首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This research was conducted to assess the water quality and the contamination of heavy metals in water, sediment, fish, and frogs, as well as bioaccumulation factors (BAFs) in fish and frogs around the gold mine area. The water samples were analyzed for water quality (temperature, pH, and dissolved oxygen). The samples were analyzed for heavy metals by inductively coupled plasma optical emission spectrometry. The water quality was within the standard. The concentrations of heavy metals, including As, Cr, Cd, Pb, Ni, Zn, Fe, Mn, and Cu, in water and sediment samples were measured. Three species of fish were collected: Rasbora tornieri, Brachydanio albolineata, and Systomus rubripinnis. The mean heavy metal concentrations of fish were as follows: Fe>Zn>Mn>Cr>Ni>Cu>As>Pb>Cd. The As, Cr, and Pb concentrations in all the fish species exceeded the standard levels. Five species of frogs were collected: Kaloula pulchra, Microhyla heymonsi, Fejervarya limnocharis, Hoplobatrachus rugulosus, and Microhyla pulchra. The mean heavy metal concentrations of frog were as follows: Fe>Cu>Mn>Zn>Cr>Ni>Pb>Cd>As. The Cr, Cd, and Cu concentrations exceeded the standard levels. The BAFs in fish were in order of Cr>Zn>Ni>Cu>Pb>Fe>Cd>As. The BAFs in frogs were Cr>Zn>Ni>Cu>Fe>Pb>Cd>As. The accumulation of heavy metals was higher in the sediment than in the water. Many aquatic organisms take up heavy metals directly from the environment around the gold mine.  相似文献   

2.
This research was conducted to assess the contamination of heavy metals in the water, sediment, aquatic plants and animals around a municipal landfill. The heavy metals were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES). The concentrations of cadmium (Cd), chromium (Cr), and lead (Pb) in water and sediment were Not detected (ND), 0.05 ± 0.98, and 0.02 ± 0.01 mg/L; and 0.47 ± 0.23, 18.65 ± 11.39, and 5.36 ± 2.08 mg/kg, respectively. A total of 24 aquatic plants from 4 species were collected from the municipal landfill. Cd concentrations in all plant species were within the standard, while Cr and Pb exceeded the standard. Forty-four fish from 4 species, 29 freshwater snails from 3 species, 10 freshwater prawns from 1 species, and 9 freshwater crabs from 1 species were collected. Cd and Cr concentrations in 2 species of fish samples exceeded the standard and Pb concentration in all fish species exceeded the standard. Cd and Pb concentrations in all freshwater snails were within the standard, except Cr. Meanwhile, Cd and Pb in freshwater prawns and snails were within the standard, except Cr. Five species of frogs were collected. Cd and Cr concentrations in 2 species exceeded the standard. Pb concentrations in all frog species exceeded the standard. The pattern of metal accumulation was fish > frogs > freshwater snails > freshwater prawns = freshwater crab (Cd), freshwater prawn > frogs > freshwater crab = freshwater snail > fish (Cr), and freshwater prawn > fish > frogs > freshwater snail > freshwater crab (Pb).  相似文献   

3.
This research was conducted to assess heavy metal contamination in the environment and within Oryza sativa. The translocation factors (TFs) and bioaccumulation factors (BAFs) for heavy metals in O. sativa and estimated daily intake (EDI) and health risk index (HRI) were measured. The samples were analyzed for heavy metals using inductively coupled plasma optical emission spectrometry (ICP-OES). Pb and Cr concentrations in water samples within and near the electronic-waste dumping area exceeded water quality standards for surface water sources from the Pollution Control Department in the Ministry of Natural Resources and Environment of Thailand (PCD). The Pb concentration in soil samples within the area also exceeded soil quality standards for habitat and agriculture from PCD. Most of the metals were highly concentrated in roots, except for Mn which has the highest concentration in leaves. Pb concentrations in rice grains exceeded the FAO/WHO standard (0.2 mg/kg). The average TF values for heavy metals from the soil to roots, roots to stems, stems to leaves, and stems to grains were Mn > Pb > Ni > Cr, Mn > Cr > Ni > Pb, Ni > Pb > Mn > Cr, and Pb > Ni > Cr > Mn, respectively. The average BAF values in O. sativa were Mn > Ni > Pb > Cr. The EDI for Cr, Pb, Mn, and Ni via O. sativa consumption were 6.19, 6.02, 370.57, and 3.80 µg/kg/day, respectively. The HRI for Cr, Pb, Mn, and Ni via O. sativa consumption were 0.30, 1.50, 2.60, and 0.002, respectively.  相似文献   

4.
In this study, paddy soil and rice grain samples were collected from the vicinity around the Xinqiao mine in Tongling, China to test for the presence of heavy metals (Cd, Ni, Cr, Cu, Zn, and Pb) in soil-rice system. Results indicated that the soil samples were primarily contaminated with Cd and Cu and followed with Zn and Pb. In rice grains, Cd, Cu, and Cr concentrations exceeded recommended guidelines. However, the regional distribution of heavy metals in rice grains and soil was inconsistent. The bioaccumulation factor of heavy metals in rice grains decreased in the order of Cd > Zn > Cu > Ni > Cr > Pb. The BAF was significantly positively correlated with TCLP-extractable metals and significantly negatively correlated with soil pH. However, the relationship between soil organic matter and the BAF in rice grains was complex. Health risk assessment through rice intake showed that hazard quotients of Cu and Cd were greater than 1 and could pose a considerable non-cancer health risk to adults and children; meanwhile, Cr, Ni, and Cd could pose an unacceptable cancer risk. The results indicated that the government must take measures to reduce heavy metal contents in paddy soil and rice.  相似文献   

5.
Abstract

Heavy metals are toxic in nature, and their contamination in foodstuff is a matter of concern for human health. The present study was conducted to assess the concentrations of chromium, nickel, copper, arsenic, cadmium, and lead in rice and vegetables and their possible human health risks in Tangail district, Bangladesh. Metals were measured by inductively coupled plasma mass spectrometry (ICP-MS) after microwave digestion system. The average values of Cr, Ni, Cu, As, Cd, and Pb in rice and vegetables were 16.26, 16.11, 13.99, 2.28, 1.86, and 7.93?mg/kg, respectively. The average metal concentration in rice and vegetable species was in the decreasing order of okra?>?chili?>?bitter gourd?>?papaya?>?brinjal?>?bean?>?bottle gourd?>?rice?>?cucumber?>?sponge gourd?>?Indian spinach. The estimated daily intake (EDI) values of all the metals except Cu were higher than the maximum tolerable daily intake (MTDI). The target hazard quotients (THQs) values of Ni, Cu, As, Cd, and Pb exceeded the threshold value of 1 through consumption of rice and vegetables, indicating significant health risks to both adult and children. The target carcinogenic risk (TR) of As and Pb through consumption of rice and vegetables was higher than the USEPA threshold level (10?4). From the health point of view, this study clearly revealed that consumption of these contaminated rice and vegetables definitely poses carcinogenic and non-carcinogenic risks.  相似文献   

6.
Heavy metal contamination of agricultural soils resulting from rapid industrialization and urbanization is of great concern because of potential health risk due to dietary intake of contaminated vegetables. The present study aims to evaluate the status of heavy metals contamination of agricultural soils and food crops around an urban-industrial region in India. Transfer factor values of Cu, Cr, Pb, Cd, Zn, and Ni from soil to vegetable was estimated. The mean heavy metal concentrations (mg/kg) in agricultural soils (Cu: 17.8, Cr: 27.3, Pb: 29.8, Cd: 0.43, Zn: 87, Mn: 306.6, Fe: 16984, and Ni: 53.8) were within allowable concentrations for Indian agricultural soil. The concentrations of Pb, Cd, Zn, and Ni in crops/vegetables exceeded the World Health Organization/Food and Agriculture Organization safe limits. Relative orders of transfer of metals from soil to edible parts of the crops/vegetables were Cd > Pb > Ni > Zn > Cu > Cr. The enrichment factors of heavy metals in soil indicated minor to moderately severe enrichment for Pb, Cd, and Ni; minor to moderate enrichment for Zn; no enrichment to minor enrichment for Mn; and no enrichment to moderate enrichment for Cu at different sites. Ecological risk index of soil showed considerable contamination in one of the wastewater irrigated sites.  相似文献   

7.

Aims and methods

Concentrations of heavy metals such as Cd, As, Hg, Pb, Cr, Cu, Zn and Ni in different tissues (seeds, roots and shoots) of the mature canola (Brassica napus L.) plants and in the associated rhizosphere soils from Yangtze River Delta (YRD) region of China, were determined to evaluate the heavy metals’ pollution in the soils and the canola seeds, and to discuss their accumulation and translocation characteristics in canola plants. At the same time, the phytoextraction potential of the canola plant for the above heavy metals was theoretically calculated and discussed on the basis of above measured data.

Results

The results showed that the concentration ranges of Cd, As, Hg, Pb, Cr, Cu, Zn and Ni in the rhizosphere soils were 0.115–0.481, 3.40–20.5, 0.069–0.682, 9.92–27.4, 46.8–86.6, 17.7–253.3, 65.2–511.7 and 16.0–37.8?mg?kg?1, respectively. The concentrations of Cu, Zn and Hg at some sampling sites exceeded the 2nd grade threshods of Chinese national environmental quality standard for soils. The potential ecological risk of heavy metals in the canola rhizosphere soils decreased in the order of Zhejiang > Shanghai > Jiangsu provinces. The concentration ranges of above heavy metals in the canola seeds were 0.032–0.067, 0.002–0.005, 0.001–0.005, 0.053–0.165, 0.191–0.855, 3.01–13.20, 34.82–96.95 and 0.343–2.86?mg?kg?1, respectively, with Cu and Zn at some sampling sites exceeding the permissible concentrations in foods of China. Heavy metals’ concentrations in canola seeds didn’t increase with their increasing concentrations in the rhizosphere soils. The bioconcentration factors (BCFs) of most heavy metals in the canola seeds decreased with their increasing concentrations in the associated rhizosphere soils. The average BCFs of heavy metals decreased in the order of Zn (0.488)>Cd (0.241)>Cu (0.145)>Ni (0.038)>Hg (0.021)>Pb (0.005)=Cr (0.005)>As (0.000) in the canola seeds, Cd (1.550)>Cu (0.595)>Zn (0.422)>Hg (0.138)>Ni (0.085)>Pb (0.080)>As (0.035)>Cr (0.031) in the roots, and Cd (0.846)>Zn (0.242)>Cu (0.205)>Hg (0.159)>Ni (0.031)>Pb (0.025)>As (0.012)>Cr (0.007) in the shoots, respectively. The accumulation capacity for most of the above heavy metals in the mature canola tissues was root > shoot > seed, with the exceptions of seed > root > shoot for Zn and shoot > root > seed for Hg. Except Hg from root to shoot and Zn from root to seed, translocation factors (TFs) of above heavy metals were lower than 1.0.

Conclusions

The concentrations, BCFs and TFs of above heavy metals in the canola tissues indicated that the investigated canola plants did not meet the criteria of hyperaccumulators for the above heavy metals. The phytoextracton potential of the studied canola plants for the above heavy metals from the polluted soils was very limited. It would take 920, 3,170 and 3,762?years (assuming two crops per year) to reduce the initial soil Zn, Cu and Hg concentrations, respectively, from the most polluted soil concentrations to the 2nd grade thresholds of Chinese national environmental quality standard for soils.  相似文献   

8.
Abstract

The purpose of the study was to acquire the source and evaluate the risk posed by heavy metals in road dust of steel industrial city (Anshan), Liaoning, Northeast China. Potential ecological risk index (RI), pollution index (PI) and geo-accumulation index (Igeo) were applied to evaluate the heavy metal pollution level, and the carcinogenic risk (RI) and hazard index (HI) were calculated to estimate the human health risk. The geographic information system maps clearly reveal the hot spots of heavy metal spatial distribution. Principle component analysis (PCA) and cluster analysis (CA) classified heavy metals into three groups. The metal Zn and Pb originate from the traffic emission, while Cd, Cr, Fe, Mn, Ni and Sb primarily come from industrial activities. These two pathways were the major source of heavy metals pollution by positive matrix factorization (PMF). The Igeo and PI values of heavy metals were decreased in the following order: Cd?>?Sb?>?Zn?>?Fe?>?Pb?>?Cu?>?Cr?>?Sn?>?Mn?>?Ni. The RI index showed the heavy metals were moderate to very high potential ecological risk. The HI values for children and adults presented a decreasing order of Cr?>?Pb?>?Ni?>?Cu?>?Cd?>?Zn. The HI also predicted a possibility of non-carcinogenic risk for children living in urban areas in comparison with adults.  相似文献   

9.
《农业工程》2020,40(1):64-71
Twenty five water samples were collected along the Taizihe River, the concentration and health risks of Zn, Cu, Pb, Cr and Cd were detected and evaluated, and the pollution sources was analyzed through principal components analyses. The results indicated that the order of average concentration of heavy metals was follows: Pb > Cr > Cu > Zn and Cd. Among that, the concentrations of Zn, Cu and Cr were at the permissible levels, but Pb and Cd exceeded grade V standard at some sites. The concentrations of Zn and Cu in the wet season were significant higher than that in the dry season (p < 0.05), but the average concentrations of Pb, Cr and Cd were not significantly different in the two seasons (p > 0.05). The annual average risks of human health caused by Cd and Cr were 10−3/a and 10−4/a, respectively, which were higher than the recommended maximum acceptable risk level. The human health risk values of Zn, Pb and Cu were all concentrated at 10−8/a or 10−9/a levels, which did not exceed the recommended standard. On the whole, Cd and Cr were the main health risk pollutants of Taizihe River. Pollution sources of Pb was different from other heavy metals in wet and dry season, Cd and Cr were similar in the wet and dry season. The mainly pollution source of heavy metals was industry, especially mining, metal smelting and electroplating industry.  相似文献   

10.
In the present study, nine native plant species were collected to determine their potential to clean up nine heavy metals from soil of a sewage sludge dump site. Almost all nine plant species grown at sewage sludge dump site showed multifold higher concentrations of heavy metals as compared to plants grown at the reference site. All the investigated species were characterized by a bioaccumulation factor (BF) > 1.0 for some heavy metals. BF was generally higher for Cd, followed by Pb, Co, Cr, Cu, Ni, Mn, Zn, and Fe. The translocation factor (TF) varied among plant species, and among heavy metals. For most studied heavy metals, TFs were <1.0. The present study proved that the concentrations of all heavy metals (except Cd, Co, and Pb) in most studied species were positively correlated with those in soil. Such correlations indicate that these species reflect the cumulative effects of environmental pollution from soil, and thereby suggesting their potential use in the biomonitoring of most heavy metals examined. In conclusion, all tissues of nine plant species could act as bioindicators, biomonitors, and remediates of most examined heavy metals. Moreover, Bassia indica, Solanum nigrum, and Pluchea dioscoridis are considered hyperaccumulators of Fe; Amaranthus viridis and Bassia indica are considered hyperaccumulators of Pb; and Portulaca oleracea is considered hyperaccumulator of Mn.  相似文献   

11.
Abstract

A total of 83 dust samples were collected from the streets of Urumqi city in NW China and analyzed for the concentrations of As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn elements. The spatial distribution, contamination levels, main sources, and potential health risks of these trace elements were determined based on geostatistical analysis, geo-accumulation index, multivariate analysis, and the health risk assessment model introduced by the USEPA, respectively. The obtained results indicate that the average concentrations of Cd, Cr, Cu, Hg, Ni, Pb, and Zn exceed the corresponding background values determined in Xinjiang soils by factors of 2.0, 1.35, 1.38, 8.24, 1.28, 2.09, and 3.26, respectively. The spatial distribution patterns of the nine trace elements in street dust were found to be substantially heterogeneous, and the contamination level decreased in the following order: Hg?>?Zn?>?Pb?>?Cd?>?Cr?>?Cu?>?As?>?Ni?>?Mn. Based on the identified concentrations, the collected dust samples were found to be moderately polluted by Hg, and not polluted by As, Cr, Cu, Mn, and Ni. The remaining elements, Cd, Pb, and Zn lie on the borderline between non-pollution and moderate pollution levels. Furthermore, it was shown that Mn and Zn in street dusts originate from both, natural and anthropogenic sources, while As, Cd, Cr, Cu, Hg, Ni, and Pb are mainly produced by anthropogenic sources. Overall, the carcinogenic and non-carcinogenic health risks of the analyzed elements, instigated primarily by oral ingestion of street dusts, were found to be within the acceptable range for both, children and adults. As and Cr are the main non-carcinogenic elements, whereas Cr is the major carcinogenic element among the investigated dust-bound metals in the study area.  相似文献   

12.
The study of the concentrations of Cr, Zn, Cd, Pb, Ni, and Cu in soils under different land uses in rural, semi-urban, and urban zones in the Niger Delta was carried out with a view to providing information on the effects of the different land uses on the concentrations of trace elements in soils. Our results indicate significant variability in concentrations of these metals in soils under different land uses in rural, semi-urban, and urban zones. The maximum concentrations of metals in the examined soil samples were 707.5 mg.kg?1, 161.0 mg.kg?1, 2.6 mg.kg?1, 59.6 mg.kg?1, 1061.3 mg.kg?1, and 189.2 mg.kg?1 for Cr, Zn, Cd, Pb, Ni, and Cu, respectively. In the rural zone, the cassava processing mill is a potent source of Ni, Cr, Cu, and Zn while agricultural activities are a source of Cd, and automobile emissions and the use of lead oxide batteries constitute the major sources of Pb. In the urban zone, soils around the wood processing mill showed elevated concentrations of Cu, Cr, Zn, and Ni, while soils around automobile mechanic works and motor parks showed elevated levels of Pb. Elevated Cd concentrations were observed in soils under the following land uses: urban motor park, playground, welding and fabrication sheds, and metallic scrap dump. The contamination/pollution index of metals in the soil follows the order: Ni > Cd > Cr > Zn > Cu > Pb. The multiple pollution index of metals at different sites were greater than 1, indicating that these soils fit into “slight pollution” to “excessive pollution” ranges with significant contributions from Cr, Zn, Cd, Ni, and Cu.  相似文献   

13.
A total of 195 farmland soil samples were collected in Yanqi Basin, Xinjiang, northwest China, and the concentrations of As, Cd, Cr, Cu, Ni, Pb, and Zn were analyzed for their concentrations and pollution levels using the Nemerow comprehensive index. The health risk assessment model introduced by USEPA was utilized to evaluate the human health risks of heavy metals. Results indicated that the average concentrations of these seven metals were lower than the allowed soil environmental quality standards of China, while the average concentrations of Cd, Cr, Ni, Pb and Zn exceeded the background values of irrigation soils in Xinjiang. The average contamination factor (CF) for Pb indicated the heavy pollution, whereas the CF for Cd, Zn, Ni, Cu and Cr indicated the moderate pollution. The average PLI of heavy metals indicated the low pollution. The non-carcinogenic hazard index were below the threshold values, and the total carcinogenic risks due to As and Cr were within the acceptable range for both children and adults. As and Pb were the main non-carcinogenic factors, while As was the main carcinogenic factor in the study area. Special attentions should be paid to these priority control metals in order to target the lowest threats to human health.  相似文献   

14.
To assess the extent and potential hazards of heavy metal pollution at Shanghai Laogang Landfill, the largest landfill in China, surface soil samples were collected near the landfill and concentrations of Cu, Zn, Cd, Pb, and Cr were determined. The results revealed that the concentrations of heavy metals, except Pb, were higher in the surface soil near the landfill than in the background soil. Principal component analysis and hierarchical cluster analysis suggested that the enrichment of Cu in soil was probably related to agricultural activities and Cd and Pb to landfill leachates, whereas Zn and Cr concentrations were probably controlled by soil matrix characteristics. The pollution indices (PIs) of the metals were: Cd > Cu > Cr > Zn > Pb. Among the five measured metals, Cd showed the largest toxic response and might cause higher ecological hazards than other metals. The integrated potential eco-risk index (RI) of the five metals ranged from 26.0 to 104.9, suggesting a low-level eco-risk potential. This study indicated the accumulations of Cu, Zn, Cd, Pb, and Cr did not reach high pollution levels, and therefore posed a low eco-risk potential in surface soil near the landfill.  相似文献   

15.
Trace heavy metals such as Cr(III), Ni(II), Cd(II), Zn(II), Pb(II), and Cu(II) are hazardous pollutants and are rich in areas with high anthropogenic activities. Their concentrations were analyzed using atomic absorption spectroscopy, and it was found that their concentrations were several fold higher in downstream Swan River water samples of the Kahuta Industrial Triangle as compared to upstream. Heavy metal soil concentrations taken from the downstream site were 149% for Cr, 131% for Ni, 176% for Cd, 139% for Zn, 224% for Pb, and 182% for Cu when compared to samples from the upstream site. Quantitative analysis concluded that these metals were higher in milk samples collected from downstream as compared to the samples from upstream water-irrigated sites. The order of metal in milk was as Zn > Cr > Cu > Cd > Pb = Ni. Heavy metal contaminations may affect the drinking water quality, food chain, and ecological environment. It was also suggested that the toxicity due to such polluted water, soil, and milk are seriously dangerous to human health in future.  相似文献   

16.
Abstract

A detailed investigation was conducted to understand the contamination characteristics of a selected set of heavy metals (HMs) in 34 campus dust samples from Huaxi University Town. The HMs spatial distribution analysis based on ArcGIS software, the geo-accumulation index (Igeo) and health risk model were employed for evaluation, and multivariate statistical methods were used to identify possible sources. Results showed that the mean concentrations of Cu, Zn, Pb, Cr, Ni, and Cd were 68.18, 123.81, 45.26, 140.36, 47.26, and 0.47?mg/kg, respectively. The spatial distribution characteristics displayed that the relatively large concentrations for the analyzed HMs were mainly located at both teaching areas and students’ dormitory areas. The average values of Igeo indicated that HMs contamination level followed the decreasing trend of Cd?>?Cu?>?Cr?>?Pb?>?Ni?>?Zn. The health risk assessment results indicated that HMs in campus dust generally do not pose any immediate health risk for both adult males and adult females but the cumulative effect is a matter of concern. The sources analyses demonstrated that Cu, Zn, Cr, and Cd, primarily from motor vehicle emission and waste incineration, Pb predominantly originated from construction source, while Ni had the mixed sources of nature and traffic.  相似文献   

17.
This study investigates the potential health risk assessment of heavy metals consumption through wild plants (WPs) irrigated with wastewater and fresh water in the Bannu district, Pakistan. Therefore, soil and WP samples were collected and analyzed for heavy metals by atomic absorption spectrophotometer (Varian FAAS-240). Wastewater irrigated soil showed an elevated level for Cd (5.05–14.50 mg/Kg) and Ni (99.35–104.85 mg/Kg), while Cd (3.35–4.84 mg/Kg) concentration in the fresh water irrigated soil also surpassed the maximum allowable limits (MAL) set by the World Health Organization. Similarly, selected wastewater irrigated plants and fresh water irrigated plants also exceeded the MAL set by the Food and Agriculture Organization for Cd, Pb, and Cr (except for Cr in Vicia sativa). Heavy metal concentrations through WPs consumption were evaluated for the health risk index (HRI). The HRI value for each selected WPs was <1. However, total HRI values through WPs consumption was >1. Therefore, WPs consumption of the study area may pose a potential threat to the local community.  相似文献   

18.
The present study was conducted to assess the suitability of sewage sludge amendment (SSA) in soil for Beta vulgaris var. saccharifera (sugar beet) by evaluating the heavy metal accumulation and physiological responses of plants grown at a 10%, 25%, and 50% sewage sludge amendment rate. The sewage sludge amendment was modified by the physicochemical properties of soil, thus increasing the availability of heavy metals in the soil and consequently increasing accumulation in plant parts. Cd, Pb, Ni, and Cu concentrations in roots were significantly higher in plants grown at 25% as compared to 50% SSA; however, Cr and Zn concentration was higher at 50% than 25% SSA. The concentrations of heavy metal showed a trend of Zn > Ni > Cu > Cr > Pb > Cd in roots and Zn > Cu > Ni > Cr > Pb > Cd in leaves. The only instance in which the chlorophyll content did not increase after the sewage sludge treatments was 50%. There were approximately 1.12-fold differences between the control and 50% sewage sludge application for chlorophyll content. The sewage sludge amendment led to a significant increase in Pb, Cr, Cd, Cu, Zn, and Ni concentrations of the soil. The heavy metal accumulation in the soil after the treatments did not exceed the limits for the land application of sewage sludge recommended by the US Environmental Protection Agency (US EPA). The increased concentration of heavy metals in the soil due to the sewage sludge amendment led to increases in heavy metal uptake and the leaf and root concentrations of Ni, Zn, Cd, Cu, Cr, Pb, and Zn in plants as compared to those grown on unamended soil. More accumulation occurred in roots and leaves than in shoots for most of the heavy metals. The concentrations of Cd, Cr, and Pb were more than the permissible limits of national standards in the edible portion of sugar beet grown on different sewage sludge amendment ratios. The study concludes that the sewage sludge amendment in the soil for growing sugar beet may not be a good option due to risk of contamination of Cr, Pb, and Cd.  相似文献   

19.
The issue of heavy metal pollution is of high concern due to its potential health risks and detrimental effects on human beings, animals, and plants. In this study, farmland soil samples from 79 sampling sites were collected in Karashahar–Baghrash oasis, northwest China, and the contents of eight heavy metal elements (As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn) were determined by standard methods. The spatial distribution, pollution, and ecological risks of heavy metals were analyzed based on Geographical Information System (GIS) technology, contamination factor (CF), pollution load index (PLI), and potential ecological risk index (RI). Results indicated that: (1) The average contents of Cd, Cr, Ni, Pb, and Zn exceeded the background values of irrigation soils of Xinjiang by 54.0, 1.34, 1.39, 3.44, and 5.01 times, respectively. The average contents of Cd exceeded the national standard of China by 10.80 times; (2) The pollution order of CF was ranked as Cd > Zn > Pb > Ni > Cr > Cu > As > Mn, and the ecological risk order of Eri was ranked as Cd > Ni > As > Cu > Ni > Pb > Cr > Zn. The average PLI of the study area showed heavy pollution level, and the average RI of the study area fell into considerable risk; (3) The moderately polluted areas with moderate potential ecological risks distributed in the northern parts, whereas heavily polluted areas with considerable potential ecological risks distributed in the southern parts of the study area; (4) Cr, Cu, and Mn of farmland soils were mainly originated from natural factors. Cd, Ni, and Pb were mainly originated from anthropogenic factors. As and Zn may be associated with both natural and anthropogenic factors. Cd contributed most to the PLI and RI of the farmland soils in the study area.  相似文献   

20.
Instances of Soil and Crop Heavy Metal Contamination in China   总被引:1,自引:0,他引:1  
Both general and specific investigations of soil and crop heavy metal contamination were carried out across China. The former was focused mainly on Cd, Hg, As, Pb, and Cr in soils and vegetables in suburbs of four large cities; the latter investigated Cd levels in both soils and rice or wheat in contaminated areas throughout 15 provinces of the country. The results indicated that levels of Cd, Hg, and Pb in soils and some in crops were greater than the Governmental Standards (Chinese government limits for soil and crop heavy metal contents). Soil Cd ranged from 0.46 to 1.04?mg kg?1, on average, in the four cities and was as high as 145?mg kg?1 in soil and 7?mg kg?1 in rice in the wide area of the country. Among different species, tuberous vegetables seemed to accumulate a larger portion of heavy metals than leafy and fruit vegetables, except celery. For both rice and wheat, two staple food crops, the latter seemed to have much higher concentrations of Cd and Pb than the former grown in the same area. Furthermore, the endosperm of both wheat and rice crops had the highest portion of Cd and Cr. Rice endosperm and wheat chaff accumulated the highest Pb, although the concentrations of all three metals were variable in different parts of the grains. For example, 8.3, 6.9, 1.4, and 0.6?mg kg?1 of Pb were found in chaff, cortex, embryo, and endosperm of wheat compared with 0.11, 0.65, 0.71, and 0.19?mg kg?1 in the same parts of rice, respectively. Untreated sewage water irrigation was the major cause of increasing soil and crop metals. Short periods of the sewage water irrigation increased individual metals in soils by 2 to 80% and increased metals in crops by 14 to 209%. Atmospheric deposition, industrial or municipal wastes, sewage sludge improperly used as fertilizers, and metal-containing phosphate fertilizers played an important role as well in some specific areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号