-CLEAs is about 1.75 times higher than that of CLEAs. Compared with free enzyme and PAL-CLEAs, the HM-PAL-CLEAs also exhibited the highest thermal stability, denaturant stability and storage stability. The HM-PAL-CLEAs retained 30% initial activity even after 11 cycles of reuse, whereas PAL-CLEAs retained 35% of its initial activity only after 7 cycles. These results indicated that hybrid magnetic CLEAs technology might be used as a feasible and efficient solution for improving properties of immobilized enzyme in industrial application.  相似文献   

5.

Background  

Increasing attention has been focused on inulin and levan-type oligosaccharides, including fructosyl-xylosides and other fructosides due to their nutraceutical properties. Bacillus subtilis levansucrase (LS) catalyzes the synthesis of levan from sucrose, but it may also transfer the fructosyl moiety from sucrose to acceptor molecules included in the reaction medium. To study transfructosylation reactions with highly active and robust derivatives, cross-linked enzyme aggregates (CLEAs) were prepared from wild LS and two mutants. CLEAs combine the catalytic features of pure protein preparations in terms of specific activity with the mechanical behavior of industrial biocatalysts.  相似文献   

6.
A technique based exclusively on chiral reversed-phase liquid chromatography has been shown to greatly facilitate studies of enantioselectivity in lipase-catalyzed hydrolysis of chiral organic esters. Only two sets of experimental data are needed to calculate the enantioselectivity (E) of a kinetically controlled enantiomer-differentiating reaction of this kind, viz. the enantiomeric excess of the product (eep) or substrate (ees), and the degree of substrate conversion (c). The product enantiomers are well separated on a BSA-based column, giving eep directly. In addition, separation of the (unresolved) ester substrate from the enantiomeric products gives c by integration. Via an optimization of the mobile phase used in the chiral chromatographic system, both these parameters can often be determined in a single run. Highly precise and detailed kinetic studies of the enzymatic reaction can thus be performed. In this way, E-values have been determined for a series of 2-chloroethyl 2-arylpropanoates hydrolyzed in the presence of a Candida cylindracea lipase at pH 6.0 and 7.1. Effects on the E-values from a partial purification and further processing of the lipase have also been studied.  相似文献   

7.
Large mesoporous cellular foam (LMCF) materials were synthesized using the microemulsion templating route. For the enzyme stabilization, β-glucosidase was immobilized onto mesocellular silica foams (MCFs) in a simple and effective way, a process achieved using enzyme adsorption followed by glutaraldehyde (GA) crosslinking. This resulted in the formation of crosslinked enzyme aggregates (CLEAs) of nanometer scale. The structural and chemical properties of these prepared materials were characterized by TG, CPMAS NMR and nitrogen adsorption measurements. The crosslinked immobilizates retained activity over wider ranges of temperature and pH than those of the free enzyme. Kinetic parameter (Km) of the immobilized β-glucosidase is lower than that of its free counterpart. The resulting CLEA was proved to be active and recyclable up to 10 cycles without much loss in activity. This demonstrates its prospects for commercial applications. The immobilizate exhibited enhanced storage stability characteristics than the native enzyme. In contrast to adsorbed GL and covalently bound glucosidase, the resulting crosslinked enzyme aggregates (CLEAs) showed an impressive stability with high enzyme loadings.  相似文献   

8.
Cross-linked enzyme aggregates (CLEAs) are novel type biocatalysts well suited to catalyze reactions of organic synthesis. Penicillin acylase is a versatile enzyme that can both hydrolyze and synthesize β-lactam antibiotics. CLEAs and CLEAs covered with polyionic polymers (polyethyleneimine and dextran sulfate at two different enzyme to polymer ratios) were prepared at varying cross-linking agent to enzyme ratio: 0.15 and 0.25. Results are presented on the effect of such variables on immobilization yield, specific activity, stability and performance of penicillin acylase CLEAs in the kinetically controlled synthesis of cephalexin. The cross-linking agent to enzyme ratio had no significant effect on the specific activity of the CLEAs, but affected immobilization yield, stability in ethylene glycol medium and conversion yield and productivity in the synthesis of cephalexin, being always higher at the lower cross-linking agent to enzyme ratio. Best results were obtained with CLEAs at 0.15 glutaraldehyde to enzyme protein ratio: specific activity of hydrolysis and synthesis was 708 and 325 UI/gCLEA respectively, conversion yield was 87%, specific productivity was 5.4 mmol cephalexin/(gCLEA·h) and 90% of the enzyme remained active after 170 h at operating conditions.  相似文献   

9.
Cross-linked enzyme aggregates (CLEAs) of lipase from Thermomyces lanuginosa (TLL) were synthesized using (NH4)2SO4 as precipitant and glutaraldehyde as cross-linking agent. CLEAs were assayed for their hydrolytic activity in a reaction performed in an emulsioned medium. The effects of the amount of precipitant, cross-linker, and different additives such as protein cofeeder, oleic acid, n-heptane, sodium dodecyl sulfate (SDS), polyethylenglicol (PEG) and ethylendiamine were studied at selected ratios with respect to TLL mass. Traditional non-layered CLEAs of TLL showed recovered activities between 3 and 31% when compared with native lipase. Novel TLL layered CLEAs consisting of a protein cofeeder core and successive layers of target lipase showed an important increase in their retained activity. The highest recovered activity was found for the one-layered non-additivated CLEAs of TLL which showed a recovered activity of 75%.  相似文献   

10.
In this study, the effect of various organic solvents on enzyme activity and substrate enantiomeric excess (ees) of the lipase from Burkholderia cenocepacia (BCL) was investigated in the enantioselective transesterification of 1-phenylethanol. Secondary structure analysis by Fourier transform-infrared spectroscopy (FT-IR) showed that the variations in secondary structure element content (α-helix, β-sheet, β-turn and random coil) were probably responsible for the changes in enzyme activity and ees. Furthermore, the change in fluorescence intensity indicated, to some extent, the alteration in tertiary structure, which may also explain why organic solvents affect enzyme activity and ees. Moreover, response surface methodology (RSM) was employed to optimize the reaction parameters. The optimized reaction conditions were: substrate molar ratio 4.7:1; reaction time 18.6 h, and reaction temperature 53.4 °C. Under the optimal reaction conditions, the ees and eep were respectively 99.22% and 98.74%, and the corresponding enzyme activity was 1392.2 U/min/g protein. Compared with other lipases, BCL exhibited better catalytic efficiency and has significant potential in industrial applications.  相似文献   

11.
Highly active CALB cross-linked enzyme aggregates (CLEAs) were synthesized using a layered methodology based on the synthesis of a cross-linked protein cofeeder core over which an external layer of lipase was later cross-linked. The layered CALB CLEAs were characterized in terms of their catalytic activity in three different test reactions: esterification of oleic acid and ethanol in absence of solvents, esterification of oleic acid and heptanol in organic medium, and hydrolysis of triolein in emulsioned medium. The impact of the cross-linker/protein mass ratio on CLEAs activity, and its evolution with storage time were evaluated in the solventless synthesis of ethyloleate. The amount of cross-linker used showed to be a key parameter for the evolution of the catalytic activity of CLEAs during storage. Under the best conditions found, hyperactivated CALB CLEAs with up to 188% of recovered activity in ethyl oleate synthesis were obtained. In terms of hydrolytic activity mature layered CALB CLEAs showed a retained activity of 68%. The assay of dried mature layered CALB CLEAs in heptyl oleate synthesis showed catalytic activities much higher than the one exhibited by free CALB, reaching 1 h-fatty acid conversions of 14% and 2%, respectively. The high catalytic activity shown by layered CALB CLEAs, suggests that they are an interesting alternative specially for the catalysis of fatty acid esterifications in both organic and solventless medium.  相似文献   

12.
L-ascorbyl acetate was synthesized through lipase-catalyzed esterification using Lipozyme TLIM and Novozym 435. Four solvents, including methanol, ethanol, acetonitrile, and acetone were investigated for the reaction, and acetone and acetonitrile were found to be suitable reaction media. The influences of several parameters such as water activity (a w), substrate molar ratio, enzyme loading, and reaction temperature on esterification of L-ascorbic acid were systematically and quantitatively analyzed. Through optimizing the reaction, lipase-catalyzed esterification of L-ascorbic acid gave a maximum conversion of 99%. The results from using Lipozyme TLIM and Novozym 435 as biocatalysts both showed that a w was an important factor for the conversion of L-ascorbic acid. The effect of pH value on lipase-catalyzed L-ascorbic acid esterification in acetone was also investigated. Furthermore, results from a kinetic characterization of Lipozyme TLIM were compared with those for Novozym 435, and suggested that the maximum reaction rate for Lipozyme TLIM was greater than that for Novozym 435, while the enzyme affinity for substrate was greater for Novozym 436.  相似文献   

13.
We employed a cross-linked enzyme aggregate (CLEA) method to immobilize formate dehydrogenase (FDH) from Candida boidinii. The optimal conditions for the preparation of CLEAs were determined by examining effects of various parameters: the nature and amount of cross-linking reagent, additive concentration, cross-linking time, and pH during CLEA preparation. The recovered activities of CLEAs were significantly dependent on the concentration of glutaraldehyde; however, the recovered activity was not severely influenced by the content of dextran polyaldehyde as a mild cross-linker. Bovine serum albumin (BSA) was also used as a proteic feeder and enhanced the activity recovery by 130%. The highest recovered activity of CLEA was 18% for formate oxidation reaction and 25% for CO2 reduction reaction. The residual activity of CLEA prepared with dextran polyaldehyde (Dex-CLEA) was over 95% after 10 cycles of reuse. The thermal stability of Dex-CLEA was increased by a factor of 3.6 more than that of the free enzyme. CLEAs of FDH could be utilized efficiently for both NADH regeneration and CO2 reduction.  相似文献   

14.
Kinetic resolutions play important roles in industrial biotransformations for production of optical pure compounds from racemic substrates. A simple method, based on enantiomeric excess of both substrate (ee S) and the corresponding product (ee P), was developed for determination of concentration of enantiomers in kinetic resolution. Since only relative quantity (ee) was required in the proposed method, calibration and cumbersome quantitative sample handling can be avoided and analytical accuracy can be greatly improved.  相似文献   

15.
The kinetic behavior of a system of multiple enzyme in solution has been studied in a variable volume batch reactor at pH 5, controlled dissolved oxygen concentration, and T = 30°C. The enzymes used were glucoamylase (R. delemar), glucose oxidase (A. niger), and gluconolactonase (A. niger), all of which are important commercial biocatalysts, and a disaccharide was employed as the starting substrate. This study includes the basic kinetic properties of individual enzymes and interactions between components of the reaction mixture. Classical Michaelis–Menten single substrate or two substrate kinetic with parameters based on initial rate data predict correctly the batch time course of the sequential reaction network.  相似文献   

16.
Cross-linked enzyme aggregates (CLEAs) are prepared by precipitation of an enzyme and then chemical cross-linking the precipitate. Three CLEAs of lipase with glutaraldehyde concentrations of 10 mM (CLEA A), 40 mM (CLEA B) and 60 mM (CLEA C) were prepared. Studies show that there is a trade-off between thermal stability vs transesterification/hydrolysis rate vs enantioselectivity. The initial rates for transesterification of β-citronellol for the uncross-linked enzyme and CLEAs A, B and C were 243, 167, 102 and 40 µmol mg?1 h?1, respectively. Their thermal stabilities in aqueous media, as reflected by their half-life values at 55°C, were 6, 9, 13 and 16 h, respectively. The enantioselectivity, E values (for kinetic resolution of β-citronellol by transesterification) were 19, 74, 11 and 6, respectively. These results show that CLEA C was the most thermostable; the uncross-linked enzyme was best at obtaining the highest transesterification rate; and CLEA A was best suited for the enantioselective synthesis. Scanning electron microscopy (SEM) showed that the morphology of CLEA was dependent upon the extent of cross-linking.  相似文献   

17.
This study developed a simple, efficient method for producing racemic β-phenylalanine acid (BPA) and its derivatives via the enantioselective acylation catalyzed by the penicillin G acylase from Alcaligenes faecalis (Af-PGA). When the reaction was run at 25°C and pH 10 in an aqueous medium containing phenylacetamide and BPA in a molar ratio of 2:1, 8 U/mL enzyme and 0.1 M BPA, the maximum BPA conversion efficiency at 40 min only reached 36.1%, which, however, increased to 42.9% as the pH value and the molar ratio of phenylacetamide to BPA were elevated to 11 and 3:1, respectively. Under the relatively optimum reaction conditions, the maximum conversion efficiencies of BPA derivatives all reached about 50% in a relatively short reaction time (45–90 min). The enantiomeric excess value of product (eep ) and enantiomeric excess value of substrate (ees ) were all above 98% and 95%, respectively. These results suggest that the method established in this study is practical, effective, and environmentally benign and may be applied to industrial production of enantiomerically pure BPA and its derivatives.  相似文献   

18.
Optically pure 2-chloromandelic acid (ClMA) is a very important chiral drug intermediate for synthesis of (S)-clopidogrel, belonging to the platelet aggregation inhibitor. Enantioselective resolution of (R,S)-2-chloromandelic acid was carried out in organic solvent through irreversible transesterification catalyzed by lipase AK with vinyl acetate acting as the acyl donor. Effects of various conditions on enantioselectivity and activity of lipase were investigated, including organic solvents, temperature, water content, substrate ratio, enzyme loading, and reaction time. Based on homogeneous reaction and Ping-Pong bi-bi mechanism, a quantitative model was constructed to simulate and optimize the reaction process. Under the optimal conditions, excellent results were obtained with high conversion of (R)-2-ClMA (c R, ≥98.85%) and large enantiomeric excess of substrate (ee s, ≥98.15%). There is a good agreement between predicted values and experiment data, which indicates that the established method is a powerful tool for optimization of the enantioselective transesterification process for enantiomers separation.  相似文献   

19.
The preparation of crosslinked aggregates of pancreatic porcine lipase (PPL‐CLEA) was systematically studied, evaluating the influence of three precipitants and two crosslinking agents, as well as the use of soy protein as an alternative feeder protein on the catalytic properties and stability of the immobilized PPL. Standard CLEAs showed a global yield (CLEA’ observed activity/offered total activity) of less than 4%, whereas with the addition of soy protein (PPL:soy protein mass ratio of 1:3) the global yield was approximately fivefold higher. The CLEA of PPL prepared with soy protein as feeder (PPL:soy protein mass ratio of 1:3) and glutaraldehyde as crosslinking reagent (10 μmol of aldehyde groups/mg of total protein) was more active mainly because of the reduced enzyme leaching in the washing step. This CLEA, named PPL‐SOY‐CLEA, had an immobilization yield around 60% and an expressed activity around 40%. In the ethanolysis of soybean oil, the PPL‐SOY‐CLEA yielded maximum fatty acid ethyl ester (FAEE) concentration around 12‐fold higher than that achieved using soluble PPL (34 h reaction at 30°C, 300 rpm stirring, soybean oil/ethanol molar ratio of 1:5) with an enzyme load around 2‐fold lower (very likely due to free enzyme inactivation). The operational stability of the PPL‐SOY‐CLEA in the ethanolysis of soybean oil in a vortex flow type reactor showed that FAEE yield was higher than 50% during ten reaction cycles of 24 h. This reactor configuration may be an attractive alternative to the conventional stirred reactors for biotransformations in industrial plants using carrier‐free biocatalysts. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:910–920, 2018  相似文献   

20.
Escherichia coli has been widely used as an expression host for the identification of desired biocatalysts through screening or selection assays. We have previously used E. coli in growth selection and screening assays for identification of Bacillus subtilis lipase variants (located in the periplasm) with improved activity and enantioselectivity toward 1,2-O-isopropylideneglycerol (IPG) esters. In the course of these studies, we discovered that E. coli itself exhibits significant cytoplasmic esterase activity toward IPG esters. In order to identify the enzyme (or enzymes) responsible for this esterase activity, we analyzed eight E. coli knockout strains, in which single esterase genes were deleted, for their ability to hydrolyze IPG butyrate. This approach led to the identification of esterase YbfF as the major E. coli enzyme responsible for the hydrolytic activity toward IPG esters. The gene coding for YbfF was cloned and overexpressed in E. coli, and the corresponding protein was purified and characterized for its biocatalytic performance. YbfF displays a high level of activity toward IPG butyrate and IPG caprylate and prefers the R-enantiomer of these substrates, producing the S-enantiomer of the IPG product with high enantiomeric excess (72 to 94% ee). The enantioselectivity of YbfF for IPG caprylate (E = 40) could be significantly enhanced when using dimethylformamide (DMF) or dimethyl sulfoxide (DMSO) as cosolvents in kinetic resolution experiments. The enzyme also shows high enantioselectivity toward 1-phenylethyl acetate (E ≥ 200), giving the chiral product (R)-1-phenylethanol with >99% ee. The high activity and enantioselectivity of YbfF make it an attractive enzyme for organic synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号