首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present paper demonstrates application of biocatalysis to the synthesis of n-butyl palmitate, a cosmetic emollient ester in a solvent-free system (SFS). Fermase CALB?10000, a commercial Candida antarctica lipase B was used to accomplish the synthesis. In order to evaluate the effect of various process parameters on the synthesis, one factor at a time methodology (OFAT) and response surface methodology (RSM) complimented with central composite design (CCD) were employed. On the basis of the results obtained in one factor at one time studies, temperature, enzyme dose, and molar ratio were chosen as significant parameters and their range was selected for RSM study. The optimized factors suggested by RSM model were, temperature –60.12?°C, enzyme dose –5% w/w, and alcohol: acid ratio –2.25:1. Under these optimized factors, the experimental conversion observed was 91.25% which was in close agreement to the model predicted conversion of 92% and the enzymes were reusable up to four cycles. A separate study was carried out in order to study the effect of palmitic acid on n-butyl palmitate synthesis and to understand the kinetic profile of n-butyl palmitate synthesis reaction. Ordered bi-bi model showed a good experimental fit to the kinetic data.  相似文献   

2.
Abstract

Two immobilized lipases from Candida antarctica have been compared for the direct esterification of tyrosol with oleic acid in equimolar conditions and in the absence of organic solvent. Candida antarctica lipase B was immobilized on octyl-silica agglomerates and compared with commercial Novozym 435. Reduction of tyrosol particle size to 0.1 mm significantly increased the reaction rate with both immobilized lipases, and reduced pressure improved the final tyrosyl oleate yield up to 95% (w/w) in both cases. Immobilized lipases were recovered and reutilized in three consecutive trials with negligible inactivation. Under optimum conditions, a product mixture comprising more than 95% of tyrosyl oleate (w/w) was attained in less than 2 hours. Finally, the index of antioxidant activity obtained, according to the Rancimat method, indicated that tyrosyl oleate was slightly more effective than tyrosol as an antioxidant in a low polar matrix.  相似文献   

3.
Abstract

A practical protocol has been used for the synthesis of benzimidazoles. The reaction of iminoester hydrochlorides of phenylacetic with 4,5-dichloro-1,2-phenylenediamine under microwave irradiation leads to the benzimidazole derivatives with good yields and in short reaction times. After the synthesis of benzimidazoles, we synthesized ester and hydrazide derivatives under microwave irradiation with good yields. All compounds were evaluated with regard to pancreatic lipase activity and 3b, 3c, 5a and 6a showed lipase inhibition at various concentrations.  相似文献   

4.
Free Candida antarctica lipase B (Lipozyme, CALB L®) was used to produce fatty acid ethyl esters (FAEE) from refined soybean oil in solvent-free media using the conventional (CHS) and microwave (MHS) heating systems. Statistical analyses (95% confidence level) for both reaction products, FAEE and free fatty acids (FFA), were performed. An increase in ethanol:oil molar ratio decreased the catalytic performance of CALB L (p?<?.05). The best conditions using the microwave radiation were a molar ratio of ethanol:oil of 3:1, a water content of 20.3?wt.% and an enzyme loading of 3?wt.% and this resulted in a total ester content of 64.7% in 15?min, while the same condition using the conventional heating gave only 21.4%. Moreover, the reaction equilibrium was reached 16 times faster with microwave than with conventional heating. High ethanol:oil molar ratios had a negative effect on FAEE synthesis with both CHS and MHS, probably due to the partial inactivation of the enzymes. MHS improved the reaction performance of CALB L, but other process parameters will have to be optimized to enhance the resulting FAEE yields. The recovery and reuse of CALB L using a MHS was demonstrated. Hence, the use of microwave radiation under the conditions applied in this study was not detrimental to the catalytic performance of CALB L for at least one reuse.  相似文献   

5.
Abstract

Obesity is prone to cause a variety of chronic metabolic diseases, and it has aroused people’s attention that the rapid increase in the global population of obese people in the past years. As a kind of weight-loss drug acting in the intestine, lipase inhibitor does not enter the bloodstream without producing central nervous side effects. Because they do not affect the metabolism system, lipase inhibitors and obesity have become one of the hot spots in recent years. Glycolic acid is a new substrate analog inhibitor with the value of the semi-inhibitory concentration of lipase is estimated to be 17.29?±?0.14?mM. Using the plots of Lineweaver-Burk, the inhibition mechanism of lipase by glycolic acid was reversible and the inhibition type belongs to competitive inhibition with a KI value of 19.61?±?0.26?mM. The inhibitory kinetics assay showed that the microscopic velocity constant k+0 of inhibition kinetics is 1.79?×?10?3?mM?1s?1, and k?0 is 0.73?×?10?3 s?1. The results of UV full-wavelength scanning on product cumulative, fluorescence quenching and molecular simulation also indicated that glycolic acid and substrate competitive with lipase by binding to Lys137. Thereby glycolic acid inhibiting the oxidation-catalyzed reaction and reducing the product of the enzyme and substrate. This adds a new direction for the search for lipase inhibitors and provides new ideas about the development of anti-obesity drugs.

Communicated by Ramaswamy H. Sarma  相似文献   

6.
In this study, 4-(2-substituted hydrazinyl)benzenesulfonamides were synthesized by microwave irradiation and their chemical structures were confirmed by 1H NMR, 13CNMR, and HRMS. Ketones used were: Acetophenone (S1), 4-methylacetophenone (S2), 4-chloroacetophenone (S3), 4-fluoroacetophenone (S4), 4-bromoacetophenone (S5), 4-methoxyacetophenone (S6), 4-nitroacetophenone (S7), 2-acetylthiophene (S8), 2-acetylfuran (S9), 1-indanone (S10), 2-indanone (S11). The compounds S9, S10 and S11 were reported for the first time, while S1S8 was synthesized by different method than literature reported using microwave irradiation method instead of conventional heating in this study. The inhibitory effects of 4-(2-substituted hydrazinyl)benzenesulfonamide derivatives (S1S11) against hCA I and II were studied. Cytosolic hCA I and II isoenzymes were potently inhibited by new synthesized sulphonamide derivatives with Kis in the range of 1.79?±?0.22–2.73?±?0.08?nM against hCA I and in the range of 1.72?±?0.58–11.64?±?5.21?nM against hCA II, respectively.  相似文献   

7.
Abstract

Here, we describe an improved enzyme-facilitated epoxidation of 1-nonene using a conventional water bath shaker at ambient temperature. Enzymes were used to produce peroxy acids instantly from hydrogen peroxide (H2O2) and various perhydrolysis substrates. The peroxy acid generated was then utilised directly for in-situ oxidation of 1-nonene to 1-nonene oxide. Various parameters affecting the reaction were studied such as the nature of the peroxy acids, organic solvents, enzyme sources and enzyme concentrations. The highest conversion rate was achieved using phenylacetic acid as an oxygen carrier. 1-Nonene was converted most efficiently with 95% of the maximum yield by Novozym 435, an immobilised Candida antarctica lipase B, using dichloromethane as the reaction media. A minimum amount (16 mg, 1.4% w/w) of Novozym 435 was needed to maintain catalytic activity (160.0 Ug?1). In addition, a simple and rapid Gas chromatography mass spectroscopy selective ion monitoring (GC-MS SIM) method was developed using a HP-5ms column for determining 1-nonene oxide. The method was found to be linear in the range of 29.9 to 298.8 mg/L with R2 = 0.9981.  相似文献   

8.
Octyl oleate is a useful organic compound with several applications in cosmetic, lubricant and pharmaceutical industry. At first, the enzymatic synthesis of n-octyl oleate by direct lipase-catalysed esterification of oleic acid and 1-octanol was investigated in a stirred batch reactor in solvent-free system. A systematic screening and optimisation of the reaction parameters were performed to gain insight into the kinetics mechanism. Particularly, enzyme concentration, reaction temperature, stirrer speed, water content, substrates concentration and molar ratio were optimised with respect to the final product concentration and reaction rate. The kinetics mechanism of the reaction was investigated. Finally, a comparison of the experimental results obtained in a solvent free-system with those using two different solvents, supercritical carbon dioxide (SC-CO2) and n-hexane, was proposed. It resulted that in SC-CO2 higher concentration of the desired product was attained, requiring lower enzyme concentrations to achieve comparable conversion of free fatty acid into fatty acid ester.  相似文献   

9.
New furanone derivatives incorporating the indolin-2-one moiety 3 were prepared via the Perkin reaction of isatins 1 with aroylpropionic acids 2 under conventional conditions or microwave irradiation. A series of functionally heterocyclic derivatives (e.g., pyridazines, pyrroles, and sulfonamides) incorporating the indolin-2-one moiety was achieved via reaction of 3 with different reagents under microwave irradiation conditions. The newly synthesized compounds were characterized on the basis of FTIR, 1H, 13C NMR and mass spectral studies. Some of the new synthesized compounds were screened for antibacterial activity against Gram-positive bacteria (Staphylococcus aureus and Bacillus cereus), Gram-negative bacteria (Escherichia coli and Shigilla flexneri) and antifungal activity against Aspergillus flavus and Candida albicans. Compound 8 j was equipotent to chloramphenicol in inhibiting the growth of E. coli minimum inhibitory concentration (MIC 2.5 μg/mL). Compound 8j may possibly be used as a lead compound for developing a new antibacterial agents. The antibacterial activity is expressed as the corresponding MIC (μg/mL) values.  相似文献   

10.
To develop a high efficiency Candida antarctica lipase B (CALB) yeast display system, we linked two CALB genes fused with Sacchromyces cerevisiae cell wall protein genes, the Sed1 and the 3′-terminal half of Sag1, separately by a 2A peptide of foot-and-mouth disease virus (FMDV) in a single open reading frame. The CALB copy number of recombinant strain KCSe2ACSa that harbored the ORF was identified, and the quantity of CALB displayed on the cell surface and the enzyme activity of the strain were measured. The results showed that the fusion of multiple genes linked by 2A peptide was translated into two independent proteins displayed on the cell surface of stain KCSe2ACSa. Judging from the data of immunolabeling assay, stain KCSe2ACSa displayed 94?% CALB-Sed1p compared with stain KCSe1 that harbored a single copy CALB-Sed1 and 64?% CALB-Sag1p compared with stain KCSa that harbored a single copy CALB-Sag1 on its surface. Besides, strain KCSe2ACSa possessed 170?% hydrolytic activity and 155?% synthetic activity compared with strain KCSe1 as well as 144?% hydrolytic activity and 121?% synthetic activity compared with strain KCSa. Strain KCSe2ACSa even owned 124?% hydrolytic activity compared with strain KCSe2 that harbored two copies CALB-Sed1. The heterogeneous glycosylphosphatidylinositol-anchored proteins co-displaying yeast system mediated by FMDV 2A peptide was shown to be an effective method for improving the efficiency of enzyme-displaying yeast biocatalysts.  相似文献   

11.
Abstract

This study was conducted to determine the effects of long chain fatty acids (LCFAs) on triacylglycerol (TAG) content, as well as on genes associated with lipid synthesis and fatty acid composition in bovine satellite cells. Both saturated (palmitic and stearic) and unsaturated (oleic and linoleic) fatty acids stimulated the TAG accumulation at a concentration of 100?µM and oleate increased it significantly more than stearate and palmitate. The results revealed that the lipid droplet formation was markedly stimulated by linoleate and oleate at 100?µM. Compared to control, the expressions of adipose triglyceride lipase, carnitine acyltransferase 1 and the fatty acid translocase 36 were upregulated by LCFAs. All the fatty acids also significantly increased diacylglycerol acyltransferase 2 than the untreated control (p?<?0.05). The monounsaturated fatty acids significantly increased (p?<?0.05) in response to oleate and linoleate compared to the control as did the polyunsaturated fatty acids (p?<?0.05), in addition to stearate, linoleate and oleate. In contrast, saturated fatty acids were significantly decreased in the oleate and linoleate-treated groups. The study results contribute to our enhanced understanding of LCFAs’ regulatory roles on the bovine cell lipid metabolism.  相似文献   

12.
Abstract

Lipase based formulations has been a rising interest to laundry detergent industry for their eco-friendly property over phosphate-based counterparts and compatibility with chemical detergents ingredients. A thermo-stable Anoxybacillus sp. ARS-1 isolated from Taptapani Hotspring, India was characterized for optimum lipase production employing statistical model central composite design (CCD) under four independent variables (temperature, pH, % moisture and bio-surfactant) by solid substrate fermentation (SSF) using mustard cake. The output was utilized to find the effect of parameters and their interaction employing response surface methodology (RSM). A quadratic regression with R2?=?0.955 established the model to be statically best fitting and a predicted highest lipase production of 29.4?IU/g at an optimum temperature of 57.5?°C, pH 8.31, moisture 50% and 1.2?mg of bio-surfactant. Experimental production of 30.3?IU/g lipase at above conditions validated the fitness of model. Anoxybacillus sp. ARS-1 produced lipase was found to resist almost all chemical detergents as well as common laundry detergent, proving it to be a prospective additive for incorporation.  相似文献   

13.
Abstract

The present work describes the enzymatic properties of Penicillium chrysogenum lipase and its behavior in the presence of organic solvents. The temperature and pH optima of the purified lipase was found to be 55?°C and pH 8.0 respectively. The lipase displayed remarkable stability in both polar and non-polar solvents upto 50% (v/v) concentrations for 72?h. A structural perspective of the purified lipase in different organic solvents was gained by using circular dichroism and intrinsic fluorescence spectroscopy. The native lipase consisted of a predominant α-helix structure which was maintained in both polar and non-polar solvents with the exception of ethyl butyrate where the activity was decreased and the structure was disrupted. The quenching of fluorescence intensity in the presence of organic solvents indicated the transformation of the lipase microenviroment P. chrysogenum lipase offers an interesting system for understanding the solvent stability mechanisms which could be used for rationale designing of engineered lipase biocatalysts for application in organic synthesis in non-aqueous media.  相似文献   

14.
Abstract

Fungal lipases occupy a place of prominence among biocatalysts owing to their novel, multifold applications and resistance to high temperature and other operational conditions. In the present study, Aspergillus fumigatus isolated from oil-contaminated soil produced good amount of lipase activity with galactose (1%) as carbon source and peptone (0.1%) as nitrogen source after 72?h of incubation in the production medium at 45?°C and pH 10.0. The isolated enzyme was found to give its optimum reaction temperature at 40?°C and pH 9.0 with the substrate used as p-nitrophenyl benzoate. The activity of lipase was inhibited by the presence of metal ions. A 6.68-fold increase for lipase production was obtained by one variable at a time. Based on the findings of present study, lipase of A. fumigatus is a potential lipase and a candidate for industrial applications such as bioremediation, detergent, leather and pharmaceutical industries.  相似文献   

15.
A new series of N-sec/tert-butyl 2-arylbenzimidazole derivatives was synthesised in 85–96% yields within 2–3.5?min by condensing ethyl 3-amino-4-butylamino benzoate with various substituted metabisulfite adducts of benzaldehyde under focused microwave irradiation. The benzimidazole analogues were characterised using 1H NMR, 13C NMR, high resolution MS and melting points. Evaluation of antiproliferative activity of the benzimidazole analogues against MCF-7 and MDA-MB-231 revealed several compounds with unexpected selective inhibitions of MDA-MB-231 in micromolar range. All analogues were found inactive towards MCF-7. The most potent inhibition against MDA-MB-231 human breast cancer cell line came from the unsubstituted 2-phenylbenzimidazole 10a.  相似文献   

16.
The production of biofuel using thermostable bacterial lipase from hot spring bacteria out of low-cost agricultural residue olive oil cake is reported in the present paper. Using a lipase enzyme from Bacillus licheniformis, a 66.5% yield of methyl esters was obtained. Optimum parameters were determined, with maximum production of lipase at a pH of 8.2, temperature 50.8°C, moisture content of 55.7%, and biosurfactant content of 1.693?mg. The contour plots and 3D surface responses depict the significant interaction of pH and moisture content with biosurfactant during lipase production. Chromatographic analysis of the lipase transesterification product was methyl esters, from kitchen waste oil under optimized conditions, generated methyl palmitate, methyl stearate, methyl oleate, and methyl linoleate.  相似文献   

17.
Methyl oleate was used as a primary carbon source and as an alternative inducer for the production of an extracellular lipase, Lip2, in Y. lipolytica strain LgX64.81 grown in a 20-l bioreactor. The lipase-encoding gene, LIP2, was investigated during culture on methyl oleate using a pLIP2LacZ reporter fusion and we provide evidence for the involvement of methyl oleate in its regulation. Revisions requested 7 July 2005; Revisions received 30 August 2005  相似文献   

18.
The precipitation of N-cetylamine, N-cetylacetamide, hexadecane-1,2-diol, cetyl alcohol, and poly(butyl metacrylate) in acetone–water media in the presence of the lipase from Pseudomonas fluorescens was found to be accompanied by the coprecipitation of the enzyme. Within the lyophilized coprecipitates, the lipase exhibits a high catalytic activity and enantioselectivity in the reaction of (1RS)-phenylethanol acetylation with vinyl acetate in t-butyl methyl ether. In order of increasing lipase activity, the coprecipitates can be arranged in the series: cetyl alcohol, poly(butyl metacrylate), hexadecane-1,2-diol, N-cetylamine, and N-cetylacetamide, with the activity 2.5- to 19-fold exceeding the activity of the native enzyme. Immobilization of the lipase on solid supports, such as Celite 545 (physical sorption) and Eupergit C250L (covalent binding), in the presence of hexadecane-1,2-diol was found to increase the esterifying activity of the enzyme.  相似文献   

19.
Selective enzymic esterification of free fatty acids, obtained from blackcurrant oil by chemical saponification, with n-butanol using four immobilized lipases under microwave irradiation and under classical heating was studied. A positive effect of microwave irradiation on chemical yields of the products of the enzymic reactions and specificity of lipases were observed in comparison with a controlled heating in an incubator equipped with shaking (classical heating) applied during the identical enzyme-mediated processes. The maximum quantity of -linolenic acid (30%) was obtained with Lipozyme used as biocatalyst of the reaction under microwave irradiation. The maximum quantity of butyl -linolenate (20%) was obtained by a Pseudomonas cepacia lipase catalyzed esterification under classical heating.  相似文献   

20.
Summary The effects of residual enzyme activity, stepwise addition of lipase at different reaction times, and enzyme quantity in direct polyesterification of sebacic acid and 1,4-butanediol catalyzed by a lipase from Rhizomucor miehei were investigated. Although the lipase activity dropped sharply in the beginning period of the reaction, the molar mass of the polyester increased rapidly, up to 39,000 g mol–1 in 72 h. The residual lipase activity (hydrolytic) was only 14 %. Stepwise addition of lipase did not improve polyester synthesis. Highest mass average molar mass of 56,000 g mol–1 was obtained with 0.125 g of lipase (28.5%, w/w) in 5 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号