首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
《Autophagy》2013,9(2):379-381
Autophagy delivers many proteins and cellular components to the lysosome for degradation via selective or nonselective mechanisms. By controlling the stability of defined protein factors, autophagy might regulate cellular processes in a precise and finely-tuned manner. In this study, we demonstrated that autophagy positively regulates the biogenesis of the primary cilium, an antenna-like organelle that senses the environment and transduces signals. Defects in the function or structure of cilia cause a number of human diseases called “ciliopathies.” We found that the autophagosome membrane anchored protein LC3 interacts with OFD1 (oral-facial-digital syndrome 1) and removes it from the centriolar satellite upon serum starvation to initiate primary cilium biogenesis. OFD1 regulation and primary cilium formation are defective in autophagy-deficient cells, and reducing OFD1 protein levels through RNA interference rescues primary cilium formation. More strikingly, knockdown of OFD1 induces primary cilium formation in unstressed cells as well as in a human breast cancer cell that was previously reported to have lost the ability to form primary cilia. These findings therefore suggest an unexpected link among autophagy, ciliogenesis, ciliopathy, and cancers.  相似文献   

2.
Xin Wen 《Autophagy》2016,12(6):905-906
The ubiquitin-proteasome system (UPS) and macroautophagy/autophagy are 2 main degradative routes, which are important for cellular homeostasis. In a study conducted by Marshall et al., the authors demonstrated that the UPS and autophagy converge in Arabidopsis (see the punctum in issue #11–10). In particular, they found that the 26S proteasome is degraded by autophagy, either nonselectively (induced by nitrogen starvation) or selectively (induced by proteasome inhibition). The selective phenotype is mediated through the proteasome subunit RPN10, which can bind both ubiquitin and ATG8. This newly identified autophagic degradation of the proteasome is termed “proteaphagy,” and the process reveals an interesting relationship between these degradative systems.  相似文献   

3.
4.
Regulated degradation of cellular components by lysosomes is essential to maintain biological homeostasis. In mammals, three forms of autophagy, macroautophagy, microautophagy and chaperone-mediated autophagy (CMA), have been identified. Here, we showed a novel type of autophagy, in which RNA is taken up directly into lysosomes for degradation. This pathway, which we term “RNautophagy,” is ATP-dependent, and unlike CMA, is independent of HSPA8/Hsc70. LAMP2C, a lysosomal membrane protein, serves as a receptor for this pathway. The cytosolic tail of LAMP2C specifically binds to almost all total RNA derived from mouse brain. The cytosolic sequence of LAMP2C and its affinity for RNA are evolutionarily conserved from nematodes to humans. Our findings shed light on the mechanisms underlying RNA homeostasis in higher eukaryotes.  相似文献   

5.
Autophagy is an intracellular degradation system that contributes to cellular homeostasis. Autophagosome formation is a landmark event in autophagy, which sequesters and delivers cytoplasmic components to the lysosome for degradation. Based on selectivity, autophagy can be classified into bulk and selective autophagy, which are mechanistically distinct from each other, especially in the requirement of cargos for autophagosome formation. Recent studies revealed that liquid-like biomolecular condensates, which are formed through liquid–liquid phase separation, regulate the autophagosome formation of both bulk and selective autophagy. Here, we focus on recent findings on the involvement of biomolecular condensates in autophagy regulation and discuss their significance.  相似文献   

6.
ABSTRACT

Macroautophagy/autophagy is an evolutionarily conserved cellular degradation and recycling process that is tightly regulated by external stimuli, diet, and stress. Our recent findings suggest that in C. elegans, a nutrient sensing pathway mediated by MTORC2 (mechanistic target of rapamycin kinase complex 2) and its downstream effector kinase SGK-1 (serum- and glucocorticoid-inducible kinase homolog 1) suppresses autophagy, involving mitophagy. Induced autophagy/mitophagy in MTORC2-deficient animals slows down development and impairs reproduction independently of the SGK-1 effectors DAF-16/FOXO and SKN-1/NFE2L2/NRF2. In this punctum, we discuss how TORC2-SGK-1 signaling might regulate autophagic turnover and its impact on mitochondrial homeostasis via linking mitochondria-derived reactive oxygen species (mtROS) production to mitophagic turnover.  相似文献   

7.
Autophagy is an intracellular degradation pathway that functions in protein and organelle turnover in response to starvation and cellular stress. Autophagy is initiated by the formation of a complex containing Beclin 1 (BECN1) and its binding partner Phosphoinositide-3-kinase, class 3 (PIK3C3). Recently, BECN1 deficiency was shown to enhance the pathology of a mouse model of Alzheimer Disease (AD). However, the mechanism by which BECN1 or autophagy mediate these effects are unknown. Here, we report that the levels of Amyloid precursor protein (APP) and its metabolites can be reduced through autophagy activation, indicating that they are a substrate for autophagy. Furthermore, we find that knockdown of Becn1 in cell culture increases the levels of APP and its metabolites. Accumulation of APP and APP C-terminal fragments (APP-CTF) are accompanied by impaired autophagosomal clearance. Pharmacological inhibition of autophagosomal-lysosomal degradation causes a comparable accumulation of APP and APP-metabolites in autophagosomes. Becn1 reduction in cell culture leads to lower levels of its binding partner Pik3c3 and increased presence of Microtubule-associated protein 1, light chain 3 (LC3). Overexpression of Becn1, on the other hand, reduces cellular APP levels. In line with these observations, we detected less BECN1 and PIK3C3 but more LC3 protein in brains of AD patients. We conclude that BECN1 regulates APP processing and turnover. BECN1 is involved in autophagy initiation and autophagosome clearance. Accordingly, BECN1 deficiency disrupts cellular autophagy and autophagosomal-lysosomal degradation and alters APP metabolism. Together, our findings suggest that autophagy and the BECN1-PIK3C3 complex regulate APP processing and play an important role in AD pathology.  相似文献   

8.
Within minutes of induction of autophagy by amino‐acid starvation in mammalian cells, multiple autophagosomes form throughout the cell cytoplasm. During their formation, the autophagosomes sequester cytoplasmic material and deliver it to lysosomes for degradation. How these organelles can be so rapidly formed and how their formation is acutely regulated are major questions in the autophagy field. Protein and lipid trafficking from diverse cell compartments contribute membrane to, or regulate the formation of the autophagosome. In addition, recruitment of Atg8 (in yeast), and the ATG8‐family members (in mammalian cells) to autophagosomes is required for efficient autophagy. Recently, it was discovered that the centrosome and centriolar satellites regulate autophagosome formation by delivery of an ATG8‐family member, GABARAP, to the forming autophagosome membrane, the phagophore. We propose that GABARAP regulates phagophore expansion by activating the ULK complex, the amino‐acid controlled initiator complex. This finding reveals a previously unknown link between the centrosome, centriolar satellites and autophagy.  相似文献   

9.
《Autophagy》2013,9(10):1256-1258
Autophagy is a dynamic process for degradation of cytosolic components such as dysfunctional organelles and proteins and a means for generating metabolic substrates during periods of starvation. Mitochondrial autophagy (“mitophagy”) is a selective form of autophagy, which is important in maintaining mitochondrial homeostasis. High mobility group box 1 (HMGB1) plays important intranuclear, cytosolic and extracellular roles in the regulation of autophagy. Cytoplasmic HMGB1 is a novel Beclin 1-binding protein active in autophagy. Extracellular HMGB1 induces autophagy, and this role is dependent on its redox state and receptor (Receptor for Advanced Glycation End products, RAGE) expression. Nuclear HMGB1 modulates the expression of heat shock protein β-1 (HSPB1/HSP27). As a cytoskeleton regulator, HSPB1 is critical for dynamic intracellular trafficking during autophagy and mitophagy. Loss of either HMGB1 or HSPB1 results in a phenotypically similar deficiency in mitophagy typified by mitochondrial fragmentation with decreased aerobic respiration and adenosine triphosphate (ATP) production. These findings reveal a novel pathway coupling autophagy and cellular energy metabolism.  相似文献   

10.
Autophagy represents a signaling-dependent regulated process that allows the degradation of some cellular proteins in autophagosomes, and plays a critical role in the management of cellular homeostasis under various stress conditions. In recent years, selective degradation of cytoplasmic proteins during stress has attracted considerable scientific interest. Here we examined the ability of resveratrol to induce autophagy in a variety of human cancer cell lines. We found that resveratrol-induced autophagy is accompanied by colocalization of proline-, glutamic acid-, and leucine-rich protein-1 (PELP1) with the green fluorescent protein-microtubule-associated protein 1 light chain 3 (GFP-LC3) in autophagosomes. In addition, we found that hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), a previously shown PELP1-interacting protein, is co-recruited to autophagosomes in the presence of resveratrol. Although autophagy has been assumed to be a bulk and non-selective degradation process, in recent years, evidence of selective degradation of cytosolic proteins and organelles by autophagy is mounting. These observations suggest that the interaction of the target protein(s) with the delivery protein or proteins such as HRS facilitates the transport of certain cytoplasmic proteins to autophagosomes for their selective degradation, and thus, could influence the cytoplasmic as well as nuclear functions of nuclear receptor coregulators. Since PELP1 and, perhaps, other nuclear receptor coregulators are widely dysregulated in human cancers, these findings highlight the significance of the autophagic selective degradation of PELP1 following resveratrol (or other phytoestrogens) treatment in developing future strategies to use resveratrol under cancer prevention and therapeutic settings.  相似文献   

11.
The endoplasmic reticulum (ER) and mitochondria form tight functional contacts that regulate several key cellular processes. The formation of these contacts involves “tethering proteins” that function to recruit regions of ER to mitochondria. The integral ER protein VAPB (VAMP associated protein B and C) binds to the outer mitochondrial membrane protein, RMDN3/PTPIP51 (regulator of microtubule dynamics 3) to form one such set of tethers. Recently, we showed that the VAPB-RMDN3 tethers regulate macroautophagy/autophagy. Small interfering RNA (siRNA) knockdown of VAPB or RMDN3 to loosen ER-mitochondria contacts stimulates autophagosome formation, whereas overexpression of VAPB or RMDN3 to tighten contacts inhibit their formation. Artificial tethering of ER and mitochondria via expression of a synthetic linker protein also reduces autophagy and this artificial tether rescues the effects of VAPB- or RMDN3-targeted siRNA loss on autophagosome formation. Finally, our studies revealed that the modulatory effects of ER-mitochondria contacts on autophagy involve their role in mediating ITPR (inositol 1,4,5-trisphosphate receptor) delivery of Ca2+ from ER stores to mitochondria.  相似文献   

12.
Peroxisomes are autonomously replicating and highly metabolic organelles necessary for β-oxidation of fatty acids, a process that generates large amounts of reactive oxygen species (ROS). Maintaining a balance between biogenesis and degradation of peroxisomes is essential to maintain cellular redox balance, but how cells do this has remained somewhat of a mystery. While it is known that peroxisomes can be degraded via selective autophagy (pexophagy), little is known about how mammalian cells regulate pexophagy to maintain peroxisome homeostasis. We have uncovered a mechanism for regulating pexophagy in mammalian cells that defines a new role for ATM (ATM serine/threonine kinase) kinase as a “first responder” to peroxisomal ROS. ATM is delivered to the peroxisome by the PEX5 import receptor, which recognizes an SRL sequence located at the C terminus of ATM to localize this kinase to peroxisomes. In response to ROS, the ATM kinase is activated and performs 2 functions: i) it signals to AMPK, which activates TSC2 to suppresses MTORC1 and phosphorylates ULK1 to induce autophagy, and ii) targets specific peroxisomes for pexophagy by phosphorylating PEX5 at Ser141, which triggers ubiquitnation of PEX5 at Lys209 and binding of the autophagy receptor protein SQSTM1/p62 to induce pexophagy.  相似文献   

13.
14.
Dynamic protein turnover through regulated protein synthesis and degradation ensures cellular growth, proliferation, differentiation and adaptation. Eukaryotic cells utilize two mechanistically distinct but largely complementary systems — the 26S proteasome and the lysosome (or vacuole in yeast and plants) — to effectively target a wide range of proteins for degradation. The concerted action of the ubiquitination machinery and the 26S proteasome ensures the targeted and tightly regulated degradation of a subset of commonly short-lived cellular proteins. Autophagy is a distinct degradation pathway, which transports a highly heterogeneous set of cargos in dedicated vesicles, called autophagosomes, to the lysosome. There the cargo becomes degraded and its molecular building blocks are recycled. While general autophagy randomly engulfs portions of the cytosol, selective autophagy employs dedicated cargo adaptors to specifically enrich the forming autophagosomes for a certain type of cargo as a response to various intra- or extracellular signals. Selective autophagy targets a wide range of cargos including long-lived proteins and protein complexes, organelles, protein aggregates and even intracellular microbes. In this review we summarize available data on cargo recognition mechanisms operating in selective autophagy and the ubiquitin–proteasome system (UPS), and emphasize their differences and common themes. Moreover, we derive general regulatory principles underlying cargo recognition in selective autophagy, and describe the system-wide crosstalk between these two cellular protein degradation systems. This article is part of a Special Issue entitled: Ubiquitin–Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.  相似文献   

15.
《Autophagy》2013,9(1):82-84
Early-onset generalized dystonia (DYT1) is a debilitating neurological disorder characterized by involuntary movements and sustained muscle spasms. DYT1 dystonia has been associated with two mutations in torsinA that result in the deletion of a single glutamate residue (torsinA �”E) and six amino-acid residues (torsinA �”323-8). We recently revealed that torsinA, a peripheral membrane protein, which resides predominantly in the lumen of the endoplasmic reticulum (ER) and nuclear envelope (NE), is a long-lived protein whose turnover is mediated by basal autophagy. Dystonia-associated torsinA �”E and torsinA �”323-8 mutant proteins show enhanced retention in the NE and accelerated degradation by both the proteasome and autophagy. Our results raise the possibility that the monomeric form of torsinA mutant proteins is cleared by proteasome-mediated ER-associated degradation (ERAD), whereas the oligomeric and aggregated forms of torsinA mutant proteins are cleared by ER stress-induced autophagy. Our findings provide new insights into the pathogenic mechanism of torsinA �”E and torsinA �”323-8 mutations in dystonia and emphasize the need for a mechanistic understanding of the role of autophagy in protein quality control in the ER and NE compartments.

Addendum to: Giles LM, Chen J, Li L, Chin L-S. Dystonia-associated torsinA mutations cause premature degradation of torsinA protein and cell-type-specific mislocalization to the nuclear envelope. Hum Mol Genet 2008; 17:2712-22; PMID: 18552369; DOI: 10.1093/hmg/ddn173.  相似文献   

16.
ATG8(自噬相关蛋白8)结合蛋白通过ATG8相互作用基序(ATG8 interaction motif,AIM)或泛素相互作用基序(ubiquitin interaction motif,UIM)与ATG8相互作用,在自噬、选择性自噬和非自噬过程中起关键作用。ATG8结合蛋白在酵母和哺乳动物研究中取得了巨大进展,但在植物领域仍然滞后。本文首先概括了植物ATG8蛋白结构及特征,其次,重点阐述了作为植物选择性自噬受体的ATG8结合蛋白的结构和功能,最后,总结了参与自噬小体闭合、转运和人工合成ATG8结合蛋白研究状况。本文结合最新研究,系统总结了目前发现的植物ATG8结合蛋白结构和功能,以期为植物选择性自噬和自噬的研究提供新思路。  相似文献   

17.
18.
19.
Recent studies suggested that natural compounds are important in finding targets for cancer treatments. Autophagy (“self-eating”) plays important roles in multiple diseases and acts as a tumor suppressor in cancer. Here, we examined the molecular mechanism by which natural agents regulate autophagic signals. Understanding the relationship between natural agents and cellular autophagy may provide more information for cancer diagnosis and chemoprevention.  相似文献   

20.
In autophagy, the double-membrane autophagosome delivers cellular components for their degradation in the lysosome. The conserved Ypt/Rab GTPases regulate all cellular trafficking pathways, including autophagy. These GTPases function in modules that include guanine-nucleotide exchange factor (GEF) activators and downstream effectors. Rab7 and its yeast homologue, Ypt7, in the context of such a module, regulate the fusion of both late endosomes and autophagosomes with the lysosome. In yeast, the Rab5-related Vps21 is known for its role in early- to late-endosome transport. Here we show an additional role for Vps21 in autophagy. First, vps21∆ mutant cells are defective in selective and nonselective autophagy. Second, fluorescence and electron microscopy analyses show that vps21∆ mutant cells accumulate clusters of autophagosomal structures outside the vacuole. Third, cells with mutations in other members of the endocytic Vps21 module, including the GEF Vps9 and factors that function downstream of Vps21, Vac1, CORVET, Pep12, and Vps45, are also defective in autophagy and accumulate clusters of autophagosomes. Finally, Vps21 localizes to PAS. We propose that the endocytic Vps21 module also regulates autophagy. These findings support the idea that the two pathways leading to the lysosome—endocytosis and autophagy—converge through the Vps21 and Ypt7 GTPase modules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号