首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Pulse amplitude modulation fluorescence was used to investigate whether abscisic acid (ABA) pretreatment increases the desiccation tolerance of photosynthesis in the moss Atrichum undulatum. In unstressed plants, ABA pretreatment decreased the F V/F m ratio, largely as a result of an increase in F o. This indicated a reduction in energy transfer between LHCII and PSII, possibly hardening the moss to subsequent stress by reducing the production of the reactive oxygen species near PSII. During desiccation, F 0, F m, F v/F m, PSII, and NPQ and F 0 quenching declined in ABA-treated and nontreated mosses. However, during rehydration, F 0, F m, F v/F m, and PSII recovered faster in ABA-treated plants, suggesting that ABA improved the tolerance of photosystem II to desiccation. NPQ increased upon rehydration in mosses from both treatments, but much more rapidly in ABA-treated plants; during the first hour of rehydration, NPQ was two-fold greater in plants treated with ABA. F 0quenching followed a similar pattern, indicating that ABA treatment stimulated zeaxanthin-based quenching. The implications of these results for the mechanisms of ABA-induced desiccation tolerance in A. undulatum are discussed.  相似文献   

3.
The rough bark of orchard trees (Malus) around Darmstadt is predominantly covered in red to purple‐brown layers (biofilms) of epiphytic terrestrial alga of Trentepohlia umbrina. The smooth bark of forest trees (Fagus sylvatica L. and Acer sp.) in the same area is covered by bright green biofilms composed of the green algae Desmococcus, Apatococcus and Trebouxia, with a few cells of Coccomyxa and ‘Chlorella’ trebouxioides between them. These algae are desiccation tolerant. After samples of bark with the biofilms were kept in dry air in darkness for various periods of time, potential quantum yield of PSII, Fv/Fm, recovered during rehydration upon rewetting. The kinetics and degree of recovery depended on the length of time that the algae were kept in dry air in the desiccated state. Recovery was better for green biofilm samples, i.e. quite good even after 80 days of desiccation (Fv/Fm = ca. 50% of initial value), than the red samples, where recovery was only adequate up to ca. 30–40 days of desiccation (Fv/Fm = ca. 20–55% of initial value). It is concluded that the different bark types constitute different ecophysiological niches that can be occupied by the algae and that can be distinguished by their capacity to recover from desiccation after different times in the dry state.  相似文献   

4.
Drought is a major constraint for rice production in the rainfed lowlands in China. Silicon (Si) has been verified to play an important role in enhancing plant resistance to environmental stress. Two near-isogenic lines of rice (Oryza sativa L.), w-14 (drought susceptible) and w-20 (drought resistant), were selected to study the effects of exogenous Si application on the physiological traits and nutritional status of rice under drought stress. In wet conditions, Si supply had no effects on growth and physiological parameters of rice plants. Drought stress was found to reduce dry weight, root traits, water potential, photosynthetic parameters, basal quantum yield (F v/F 0), and maximum quantum efficiency of PSII photochemistry (F v/F m) in rice plants, while Si application significantly increased photosynthetic rate (Pr), transpiration rate (Tr), F v/F 0, and F v/F m of rice plants under drought stress. In addition, water stress increased K, Na, Ca, Mg, Fe content of rice plants, but Si treatment significantly reduced these nutrient level. These results suggested that silicon application was useful to increase drought resistance of rice through the enhancement of photochemical efficiency and adjustment of the mineral nutrient absorption in rice plants.  相似文献   

5.
The development of desiccation tolerance by vegetative tissues was an important step in the plants’ conquest of land. To counteract the oxidative stress generated under these conditions the xanthophyll cycle plays a key role. Recent reports have shown that desiccation itself induces de-epoxidation of xanthophyll cycle pigments, even in darkness. The aim of the present work was to study whether this trait is a common response of all desiccation-tolerant plants. The xanthophyll cycle activity and the maximal photochemical efficiency of PS II (F v/F m) as well as β-carotene and α-tocopherol contents were compared during slow and rapid desiccation and subsequent rehydration in six species pairs (with one desiccation-sensitive and one desiccation-tolerant species each) belonging to different taxa. Xanthophyll cycle pigments were de-epoxidised in darkness concomitantly with a decrease in F v/F m during slow dehydration in all the desiccation-tolerant species and in most of the desiccation-sensitive ones. De-epoxidation was reverted in darkness by re-watering in parallel with the recovery of the initial F v/F m. The stability of the β-carotene pool confirmed that its hydroxylation did not contribute to zeaxanthin formation. The α-tocopherol content of most of the species did not change during dehydration. Because it is a common mechanism present in all the desiccation-tolerant taxa and in some desiccation-sensitive species, and considering its role in antioxidant processes and in excess energy dissipation, the induction of the de-epoxidation of xanthophyll cycle pigments upon dehydration in the dark could be understood as a desiccation tolerance-related response maintained from the ancestral clades in the initial steps of land occupation by plants.  相似文献   

6.
This paper compares the changes in water content, chlorophyll a fluorescence and leaf ultrastructure during dehydration and rehydration in two desiccation tolerant plants Xerophyta viscosa and X. retinervis. Both species showed decreasing quantum efficiency of photosystem 2 (Fv/Fm) with decreasing water content. Extreme water loss observed after 25 d of dehydration resulted in considerable damage of leaf tissue ultrastructure. After rehydration, both species need several days to reconstitute their photosynthetic machinery.  相似文献   

7.
Due to the periodic exposure to air during periods of low tide, desiccation can be expected to cause important limiting effects on the photosynthetic activity of intertidal microphytobenthos biofilms. This work addresses the study of the short-term effects of desiccation on microphytobenthos using a new, simple methodological approach to non-destructively estimate the water content of muddy intertidal sediments. The method is based on the non-destructive measurement of the specular reflectance in the visible spectral region, shown to be linearly related to the water content of the uppermost 200 µm of the sediment. During air exposure, water loss by the surface sediment layers was shown to induce marked decreases in both the photosynthetic activity, as measured by the maximum quantum yield of photosystem II, Fv/Fm, and the surface microalgal biomass, as estimated from the diffusive reflectance biomass index NDVI. The effects of desiccation were largely dependent on the rate of sediment de-watering. For a same level of desiccation, samples under fast desiccation (exposed to wind of 4.2 m s− 1) showed much larger effects on Fv/Fm and NDVI comparatively to samples under slow desiccation (maintained under still air). By showing the rapid and significant effects of desiccation on microphytobenthos biofilm functioning, the results of this study have potentially important implications for the modelling of primary productivity of estuarine intertidal areas, as desiccation and factors inducing it may result in previously unaccounted effects on photosynthetic performance and productive biomass.  相似文献   

8.
The physiological ecology of Prasiola stipitata was examined in situ from two supralittoral sites in the Bay of Fundy (Nova Scotian, Canada) during November 2011, when the population was undergoing major expansion. Photosynthetic parameters (effective quantum yield, ΦPSII, maximum quantum yield, Fv/Fm, and relative electron transport rate, rETR) were evaluated using chlorophyll fluorescence of PSII. A largely shaded and continuously moist population showed no change in ΦPSII from one hour after sunrise to sunset in which natural irradiance varied between 3 and 300 μmol photons m?2 s?1. High irradiance (up to 1800 μmol photons m?2 s?1) had no apparent negative impacts on either quantum yield or rETR, but high desiccation in the field reduced quantum yield to almost zero. When thalli were brought into the laboratory, no change in Fv/Fm was observed up to 60% dehydration; however, there was a steep decline in Fv/Fm between 60% and 85% dehydration. Thalli showed complete recovery of Fv/Fm within one hour of reimmersion in seawater after 2 days of desiccation. After 15 days of desiccation full recovery required 24 h and after 30 days of desiccation thalli showed only partial recovery. These observations confirm the adaptation to photosynthesis in high irradiances and the rapid recovery following extreme desiccation observed in other Prasiola species.  相似文献   

9.
Cyanobacterium Nostoc commune is a species highly resistant against desiccation. In this study, we investigated changes in photochemical processes of photosynthesis and spectral reflectance indices during controlled desiccation of the colonies from Antarctica. In a dehydration process, water potential (WP) reached ?3 MPa and values of potential (F v/F m) and effective quantum yields (ΦPSII) of photosystem II were kept to high value until 90% of water was lost from the colony, and these values decreased rapidly by further loss of water. This indicates that the colony loses water mostly from the exopolysaccharidic envelope, not from cells during the initial part of dehydration (relative water content, RWC = 100–10%). Other suggestions of inhibition of photosynthetic processes after 90% loss of water were the increase of the chlorophyll fluorescence parameter F p/F s. The F m′ was higher than F m in hydrated colonies because of state transition which change energy distribution between PS I and PS II, but decreased to same level as F m in dehydrated colonies. The Normalized Difference Vegetation Index (NDVI) and Photochemical Reflectance Index (PRI) showed concave‐ and convex‐curvilinear relationship with RWC, respectively. The changes of NDVI values were, however, statistically insignificant. PRI values were predominantly below 0 because of phycobiliprotein involvement. These results were compared with the same species in the Arctic region. This is, according to our best knowledge, the first measurement of changes in spectral reflectance indices during desiccation of cyanobacteria.  相似文献   

10.

Three prevalent aliphatic polyamines (PAs) include putrescine, spermidine, and spermine; they are low-molecular-mass polycations involved in many physiological processes in plants, especially, under stressful conditions. In this experiment, three bean (Phaseolus vulgaris L.) genotypes were subjected to well-watered conditions and two moderate and severe water-stressed conditions with and without spermidine foliar application. Water stress reduced leaf relative water content (RWC), chlorophyll contents, stomatal conductance (gs), intercellular CO2 concentration (Ci), transpiration rate, maximal quantum yield of PSII (Fv/Fm), net photosynthetic rate (PN), and finally grain yield of bean plants. However, spermidine application elevated RWC, gs, Ci, Fv/Fm, and PN, which caused an increase in the grain yield and harvest index of bean plants under water stress. Overall, exogenous spermidine could be utilized to alleviate water stress through protection of photosynthetic pigments, increase of proline and carotenoid contents, and reduction of malondialdehyde content.

  相似文献   

11.
Summary Selaginella lepidophylla, the resurrection plant, curls dramatically during desiccation and the hypothesis that curling may help limit bright light-induced damage during desiccation and rehydration was tested under laboratory conditions. Restraint of curling during desiccation at 25° C and a constant irradiance of 2000 mol m–2 s]t-1 significantly decreased PSII and whole-chain electron transport and the Fv/Fm fluorescence yield ratio following rehydration relative to unrestrained plants. Normal curling during desiccation at 37.5°C and 200 mol m–2 s–1 irradiance did not fully protect against photoinhibition or chlorophyll photooxidation indicating that some light-induced damage occurred early in the desiccation process before substantial curling. Photosystem I electron transport was less inhibited by high-temperature, high-irradiance desiccation than either PSII or whole-chain electron transport and PSI was not significantly affected by restraint of curling during desiccation at 25°C and high irradiance. Previous curling also helped prevent photoinhibition of PSII electron transport and loss of whole-plant photosynthetic capacity as the plants uncurled during rehydration at high light. These results demonstrate that high-temperature desiccation exacerbated photoinhibition, PSI was less photoinhibited than PSII or whole-chain electron transport, and stem curling ameliorated bright light-induced damage helping to make rapid recovery of photosynthetic competence possible when the plants are next wetted.  相似文献   

12.
In a previous study, we characterized a high chlorophyll fluorescence Ipal mutant of Arabidopsis thallana, in which approximately 20% photosystem (PS) Ⅱ protein is accumulated. In the present study, analysis of fluorescence decay kinetics and thermoluminescence profiles demonstrated that the electron transfer reaction on either the donor or acceptor side of PSII remained largely unaffected in the Ipa1 mutant. In the mutant, maximal photochemical efficiency (Fv/Fm, where Fm is the maximum fluorescence yield and Fv is variable fluorescence) decreased with increasing light intensity and remained almost unchanged in wildtype plants under different light conditions. The Fv/Fm values also increased when mutant plants were transferred from standard growth light to low light conditions. Analysis of PSll protein accumulation further confirmed that the amount of PSll reaction center protein is correlated with changes in Fv/Fm in Ipal plants. Thus, the assembled PSll in the mutant was functional and also showed increased photosensitivity compared with wild-type plants.  相似文献   

13.
Summary Cold acclimation responses of latitudinal ecotypes of Cornus sericea L. (C. stolonifera Michx.) and F1, F2 and BC1 hybrid progenies were measured under natural photoperiod conditions in St. Paul, MN and artificially shortened photoperiods in the glass-house. The 65 °N and 62 °N ecotypes (Alaska and Northwest Territories, respectively) were characterized by a short night length for hardiness induction, the 42 °N ecotype (Utah A and B) by a long night length for hardiness induction, while the F1 was intermediate to the parents. Results from reciprocal crosses indicated there was no significant unilateral maternal influence on cold acclimation. Acclimation responses of the F2 were highly variable but generally ranged between the parental extremes. However, three individuals from the 42 ° × 62 °N crosses exhibited greater cold resistance than the northern parent on two successive freezing test dates. F2 plants were also found with less freezing resistance than the southern parent. Backcrosses to the southern parent produced progeny with acclimation patterns resembling that of the southern parent and were significantly less hardy than the F2 in early freezing tests.Scientific Journal Series Paper No. 12,075 of the Minnesota Agricultural Experiment Station  相似文献   

14.
The possibility to improve the recovery of sugar beet plants after water stress by application of synthetic cytokinins N6-benzyladenine (BA) or N6-(m-hydroxybenzyl)adenosine (HBA) was tested. Relative water content (RWC), net photosynthetic rate (PN), transpiration rate (E), stomatal conductance (gs), chlorophyll (Chl) a and Chl b contents, and photosystem 2 efficiency characterized by variable to maximal fluorescence ratio (Fv/Fm) were measured in control plants, in water-stressed plants, and after rehydration (4, 8, 24, and 48 h). Water stress markedly decreased parameters of gas exchange, but they started to recover soon after irrigation. Application of BA or HBA to the substrate or sprayed on leaves only slightly stimulated recovery of PN, E, and gs in rehydrated plants, especially during the first phases of recovery. Chl contents decreased only under severe water stress and Fv/Fm ratio was not significantly affected by water stress applied. Positive effects of BA or HBA application on Chl content and Fv/Fm ratio were mostly not observed.  相似文献   

15.
The subspeciesNostoc commune var.flagelliforme andN. commune var.commune are found in China (Ningxia Province, Inner Mongolia) as two morphologically different ecotypes of the desiccation-independent cyanobacteriumN. commune. The first ecotype, but not the second, colonizes arid areas. Various biochemical parameters and water dependence of photosynthesis and nitrogen fixation were compared for both ecotypes. Different patterns of water stress proteins were found in the two ecotypes. Repeated desiccation resulted in an enhanced desiccation independence for photosynthesis and, in the case of the ecotypecommune, for nitrogen fixation. The different response of nitrogenase of both ecotypes towards repeated cycles of rewetting and desiccation under conditions simulating the natural environment is discussed in terms of the energy balance of the colonies that are adapted to different environmental conditions.  相似文献   

16.
  • Morphological and ecological differences of two forms of Helosciadium repens are known and described in the literature: aquatic and terrestrial. However, their taxonomic status is currently unknown. The question whether they are genotypically adapted to specific environmental conditions or are those differences a result of phenotypic plasticity is addressed in this study.
  • SSR and ISSR data were used to uncover genotypic differences. Data from drought stress experiments (system water content and relative water content of leaves) were used to evaluate the response to water as an environmental factor. The stomatal index of both forms grown under different water treatments was analyzed.
  • The principal component analysis of the ISSR data revealed no clustering that would correspond with ecotypes. The diversity parameters of the SSR data showed no significant differences. The aquatic populations showed a tendency toward heterozygosity, while the terrestrial ones showed a bias toward homozygosity. Both forms responded similarly to the changes in water availability, with newly produced leaves after drought stress that were better adapted to repeated drought stress. Stomatal indices were higher in plants from aquatic habitats, but these differences disappeared when the plants were grown in soil.
  • The observed responses indicate that the differences between forms are due to phenotypic plasticity.
  相似文献   

17.
We assessed the effect of the exposure to full sunlight (5, 35, and 120 min, i.e. T5, T35, and T120) on fluorescence parameters of two young tropical trees, Swietenia macrophylla, a gap-demanding species, and Minquartia guianensis, a shade tolerant species. Fluorescence parameters (F0, Fm, Fv/Fm) were recorded before treatments and after the transition to low irradiance (LI). Recovery from photoinhibition (measured as Fv/Fm) was monitored for 24 h at LI. In Swietenia, an almost complete restoration of the Fv/Fm values occurred in T5 and T35 plants, when a rise in F0 was observed after the transition to LI. This was inferred as indicative of dynamic photoinhibition. T120 led to a decline in F0 in Minquartia, but not in Swietenia. The plants of both species were unable to recovery from photoinhibition after 24 h at LI, when F0 declined or remained unchanged. This was interpreted as indicative of chronic photoinhibition. Compared with Swietenia, Minquartia was more susceptible to photoinhibition, as indicated by lower Fv/Fm values.  相似文献   

18.
Arsenic is a critical contaminant that is released into the environment through geochemical processes and anthropic actions. Two independent hydroponic experiments were performed to evaluate the ecophysiological responses of water hyacinth [Eichhornia crassipes (Mart.) Solms] to As under various stress conditions. In experiment 1, water hyacinth was exposed to As5+ at concentrations of 0, 0.2, 2.0, and 20 mg L?1 for 0, 2, and 4 d; in experiment 2, water hyacinth was exposed at concentrations of 0, 0.025, 0.05, and 0.1 mg L?1 for 0, 10, and 20 d. In both experiments, As accumulation in plant tissue was proportional to its increase in the nutrient solution; As concentrations were higher in roots than in shoots. Detrimental effects of As on gas exchange were observed and were more pronounced in experiment 1. In experiment 1, at the beginning on the second day of exposure, significant decreases of maximum photochemical efficiency of PSII (Fv/Fm), variable chlorophyll fluorescence (Fv/F0), and photosynthetic pigment contents were observed in plants exposed to 2.0 and 20 mg(As5+) L?1. It indicated that damage to the photosynthetic apparatus had occurred. No changes in Fv/Fm, Fv/F0, and contents of photosynthetic pigments were observed in the plants grown in the presence of 0.2 mg(As5+) L?1 (in experiment 1) or after any of the treatments in experiment 2, indicating plant tolerance. Elevated nonphotochemical quenching was observed in experiment 2 after 20 d of exposure to As; it was as a part of protection mechanisms of the photosynthetic apparatus in these plants. The results obtained here indicate that the use of water hyacinth for As5+ removal from highly impacted environments is limited but that it is effective in remediating sites with a low contamination.  相似文献   

19.
Tobacco (Nicotiana tabacum cv. Xanthi) transformed with the antisense construct of tobacco violaxanthin de-epoxidase was analyzed for responses in growth chambers to both short and long-term stress treatments. Following a short-term (2 or 3 h) high-light treatment, antisense plants had a greater reduction in Fv/Fm relative to wild-type, indicating a greater susceptibility to photoinhibition. The responses of antisense plants to long-term stress were examined in two separate experiments, one with high light alone and the other wherein high light and water stress were combined. In the light-stress experiment, plants were grown at 1300 mol photons m–2 s–1 under a 12 h photoperiod. In the light and water-stress experiment, plants were grown under moderately high light of 900 mol photons m–2 s–1, under a 16 h photoperiod, in combination with water stress. Both conditions caused formation of high antheraxanthin and zeaxanthin levels in wild-type plants but not in antisense plants. In both cases, antisense plants showed significant reductions in Fv/Fm and total leaf-pigment content relative to wild-type. The data demonstrate a critical photoprotective function of the xanthophyll cycle-dependent energy dissipation in tobacco exposed suddenly to high amounts of excess light over extended times.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

20.
The effects of salinity (0–400 mM NaCl, marked S0, S100, S200, and S400) on growth, photosynthesis, photosystem 2 (PS2) efficiency, ion relations, and pigment contents were studied in two seashore Cakile maritima ecotypes (Tabarka and Jerba, respectively, sampled from humid and arid bioclimatic areas). Growth of Jerba plants was improved at S100 as compared to S0. Tabarka growth was inhibited by salinity at all NaCl concentrations. Leaf sodium and chloride concentrations increased with medium salinity and were higher in Jerba than in Tabarka plants. Chlorophyll content, net photosynthetic rate, stomatal conductance (g s), and intracellular CO2 concentration were stimulated at moderate salinity (S100) in Jerba plants and inhibited at higher salt concentrations in both ecotypes: g s was the most reduced parameter. The maximum quantum efficiency of PS2 (Fv/Fm), quantum yield, linear electron transport rate, and efficiency of excitation energy capture by open PS2 reaction centres showed no significant changes with increasing salt concentration in Jerba plant and were decreased in Tabarka subjected to S400. However, the efficiency of dissipation of excess photon energy in the PS2 antenna was maintained in Jerba and was increased in Tabarka plants challenged with S400. Hence the relative salt tolerance of Jerba was associated with a better ability to use Na+ and Cl for osmotic adjustment, the absence of pigment degradation, and the concomitant PS2 protection from photodamage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号