共查询到20条相似文献,搜索用时 15 毫秒
1.
Certain ciliary transmembrane and membrane-associated signaling proteins export from cilia as intraflagellar transport (IFT) cargoes in a BBSome-dependent manner. Upon reaching the ciliary tip via anterograde IFT, the BBSome disassembles before being reassembled to form an intact entity for cargo phospholipase D (PLD) coupling. During this BBSome remodeling process, Chlamydomonas Rab-like 4 GTPase IFT27, by binding its partner IFT25 to form the heterodimeric IFT25/27, is indispensable for BBSome reassembly. Here, we show that IFT27 binds IFT25 in an IFT27 nucleotide-independent manner. IFT25/27 and the IFT subcomplexes IFT-A and -B are irrelevant for maintaining the stability of one another. GTP-loading onto IFT27 enhances the IFT25/27 affinity for binding to the IFT-B subcomplex core IFT-B1 entity in cytoplasm, while GDP-bound IFT27 does not prevent IFT25/27 from entering and cycling through cilia by integrating into IFT-B1. Upon at the ciliary tip, IFT25/27 cycles on and off IFT-B1 and this process is irrelevant with the nucleotide state of IFT27. During BBSome remodeling at the ciliary tip, IFT25/27 promotes BBSome reassembly independent of IFT27 nucleotide state, making postremodeled BBSomes available for PLD to interact with. Thus, IFT25/27 facilitates BBSome-dependent PLD export from cilia via controlling availability of intact BBSomes at the ciliary tip, while IFT27 nucleotide state does not participate in this regulatory event. 相似文献
2.
3.
Ben F. Lucker Mark S. Miller Slawomir A. Dziedzic Philip T. Blackmarr Douglas G. Cole 《The Journal of biological chemistry》2010,285(28):21508-21518
Intraflagellar transport (IFT) particles of Chlamydomonas reinhardtii contain two distinct protein complexes, A and B, composed of at least 6 and 15 protein subunits, respectively. As isolated from C. reinhardtii flagella, IFT complex B can be further reduced to a ∼500-kDa core that contains IFT88, 2× IFT81, 2× IFT74/72, IFT52, IFT46, IFT27, IFT25, and IFT22. In this study, yeast-based two-hybrid analysis was combined with bacterial coexpression to show that three of the core B subunits, IFT88, IFT52, and IFT46, interact directly with each other and, together, are capable of forming a ternary complex. Chemical cross-linking results support the IFT52-IFT88 interaction and provide additional evidence of an association between IFT27 and IFT81. With previous studies showing that IFT81 and IFT74/72 interact to form a (IFT81)2(IFT74/72)2 heterotetramer and that IFT27 and IFT25 form a heterodimer, the architecture of complex B is revealing itself. Last, electroporation of recombinant IFT46 was used to rescue flagellar assembly of a newly identified ift46 mutant and to monitor in vivo localization and movement of the IFT particles. 相似文献
4.
Wirschell M Yamamoto R Alford L Gokhale A Gaillard A Sale WS 《Archives of biochemistry and biophysics》2011,510(2):4527-100
Recent evidence has revealed that the dynein motors and highly conserved signaling proteins are localized within the ciliary 9 + 2 axoneme. One key mechanism for regulation of motility is phosphorylation. Here, we review diverse evidence, from multiple experimental organisms, that ciliary motility is regulated by phosphorylation/dephosphorylation of the dynein arms through kinases and phosphatases that are anchored immediately adjacent to their axonemal substrates. 相似文献
5.
RNA interference (RNAi) plays a pivotal role in the regulation of gene expression to control cell development and differentiation. In plants, insects and nematodes RNAi also functions as an innate defence response against viruses. Similarly, there is accumulating evidence that RNAi functions as an antiviral defence mechanism in mammalian cells. Viruses have evolved highly sophisticated mechanisms for interacting with the host cell machinery, and recent evidence indicates that this also involves RNAi pathways. The cellular RNAi machinery can inhibit virus replication, but viruses may also exploit the RNAi machinery for their own replication. In addition, viruses can encode proteins or RNA molecules that suppress existing RNAi pathways or trigger the silencing of specific host genes. Besides the natural interplay between RNAi and viruses, induced RNAi provides an attractive therapy approach for the fight against human pathogenic viruses. Here, we summarize the latest news on virus-RNAi interactions and RNAi based antiviral therapy. 相似文献
6.
Summary This report summarizes our recent work on the role of intracellular Ca2+ ([Ca2+]i) in regulating mammalian ciliary beat frequency (CBF). CBF from a single ovine cilium and [Ca2+]i from the same cell were measured by digital video phase contrast microscopy and fura-2 ratiometric imaging video microscopy, respectively. Cells were stimulated with two exposures to 10 M acetylcholine (ACh). CBF was recorded during the first and [Ca2+]i during the second stimulation. ACh increased [Ca2+]i and CBF transiently with indistinguishable kinetics and, early in culture, even induced [Ca2+]i oscillations and ciliary frequency modulations with the same peak-to-peak time interval. Cells treated with 1 M thapsigargin, an inhibitor of the endoplasmic-reticulum Ca2+-ATPase, showed transient [Ca2+]i and CBF increases, again with similar kinetics, which often remained at an elevated plateau. Application of ACh to cells pretreated with thapsigargin produced decreases in both [Ca2+]i and CBF. Finally, changing extracellular Ca2+-concentrations induced corresponding changes in [Ca2+]i that were associated with kinetically similar CBF changes. These data strongly suggested that [Ca2+]i is a critical signal to regulate CBF in mammalian tracheal epithelial cells. In an initial effort to provide constraints on the number and type of reactions that link changes in [Ca2+]i to changes in CBF, simultaneous recordings of both signals from a single cell were analyzed. Such recordings provided higher resolution of the kinetic responses of CBF and [Ca2+]i to ACh as well as they allowed direct assessment of the coupling between [Ca2+]i and CBF. Simultaneous measurements revealed that [Ca2+]i and CBF were perfectly correlated within the CBF measurement time resolution, except for the period of the fastest changes in both signals during the initial ACh exposure. There, changes in CBF lagged the changes in [Ca2+]i by 1–3 ciliary beat cycles (ca. 150–450 ms). 相似文献
7.
T. Hamasaki 《Protoplasma》1999,206(4):241-244
Summary Ciliary beating is empowered by a mechanochemical enzyme, dynein, which appears as two rows of projections on doublet microtubules. While inner-arm dyneins modulate beat form, outer-arm dynein empowers ciliary beat and sets beat frequency. Beat frequency is controlled via phosphorylation of outer-arm dynein. UsingParamecium tetraurelia as model system, we have previously identified a regulatory light chain of outer-arm dynein (22S dynein), Mr29 (p29), whose phosphorylation is cAMP-dependent. The phosphorylation state of the p29 in 22 S dynein determines in vitro microtubule translocation velocity. Although in vitro phosphorylation of p29 takes place in a short time, the percent change ist significantly less than the percent change in dynein activation, or in ciliary beat frequency. A potential mechanism that explains how a few activated dyneins can change ciliary beating is discussed. 相似文献
8.
Adisa A Frankland S Rug M Jackson K Maier AG Walsh P Lithgow T Klonis N Gilson PR Cowman AF Tilley L 《International journal for parasitology》2007,37(10):1127-1141
The malaria parasite, Plasmodium falciparum, exports proteins beyond the confines of its own plasma membrane, however there is debate regarding the machinery used for these trafficking events. We have generated transgenic parasites expressing chimeric proteins and used immunofluorescence studies to determine the locations of plasmodial homologues of the COPII component, Sar1p, and the Golgi-docking protein, Bet3p. The P. falciparum Sar1p (PfSar1p) chimeras bind to the endoplasmic reticulum surface and define a network of membranes wrapped around parasite nuclei. As the parasite matures, the endomembrane systems of individual merozoites remain interconnected until very late in schizogony. Antibodies raised against plasmodial Bet3p recognise two foci of reactivity in early parasite stages that increase in number as the parasite matures. Some of the P. falciparum Bet3p (PfBet3p) compartments are juxtaposed to compartments defined by the cis Golgi marker, PfGRASP, while others are distributed through the cytoplasm. The compartments defined by the trans Golgi marker, PfRab6, are separate, suggesting that the Golgi is dispersed. Bet3p-green fluorescent protein (GFP) is partly associated with punctate structures but a substantial population diffuses freely in the parasite cytoplasm. By contrast, yeast Bet3p is very tightly associated with immobile structures. This study challenges the view that the COPII complex and the Golgi apparatus are exported into the infected erythrocyte cytoplasm. 相似文献
9.
Previously, macroautophagy/autophagy was demonstrated to be regulated inter alia by the primary cilium. Mutations in RPGRIP1L cause ciliary dysfunctions resulting in severe human diseases summarized as ciliopathies. Recently, we showed that RPGRIP1L deficiency leads to a decreased proteasomal activity at the ciliary base in mice. Importantly, the drug-induced restoration of proteasomal activity does not rescue ciliary length alterations in the absence of RPGRIP1L indicating that RPGRIP1L affects ciliary function also via other mechanisms. Based on this knowledge, we analyzed autophagy in Rpgrip1l-negative mouse embryos. In these embryos, autophagic activity was decreased due to an increased activation of the MTOR complex 1 (MTORC1). Application of the MTORC1 inhibitor rapamycin rescued dysregulated MTORC1, autophagic activity and cilia length but not proteasomal activity in Rpgrip1l-deficient mouse embryonic fibroblasts demonstrating that RPGRIP1L seems to regulate autophagic and proteasomal activity independently from each other. 相似文献
10.
Imbalanced copper homeostasis and perturbation of membrane trafficking are two common symptoms that have been associated with the pathogenesis of neurodegenerative and neurodevelopmental diseases. Accumulating evidence from biophysical, cellular and in vivo studies suggest that membrane trafficking orchestrates both copper homeostasis and neural functions—however, a systematic review of how copper homeostasis and membrane trafficking interplays in neurons remains lacking. Here, we summarize current knowledge of the general trafficking itineraries for copper transporters and highlight several critical membrane trafficking regulators in maintaining copper homeostasis. We discuss how membrane trafficking regulators may alter copper transporter distribution in different membrane compartments to regulate intracellular copper homeostasis. Using Parkinson''s disease and MEDNIK as examples, we further elaborate how misregulated trafficking regulators may interplay parallelly or synergistically with copper dyshomeostasis in devastating pathogenesis in neurodegenerative diseases. Finally, we explore multiple unsolved questions and highlight the existing challenges to understand how copper homeostasis is modulated through membrane trafficking. 相似文献
11.
Taschner M Bhogaraju S Lorentzen E 《Differentiation; research in biological diversity》2012,83(2):S12-S22
Cilia and flagella (interchangeable terms) are evolutionarily conserved organelles found on many different types of eukaryotic cells where they fulfill important functions in motility, sensory reception and signaling. The process of Intraflagellar Transport (IFT) is of central importance for both the assembly and maintenance of cilia, as it delivers building blocks from their site of synthesis in the cell body to the ciliary assembly site at the tip of the cilium. A key player in this process is the multi-subunit IFT-complex, which acts as an adapter between the motor proteins required for movement and the ciliary cargo proteins. Since the discovery of IFT more than 15 years ago, considerable effort has gone into the purification and characterization of the IFT complex proteins. Even though this has led to very interesting findings and has greatly improved our knowledge of the IFT process, we still know very little about the overall architecture of the IFT complex and the specific functions of the various subunits. In this review we will give an update on the knowledge of the structure and function of individual IFT proteins, and the way these proteins interact to form the complex that facilitates IFT. 相似文献
12.
M C Holley 《Tissue & cell》1984,16(2):287-310
The basal apparatuses which anchor the gill cilia in Branchiostoma lanceolatum (Pallas) and the actinopharynx cilia in Calliactis parasitica (Couch) are similar in structure. In C. parasitica the pharynx epithelium and the basal apparatuses are flexible. The basal apparatuses, however, bend in only one direction. This mechanism may permit epithelial flexibility whilst maintaining a similar basal orientation between cilia. In B. lanceolatum the ciliated gill epithelia are mechanically stable but the epithelial surfaces are curved. The basal apparatuses may correct for this curvature, with short rootlets between the distal centrioles (basal bodies) and the cell membranes, so that their cilia also share a common orientation. A common basal orientation between cilia is important for their coordination. The degree of coordination depends upon the function of the cilia; water-propelling cilia are more precisely coordinated than mucus-propelling cilia. Much of the structural diversity of ciliary basal apparatuses in Metazoa may be due to variation in the demands of anchoring functionally different cilia to epithelia which have different structural and mechanical properties. 相似文献
13.
The interplay between components of the mitochondrial protein translocation motor studied using purified components 总被引:1,自引:0,他引:1
Slutsky-Leiderman O Marom M Iosefson O Levy R Maoz S Azem A 《The Journal of biological chemistry》2007,282(47):33935-33942
The final step of protein translocation across the mitochondrial inner membrane is mediated by a translocation motor composed of 1) the matrix-localized, ATP-hydrolyzing, 70-kDa heat shock protein mHsp70; 2) its anchor to the import channel, Tim44; 3) the nucleotide exchange factor Mge1; and 4) a J-domain-containing complex of co-chaperones, Tim14/Pam18-Tim16/Pam16. Despite its essential role in the biogenesis of mitochondria, the mechanism by which the translocation motor functions is still largely unknown. The goal of this work was to carry out a structure-function analysis of the mitochondrial translocation motor utilizing purified components, with an emphasis on the formation of the Tim44-mHsp70 complex. To this end, we purified Tim44 and monitored its interaction with other components of the motor using cross-linking with bifunctional reagents. The effects of nucleotides, the J-domain-containing components, and the P5 peptide (CALLSAPRR, representing part of the mitochondrial targeting signal of aspartate aminotransferase) on the formation of the translocation motor were examined. Our results show that only the peptide and nucleotides, but not J-domain-containing proteins, affect the Tim44-mHsp70 interaction. Additionally, binding of Tim44 to mHsp70 prevents the formation of a complex between the latter and Tim14/Pam18-Tim16/Pam16. Thus, mutually exclusive interactions between various components of the motor with mHsp70 regulate its functional cycle. The results are discussed in light of known models for the function of the mitochondrial translocation motor. 相似文献
14.
Ciliary transport in eukaryotic cells is an intricate and conserved process involving the coordinated assembly and functioning of a multiprotein intraflagellar transport (IFT) complex. Among the various IFT proteins, intraflagellar transport 52 (IFT52) plays a crucial role in ciliary transport and is implicated in various ciliopathies. IFT52 is a core component of the IFT-B complex that facilitates movement of cargoes along the ciliary axoneme. Stable binding of the IFT-B1 and IFT-B2 subcomplexes by IFT52 in the IFT-B complex regulates recycling of ciliary components and maintenance of ciliary functions such as signal transduction and molecular movement. Mutations in the IFT52 gene can disrupt ciliary trafficking, resulting in dysfunctional cilia and affecting cellular processes in ciliopathies. Such ciliopathies caused by IFT52 mutations exhibit a wide range of clinical features, including skeletal developmental abnormalities, retinal degeneration, respiratory failure and neurological abnormalities in affected individuals. Therefore, IFT52 serves as a promising biomarker for the diagnosis of various ciliopathies, including short-rib thoracic dysplasia 16 with or without polydactyly. Here, we provide an overview of the IFT52-mediated molecular mechanisms underlying ciliary transport and describe the IFT52 mutations that cause different disorders associated with cilia dysfunction. 相似文献
15.
16.
The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization 总被引:1,自引:0,他引:1
Both the basal body and the microtubule-based axoneme it nucleates have evolutionarily conserved subdomains crucial for cilium biogenesis, function and maintenance. Here, we focus on two conspicuous but underappreciated regions of these structures that make membrane connections. One is the basal body distal end, which includes transition fibres of largely undefined composition that link to the base of the ciliary membrane. Transition fibres seem to serve as docking sites for intraflagellar transport particles, which move proteins within the ciliary compartment and are required for cilium biogenesis and sustained function. The other is the proximal-most region of the axoneme, termed the transition zone, which is characterized by Y-shaped linkers that span from the axoneme to the ciliary necklace on the membrane surface. The transition zone comprises a growing number of ciliopathy proteins that function as modular components of a ciliary gate. This gate, which forms early during ciliogenesis, might function in part by regulating intraflagellar transport. Together with a recently described septin ring diffusion barrier at the ciliary base, the transition fibres and transition zone deserve attention for their varied roles in forming functional ciliary compartments. 相似文献
17.
As amply documented by electrophysiology, depolarisation in Paramecium induces a Ca(2+) influx selectively via ciliary voltage-dependent Ca(2+)-channels, thus inducing ciliary beat reversal. Subsequent downregulation of ciliary Ca(2+) has remained enigmatic. We now analysed this aspect, eventually under overstimulation conditions, by quenched-flow/cryofixation, combined with electron microscope X-ray microanalysis which registers total calcium concentrations, [Ca]. This allows to follow Ca-signals within a time period (> or =30ms) smaller than one ciliary beat ( approximately 50ms) and beyond. Particularly under overstimulation conditions ( approximately 10(-5)M Ca(2+) before, 0.5mM Ca(2+) during stimulation) we find in cilia a [Ca] peak at approximately 80ms and its decay to near-basal levels within 110ms (90%) to 170ms (100% decay). This [Ca] wave is followed, with little delay, by a [Ca] wave into subplasmalemmal Ca-stores (alveolar sacs), culminating at approximately 100ms, with a decay to original levels within 170ms. Also with little delay [Ca] slightly increases in the cytoplasm below. This implies rapid dissipation of Ca(2+) through the ciliary basis, paralleled by a rapid, transient uptake by, and release from cortical stores, suggesting fast exchange mechanisms to be analysed as yet. This novel type of coupling may be relevant for some phenomena described for other cells. 相似文献
18.
Denise Wätzlich Ingrid Vetter Katja Gotthardt Mandy Miertzschke Yong‐Xiang Chen Alfred Wittinghofer Shehab Ismail 《EMBO reports》2013,14(5):465-472
Defects in primary cilia result in human diseases known as ciliopathies. The retinitis pigmentosa GTPase regulator (RPGR), mutated in the most severe form of the eye disease, is located at the transition zone of the ciliary organelle. The RPGR‐interacting partner PDEδ is involved in trafficking of farnesylated ciliary cargo, but the significance of this interaction is unknown. The crystal structure of the propeller domain of RPGR shows the location of patient mutations and how they perturb the structure. The RPGR·PDEδ complex structure shows PDEδ on a highly conserved surface patch of RPGR. Biochemical experiments and structural considerations show that RPGR can bind with high affinity to cargo‐loaded PDEδ and exposes the Arl2/Arl3‐binding site on PDEδ. On the basis of these results, we propose a model where RPGR is acting as a scaffold protein recruiting cargo‐loaded PDEδ and Arl3 to release lipidated cargo into cilia. 相似文献
19.
In addition to their role in motility, eukaryotic cilia serve as a distinct compartment for signal transduction and regulatory sequestration of biomolecules. Recent genetic and biochemical studies have revealed an extraordinary diversity of protein complexes involved in the biogenesis of cilia during each cell cycle. Mutations in components of these complexes are at the heart of human ciliopathies such as Nephronophthisis (NPHP), Meckel-Gruber syndrome (MKS), Bardet-Biedl syndrome (BBS) and Joubert syndrome (JBTS). Despite intense studies, proteins in some of these complexes, such as the NPHP1-4-8 and the MKS, remain poorly understood. Using a combination of computational analyses we studied these complexes to identify novel domains in them which might throw new light on their functions and evolutionary origins. First, we identified both catalytically active and inactive versions of transglutaminase-like (TGL) peptidase domains in key ciliary/centrosomal proteins CC2D2A/MKS6, CC2D2B, CEP76 and CCDC135. These ciliary TGL domains appear to have originated from prokaryotic TGL domains that act as peptidases, either in a prokaryotic protein degradation system with the MoxR AAA+ ATPase, the precursor of eukaryotic dyneins and midasins, or in a peptide-ligase system with an ATP-grasp enzyme comparable to tubulin-modifying TTL proteins. We suggest that active ciliary TGL proteins are part of a cilia-specific peptidase system that might remove tubulin modifications or cleave cilia- localized proteins, while the inactive versions are likely to bind peptides and mediate key interactions during ciliogenesis. Second, we observe a vast radiation of C2 domains, which are key membrane-localization modules, in multiple ciliary proteins, including those from the NPHP1-4-8 and the MKS complexes, such as CC2D2A/MKS6, RPGRIP1, RPGRIP1L, NPHP1, NPHP4, C2CD3, AHI1/Jouberin and CEP76, most of which can be traced back to the last eukaryotic ancestor. Identification of these TGL and C2 domains aid in the proper reconstruction of the Y-shaped linkers, which are key structures in the transitional zone of cilia, by allowing precise prediction of the multiple membrane-contacting and protein-protein interaction sites in these structures. These findings help decipher key events in the evolutionary separation of the ciliary and nuclear compartments in course of the emergence of the eukaryotic cell. 相似文献
20.
《Cell cycle (Georgetown, Tex.)》2013,12(20):3861-3875
In addition to their role in motility, eukaryotic cilia serve as a distinct compartment for signal transduction and regulatory sequestration of biomolecules. Recent genetic and biochemical studies have revealed an extraordinary diversity of protein complexes involved in the biogenesis of cilia during each cell cycle. Mutations in components of these complexes are at the heart of human ciliopathies such as Nephronophthisis (NPHP), Meckel-Gruber syndrome (MKS), Bardet-Biedl syndrome (BBS) and Joubert syndrome (JBTS). Despite intense studies, proteins in some of these complexes, such as the NPHP1-4-8 and the MKS, remain poorly understood. Using a combination of computational analyses we studied these complexes to identify novel domains in them which might throw new light on their functions and evolutionary origins. First, we identified both catalytically active and inactive versions of transglutaminase-like (TGL) peptidase domains in key ciliary/centrosomal proteins CC2D2A/MKS6, CC2D2B, CEP76 and CCDC135. These ciliary TGL domains appear to have originated from prokaryotic TGL domains that act as peptidases, either in a prokaryotic protein degradation system with the MoxR AAA+ ATPase, the precursor of eukaryotic dyneins and midasins, or in a peptide-ligase system with an ATP-grasp enzyme comparable to tubulin-modifying TTL proteins. We suggest that active ciliary TGL proteins are part of a cilia-specific peptidase system that might remove tubulin modifications or cleave cilia- localized proteins, while the inactive versions are likely to bind peptides and mediate key interactions during ciliogenesis. Second, we observe a vast radiation of C2 domains, which are key membrane-localization modules, in multiple ciliary proteins, including those from the NPHP1-4-8 and the MKS complexes, such as CC2D2A/MKS6, RPGRIP1, RPGRIP1L, NPHP1, NPHP4, C2CD3, AHI1/Jouberin and CEP76, most of which can be traced back to the last eukaryotic ancestor. Identification of these TGL and C2 domains aid in the proper reconstruction of the Y-shaped linkers, which are key structures in the transitional zone of cilia, by allowing precise prediction of the multiple membrane-contacting and protein-protein interaction sites in these structures. These findings help decipher key events in the evolutionary separation of the ciliary and nuclear compartments in course of the emergence of the eukaryotic cell. 相似文献