首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asymmetrical distribution of phospholipids is generally observed in the eukaryotic plasma membrane. Maintenance and changes of this phospholipid asymmetry are regulated by ATP-driven phospholipid translocases. Accumulating evidence indicates that type 4 P-type ATPases (P4-ATPases, also called flippases) translocate phospholipids from the exoplasmic leaflet to the cytoplasmic leaflet of the plasma membrane and internal membranes. Among P-type ATPases, P4-ATPases are unique in that they are associated with a conserved membrane protein of the Cdc50 family as a non-catalytic subunit. Recent studies indicate that flippases are involved in various cellular functions, including transport vesicle formation and cell polarity. In this review, we will focus on the functional aspect of phospholipid flippases.  相似文献   

2.
Type IV P-type ATPases (P4-ATPases) translocate phospholipids from the exoplasmic to the cytoplasmic leaflets of cellular membranes. We and others previously showed that ATP11C, a member of the P4-ATPases, translocates phosphatidylserine (PS) at the plasma membrane. Twenty years ago, the UPS-1 (uptake of fluorescent PS analogs) cell line was isolated from mutagenized Chinese hamster ovary (CHO)-K1 cells with a defect in nonendocytic uptake of nitrobenzoxadiazole PS. Due to its defect in PS uptake, the UPS-1 cell line has been used in an assay for PS-flipping activity; however, the gene(s) responsible for the defect have not been identified to date. Here, we found that the mRNA level of ATP11C was dramatically reduced in UPS-1 cells relative to parental CHO-K1 cells. By contrast, the level of ATP11A, another PS-flipping P4-ATPase at the plasma membrane, or CDC50A, which is essential for delivery of most P4-ATPases to the plasma membrane, was not affected in UPS-1 cells. Importantly, we identified a nonsense mutation in the ATP11C gene in UPS-1 cells, indicating that the intact ATP11C protein is not expressed. Moreover, exogenous expression of ATP11C can restore PS uptake in UPS-1 cells. These results indicate that lack of the functional ATP11C protein is responsible for the defect in PS uptake in UPS-1 cells and ATP11C is crucial for PS flipping in CHO-K1 cells.  相似文献   

3.
Phosphatidylserine, a death knell   总被引:6,自引:0,他引:6  
Virtually every cell in the body restricts phosphatidylserine (PS) to the inner leaflet of the plasma membrane by energy-dependent transport from the outer to the inner leaflet of the bilayer. Apoptotic cells of all types rapidly randomize the asymmetric distribution, bringing PS to the surface where it serves as a signal for phagocytosis. A myriad of phagocyte receptors have been implicated in the recognition of apoptotic cells, among them a PS receptor, yet few ligands other than PS have been identified on the apoptotic cell surface. Since apoptosis and the associated exposure of PS on the cell surface is probably over 600 million years old, it is not surprising that evolution has appropriated aspects of this process for specialized purposes such as blood coagulation, membrane fusion and erythrocyte differentiation. Failure to efficiently remove apoptotic cells may contribute to inflammatory responses and autoimmune diseases resulting from chronic, inappropriate exposure of PS.  相似文献   

4.
Exposure of phosphatidylserine on the outer leaflet of the plasma membrane is a surface change common to many apoptotic cells. Normally restricted to the inner leaflet, phosphatidylserine appears as a result of decreased aminophospholipid translocase activity and activation of a calcium-dependent scramblase. Phosphatidylserine exposure has several potential biological consequences, one of which is recognition and removal of the apoptotic cell by phagocytes. It is still not clear which receptors mediate PS recognition on apoptotic cells; however, several interesting candidates have been proposed. These include the Class B scavenger and thrombospondin receptor CD36, an oxLDL receptor (CD68), CD14, annexins, beta2 glycoprotein I, gas-6 and a novel activity expressed on macrophages stimulated with digestible particles such as beta-glucan. Whether PS is the sole ligand recognized by phagocytes or whether it associated with other molecules to form a complex ligand remains to be determined.  相似文献   

5.
It is well known that lipids are heterogeneously distributed throughout the cell. Most lipid species are synthesized in the endoplasmic reticulum (ER) and then distributed to different cellular locations in order to create the distinct membrane compositions observed in eukaryotes. However, the mechanisms by which specific lipid species are trafficked to and maintained in specific areas of the cell are poorly understood and constitute an active area of research. Of particular interest is the distribution of phosphatidylserine (PS), an anionic lipid that is enriched in the cytosolic leaflet of the plasma membrane. PS transport occurs by both vesicular and non‐vesicular routes, with members of the oxysterol‐binding protein family (Osh6 and Osh7) recently implicated in the latter route. In addition, the flippase activity of P4‐ATPases helps build PS membrane asymmetry by preferentially translocating PS to the cytosolic leaflet. This asymmetric PS distribution can be used as a signaling device by the regulated activation of scramblases, which rapidly expose PS on the extracellular leaflet and play important roles in blood clotting and apoptosis. This review will discuss recent advances made in the study of phospholipid flippases, scramblases and PS‐specific lipid transfer proteins, as well as how these proteins contribute to subcellular PS distribution.   相似文献   

6.
Maintenance and regulation of the asymmetric lipid distribution across eukaryotic plasma membranes is governed by the concerted action of specific membrane proteins controlling lipid movement across the bilayer. Here, we show that the miltefosine transporter (LdMT), a member of the P4-ATPase subfamily in Leishmania donovani, and the Cdc50-like protein LdRos3 form a stable complex that plays an essential role in maintaining phospholipid asymmetry in the parasite plasma membrane. Loss of either LdMT or LdRos3 abolishes ATP-dependent transport of NBD-labelled phosphatidylethanolamine (PE) and phosphatidylcholine from the outer to the inner plasma membrane leaflet and results in an increased cell surface exposure of endogenous PE. We also find that promastigotes of L. donovani lack any detectable amount of phosphatidylserine (PS) but retain their infectivity in THP-1-derived macrophages. Likewise, infectivity was unchanged for parasites without LdMT-LdRos3 complexes. We conclude that exposure of PS and PE to the exoplasmic leaflet is not crucial for the infectivity of L. donovani promastigotes.  相似文献   

7.
Eukaryotic plasma membranes generally display asymmetric lipid distributions with the aminophospholipids concentrated in the cytosolic leaflet. This arrangement is maintained by aminophospholipid translocases (APLTs) that use ATP hydrolysis to flip phosphatidylserine (PS) and phosphatidylethanolamine (PE) from the external to the cytosolic leaflet. The identity of APLTs has not been established, but prime candidates are members of the P4 subfamily of P-type ATPases. Removal of P4 ATPases Dnf1p and Dnf2p from budding yeast abolishes inward translocation of 6-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)aminocaproyl] (NBD)-labeled PS, PE, and phosphatidylcholine (PC) across the plasma membrane and causes cell surface exposure of endogenous PE. Here, we show that yeast post-Golgi secretory vesicles (SVs) contain a translocase activity that flips NBD-PS, NBD-PE, and NBD-PC to the cytosolic leaflet. This activity is independent of Dnf1p and Dnf2p but requires two other P4 ATPases, Drs2p and Dnf3p, that reside primarily in the trans-Golgi network. Moreover, SVs have an asymmetric PE arrangement that is lost upon removal of Drs2p and Dnf3p. Our results indicate that aminophospholipid asymmetry is created when membrane flows through the Golgi and that P4-ATPases are essential for this process.  相似文献   

8.
The type IV P-type ATPases (P4-ATPases) thus far characterized are lipid flippases that transport specific substrates, such as phosphatidylserine (PS) and phosphatidylethanolamine (PE), from the exofacial leaflet to the cytofacial leaflet of membranes. This transport activity generates compositional asymmetry between the two leaflets important for signal transduction, cytokinesis, vesicular transport, and host-pathogen interactions. Most P4-ATPases function as a heterodimer with a β-subunit from the Cdc50 protein family, but Neo1 from Saccharomyces cerevisiae and its metazoan orthologs lack a β-subunit requirement and it is unclear how these proteins transport substrate. Here we tested if residues linked to lipid substrate recognition in other P4-ATPases also contribute to Neo1 function in budding yeast. Point mutations altering entry gate residues in the first (Q209A) and fourth (S457Q) transmembrane segments of Neo1, where phospholipid substrate would initially be selected, disrupt PS and PE membrane asymmetry, but do not perturb growth of cells. Mutation of both entry gate residues inactivates Neo1, and cells expressing this variant are inviable. We also identified a gain-of-function mutation in the second transmembrane segment of Neo1 (Neo1[Y222S]), predicted to help form the entry gate, that substantially enhances Neo1's ability to replace the function of a well characterized phospholipid flippase, Drs2, in establishing PS and PE asymmetry. These results suggest a common mechanism for substrate recognition in widely divergent P4-ATPases.  相似文献   

9.
P-type ATPases from the P4 subfamily (P4-ATPases) are energy-dependent transporters, which are thought to establish lipid asymmetry in eukaryotic cell membranes. Together with their Cdc50 accessory subunits, P4-ATPases couple ATP hydrolysis to lipid transport from the exoplasmic to the cytoplasmic leaflet of plasma membranes, late Golgi membranes, and endosomes. To gain insights into the structure and function of these important membrane pumps, robust protocols for expression and purification are required. In this report, we present a procedure for high-yield co-expression of a yeast flippase, the Drs2p-Cdc50p complex. After recovery of yeast membranes expressing both proteins, efficient purification was achieved in a single step by affinity chromatography on streptavidin beads, yielding ∼1–2 mg purified Drs2p-Cdc50p complex per liter of culture. Importantly, the procedure enabled us to recover a fraction that mainly contained a 1∶1 complex, which was assessed by size-exclusion chromatography and mass spectrometry. The functional properties of the purified complex were examined, including the dependence of its catalytic cycle on specific lipids. The dephosphorylation rate was stimulated in the simultaneous presence of the transported substrate, phosphatidylserine (PS), and the regulatory lipid phosphatidylinositol-4-phosphate (PI4P), a phosphoinositide that plays critical roles in membrane trafficking events from the trans-Golgi network (TGN). Likewise, overall ATP hydrolysis by the complex was critically dependent on the simultaneous presence of PI4P and PS. We also identified a prominent role for PI4P in stabilization of the Drs2p-Cdc50p complex towards temperature- or C12E8-induced irreversible inactivation. These results indicate that the Drs2p-Cdc50p complex remains functional after affinity purification and that PI4P as a cofactor tightly controls its stability and catalytic activity. This work offers appealing perspectives for detailed structural and functional characterization of the Drs2p-Cdc50p lipid transport mechanism.  相似文献   

10.
Transport of phospholipids across cell membranes plays a key role in a wide variety of biological processes. These include membrane biosynthesis, generation and maintenance of membrane asymmetry, cell and organelle shape determination, phagocytosis, vesicle trafficking, blood coagulation, lipid homeostasis, regulation of membrane protein function, apoptosis, etc. P4-ATPases and ATP binding cassette (ABC) transporters are the two principal classes of membrane proteins that actively transport phospholipids across cellular membranes. P4-ATPases utilize the energy from ATP hydrolysis to flip aminophospholipids from the exocytoplasmic (extracellular/lumen) to the cytoplasmic leaflet of cell membranes generating membrane lipid asymmetry and lipid imbalance which can induce membrane curvature. Many ABC transporters play crucial roles in lipid homeostasis by actively transporting phospholipids from the cytoplasmic to the exocytoplasmic leaflet of cell membranes or exporting phospholipids to protein acceptors or micelles. Recent studies indicate that some ABC proteins can also transport phospholipids in the opposite direction. The importance of P4-ATPases and ABC transporters is evident from the findings that mutations in many of these transporters are responsible for severe human genetic diseases linked to defective phospholipid transport. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   

11.
It has been a long-standing enigma which scramblase causes phosphatidylserine residues to be exposed on the surface of apoptotic cells, thereby facilitating the phagocytic recognition, engulfment and destruction of apoptotic corpses. In a recent paper in Science, Nagata and coworkers reveal that the scramblases Xkr8 and its C. elegans ortholog, CED-8, are activated by caspase cleavage in apoptotic cells.All cells are separated from the extracellular environment by the plasma membrane, a phospholipid bilayer that prevents diffusion of proteins, ions and other essential molecules into the extracellular space and constitutes the structure in which membrane proteins are embedded. In animal cells, the lipid composition of the outer and inner leaflets of the plasma membrane is not symmetrical. Phosphatidylcholine (PC) and sphingomyelin (SM) are mainly present in the outer leaflet of the plasma membrane, whereas phosphatidylserine (PS), phosphatidylinositol (PI) and phosphatidylethanolamine (PE) are restricted to the inner leaflet. This lipid asymmetry is maintained by the combined action of ATP-dependent enzymes called flippases and floppases, which specifically translocate phospholipids and other molecules from the outer to the inner membrane leaflet and from the inner to the outer membrane leaflet, respectively1. Lipid composition asymmetry not only defines the curvature and electrochemical properties of the plasma membrane, but is also essential for the correct function of determined lipids, as for instance, PI, which only functions as a second messenger if present in the inner leaflet2. Nonetheless, several physiologically relevant processes as diverse as platelet activation, neurotransmitter release, sperm capacitation or apoptosis, require dissipation of plasma membrane lipid asymmetry, a process known as scrambling. The enzymes responsible for this activity are called scramblases, and function to randomize the distribution of phospholipids between both membrane leaflets in an ATP-independent manner2,3,4.Although plasma membrane asymmetry and the existence of flippases, floppases and scramblases have been known for decades, the identity of the specific enzymes involved in these activities has only begun to be revealed during the last few years. Very recently, the group of Shigekazu Nagata identified TMEM16F as the long sought-after calcium-dependent phospholipid scramblase3. However, to date, the identity of the scramblase(s) involved in apoptosis-related (and calcium-independent) PS exposure had remained elusive. Cell surface PS exposure is a classic feature of apoptotic cells and acts as an “eat me” signal allowing phagocytosis of post-apoptotic bodies. In a recent paper in Science, Nagata''s group identified Xk-Related Protein 8 (Xkr8) as the enzyme responsible for this activity and demonstrated an evolutionarily conserved role of this protein in apoptosis-induced lipid scrambling5.To identify enzymes involved in membrane lipid scrambling, Nagata''s group took advantage of their previously generated mouse Ba/F3 pro-B cell line3, which presented a high basal level of PS exposure. They then generated a cDNA library from Ba/F3 cells and overexpressed it in the parental cell line. Through sequential enrichment of cells with increased PS exposure, they were able to isolate a cDNA encoding the Xkr8 protein, which enhanced PS scrambling when overexpressed. Xkr8 overexpression (but not that of TMEM16F) was able to increase apoptosis-associated PS exposure. The authors then noticed that both impaired apoptosis-induced PS exposure and deficient post-apoptotic body clearance were correlated with low Xkr8 expression in leukemia and lymphoma cell lines, which was linked to hypermethylation of its promoter. Interestingly, these two alterations were reverted either by overexpressing Xkr8 or by restitution of endogenous Xkr8 expression after treatment with the demethylating agent 5-aza-2′-deoxycytidine (DAC), suggesting that methylation of the Xrk8 promoter may be a mechanism by which tumor cells evade their phagocytosis after apoptotic death, which may result in increased local inflammation, thus favoring tumor progression. Far from being restricted only to PS exposure, Xrk8 overexpression was able to promote scrambling of multiple lipid species during apoptosis, which was demonstrated by incorporation of fluorescent PC and SM analogues. This scrambling activity was restricted to apoptotic events, as Xkr8 overexpression had no effect on Ca2+-induced PS exposure. This specificity may be explained by the presence of an evolutionarily conserved caspase recognition site near Xkr8 C-terminal region, whose mutation prevented both Xkr8 cleavage by caspase-3 or -7 and PS exposure during the course of apoptosis (Figure 1). These results from human cell lines were confirmed in Xkr8−/− mouse embryonic fibroblasts and fetal thymocytes, which were unable to expose PS upon induction of apoptosis, underscoring the broad physiological relevance of Xkr8 in the apoptotic process. Finally, the authors moved to the nematode Caenorhabditis elegans to analyze whether the role of Xpr8 as lipid scramblase is evolutionarily conserved. C. elegans harbors only one ortholog of Xk proteins, CED-8, known to participate in the phagocytic removal of apoptotic corpses6. To determine the role of CED-8 in PS exposure, the authors took advantage of the “floater” assay, which is based on the appearance of floating cells (“floaters”) that have detached from developing C. elegans embryos defective for apoptotic cell phagocytosis7. Nagata''s group discovered that ced-8 deficiency leads to the accumulation of floaters. Moreover, ced-8 deficiency synergistically enhanced the number of floaters found in other engulfment mutants, which suggests that CED-8 function is not redundant to that developed by previously known engulfment mutants. This enhancing effect of ced-8 deletion was dependent on CED-3, the C. elegans ortholog of caspase-3, confirming the aforementioned results in mammalian cells. The authors then characterized that floaters resulting from ced-8 deletion show a largely deficient PS exposure after developmental apoptosis, confirming the evolutionarily conserved role of Xk-related proteins in apoptosis-induced lipid scrambling. However, they observed that ced-8 deletion does not lead to a total impairment in apoptotic PS presentation, suggesting that additional proteins must be involved in this process. Indeed, apoptosis-inducing factor can induce PS exposure in mammalian cells in a caspase-independent fashion8, and the C. elegans AIF ortholog, WAF-1, physically interacts with and activates another scramblase, SCRM-14.Open in a separate windowFigure 1Xrp8 acts as apoptosis-induced lipid scramblase. Under normal conditions, the combined action of multiple mechanisms, including the activity of flippases and floppases, maintains lipid asymmetry between the outer and inner leaflets of the plasma membrane. Once apoptotic program is activated, caspases-3 and -7 are able to cleave and activate Xrp8 protein, which acts as a lipid scramblase and leads to the loss of lipid asymmetry, resulting in PS exposure to the extracellular space. This acts as the “eat-me” signal that will allow phagocytosis of post-apoptotic cell corpses. PC, phosphatidylcholine; SM, sphingomyelin; PE, phosphatidylethanolamine; PS, phosphatidylserine.In summary, through a series of elegant manipulations, Nagata''s group has found the long-sought caspase-activated lipid scramblase that mediates the exposure of “eat-me” signals in post-apoptotic cell corpses. Further studies involving Xkr8 protein, including the mechanisms participating in its epigenetic repression may open new roads for the study of autoimmune diseases, such as lupus erythematosus, which is associated with failure in the post-apoptotic corpse clearance system.  相似文献   

12.
Apoptosis is generally accompanied by a late phase of ceramide (Cer) production, the significance of which is unknown. This study describes a previously unrecognized link between Cer accumulation and phosphatidylserine (PS) exposure at the cell surface, a characteristic of the execution phase of apoptosis resulting from a loss of plasma membrane phospholipid asymmetry. Using a fluorescent sphingomyelin (SM) analogue, N-(N-[6-[(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)amino]caproyl]-sphingosylphosphorylcholine (C(6)-NBD-SM), we show that Cer is derived from SM, initially located in the outer leaflet of the plasma membrane, which gains access to a cytosolic SMase by flipping to the inner leaflet in a process of lipid scrambling paralleling PS externalization. Lipid scrambling is both necessary and sufficient for SM conversion: Ca(2+) ionophore induces both PS exposure and SM hydrolysis, whereas scrambling-deficient Raji cells do not show PS exposure or Cer formation. Cer is not required for mitochondrial or nuclear apoptotic features since these are still observed in Raji cells. SM hydrolysis facilitates cholesterol efflux to methyl-beta-cyclodextrin, which is indicative of a loss of tight SM-cholesterol interaction in the plasma membrane. We provide evidence that these biophysical alterations in the lipid bilayer are essential for apoptotic membrane blebbing/vesiculation at the cell surface: Raji cells show aberrant apoptotic morphology, whereas replenishment of hydrolyzed SM by C(6)- NBD-SM inhibits blebbing in Jurkat cells. Thus, SM hydrolysis, during the execution phase of apoptosis, results from a loss of phospholipid asymmetry and contributes to structural changes at the plasma membrane.  相似文献   

13.
Phospholipid scramblase induces nonspecific bidirectional movement of phospholipids across the membrane during cell activation and has been proposed to mediate the appearance of phosphatidylserine (PS) in the plasma membrane outer leaflet during apoptosis, a cell surface change that is critical for apoptotic cell removal. We report here that protein kinase C (PKC) delta plays an important role in activated transbilayer movement of phospholipids and surface PS exposure by directly enhancing the activity of phospholipid scramblase. Specific inhibition of PKCdelta by rottlerin prevented both apoptosis- and activation-induced scramblase activity. PKCdelta was either selectively cleaved and activated in a caspase 3-dependent manner (during apoptosis) or translocated to the plasma membrane (in stimulated cells) and could directly phosphorylate scramblase immunoprecipitated from Jurkat cells. Furthermore, reconstitution of PKCdelta and scramblase, but not scramblase or PKCdelta alone in Chinese hamster ovary cells demonstrated enhanced scramblase activity.  相似文献   

14.
Phosphatidylserine (PS) is normally localized to the inner leaflet of the plasma membrane and the requirement of PS translocation to the outer leaflet in cellular processes other than apoptosis has been demonstrated recently. In this work we investigated the occurrence of PS mobilization in mouse eggs, which express flippase Atp8a1 and scramblases Plscr1 and 3, as determined by RT-PCR; these enzyme are responsible for PS distribution in cell membranes. We find a dramatic increase in binding of flouresceinated-Annexin-V, which specifically binds to PS, following fertilization or parthenogenetic activation induced by SrCl2 treatment. This increase was not observed when eggs were first treated with BAPTA-AM, indicating that an increase in intracellular Ca2+ concentration was required for PS exposure. Fluorescence was observed over the entire egg surface with the exception of the regions overlying the meiotic spindle and sperm entry site. PS exposure was also observed in activated eggs obtained from CaMKIIγ null females, which are unable to exit metaphase II arrest despite displaying Ca2+ spikes. In contrast, PS exposure was not observed in TPEN-activated eggs, which exit metaphase II arrest in the absence of Ca2+ release. PS exposure was also observed when eggs were activated with ethanol but not with a Ca2+ ionophore, suggesting that the Ca2+ source and concentration are relevant for PS exposure. Last, treatment with cytochalasin D, which disrupts microfilaments, or jasplakinolide, which stabilizes microfilaments, prior to egg activation showed that PS externalization is an actin-dependent process. Thus, the Ca2+ rise during egg activation results in a transient exposure of PS in fertilized eggs that is not associated with apoptosis.  相似文献   

15.
We have synthesized spin-labeled (SL) and fluorescently labeled diacyl, 1-alkyl-2-acyl-, and di-alkyl glycerophospholipids. The sn-2 chain was a short chain with either a nitroxide group or a 7-nitro-2, 1,3-benzoxadiazol-4-yl (NBD). After incorporation in the exoplasmic leaflet of human erythrocytes, we found that SL-phosphatidylcholine (PC) redistributed very slowly across the plasma membrane, less than 20% reaching the cytoplasmic leaflet in 3 h at 37 degrees C. In contrast, SL-phosphatidylserine (PS) accumulated on the cytoplasmic leaflet with the same plateau corresponding to 90% of the probes inside. The characteristic times for inward redistribution were different for the three PS analogues: at 37 degrees C, the t(1/2) for the diacyl, alkyl-acyl, and dialkyl compounds were 2.3, 3.5, and 41 min, respectively. ATP depletion or incubation with N-ethylmaleimide inhibited the rapid translocation of the PS derivatives. The diether PS bearing an NBD group translocated very slowly in human erythrocytes and no acceleration by ATP could be measured. On the other hand, in human fibroblasts, the diether NBD-PS and SL-PS were both transported from the exoplasmic to the cytoplasmic monolayer of the plasma membrane as it is the case for the transport of the respective diester PS analogues. These results prove that the ether bonds do not prevent completely PS binding and translocation by the aminophospholipid translocase despite a probable hindrance due to the ether linkage on the sn-2 chain. Because of the high stability of the ether linkage, SL and NBD diether analogues should be useful to investigate lipid traffic in cultured cells.  相似文献   

16.
BACKGROUND: Phosphatidylserine (PS) appears on the outer membrane leaflet of cells undergoing programmed cell death and marks those cells for clearance by macrophages. Macrophages secrete lactadherin, a PS-binding protein, which tethers apoptotic cells to macrophage integrins. METHODS: We utilized fluorescein-labeled lactadherin together with the benchmark PS Probe, annexin V, to detect PS exposure by flow cytometry and confocal microscopy. Immortalized leukemia cells were treated with etoposide, and the kinetics and topology of PS exposure were followed over the course of apoptosis. RESULTS: Costaining etoposide-treated leukemoid cells with lactadherin and annexin V indicated progressive PS exposure with dim, intermediate, and bright staining. Confocal microscopy revealed localized plasma membrane staining, then diffuse dim staining by lactadherin prior to bright generalized staining with both proteins. Annexin V was primarily localized to internal cell bodies at early stages but stained the plasma membrane at the late stage. Calibration studies suggested a PS content less, less than or approximately equal to 2.5%-8% for the membrane domains that stained with lactadherin but not annexin V. CONCLUSIONS: Macrophages may utilize lactadherin to detect PS exposure prior to exposure of sufficient PS to bind annexin V. The methodology enables detection of PS exposure at earlier stages than established methodology.  相似文献   

17.
Phosphatidylserine (PS) is predominantly confined to the inner leaflet of plasma membrane in cells, but it is externalized on the cell surface during apoptosis. This externalized PS is required for effective phagocytosis of apoptotic cells by macrophages. Because PS trans-bilayer asymmetry is not absolute in different types of nonapoptotic cells, we hypothesized that the amounts of externalized PS may be critical for macrophage discrimination between apoptotic and nonapoptotic cells. We developed a sensitive electron paramagnetic resonance method to quantify the amounts of externalized PS based on specific binding of paramagnetic annexin V-microbead conjugates with PS on cell surfaces. Using this technique, we found that nonapoptotic Jurkat cells externalize 0.9 pmol of endogenous PS/10(6) Jurkat cells. For cells with different amounts of integrated exogenous PS on their surface, no phagocytic response was observed at PS levels <5 pmol/10(6) Jurkat cells; at higher PS concentrations, phagocytosis increased in a concentration-dependent manner. Apoptosis in Jurkat cells caused externalization of approximately 240 pmol PS/10(6) Jurkat cells; these amounts of externalized PS are manyfold higher than the threshold amounts of PS required for phagocytosis. Thus, macrophages have a sensitivity threshold for PS externalized on the cell surface that provides for reliable recognition and distinction between normal cells with low contents of externalized PS and apoptotic cells with remarkably elevated PS levels.  相似文献   

18.
Phosphatidylserine (PS), a negatively charged phospholipid exclusively located in the inner leaflet of the plasma membrane, is involved in various cellular processes such as blood coagulation, myoblast fusion, mammalian fertilization, and clearance of apoptotic cells. Proteins that specifically interact with PS must be identified to comprehensively understand the cellular processes involving PS. However, only a limited number of proteins are known to associate with PS. To identify PS-associating proteins, we performed a pulldown assay using streptavidin-coated magnetic beads on which biotin-linked PS was immobilized. Using this approach, we identified Hsd17b4, a peroxisomal protein, as a PS-associating protein. Hsd17b4 strongly associated with PS, but not with phosphatidylcholine or sphingomyelin, and the Scp-2-like domain of Hsd17b4 was responsible for this association. The association was disrupted by PS in liposomes, but not by free PS or the components of PS. In addition, translocation of PS to the outer leaflet of the plasma membrane enriched Hsd17b4 in peroxisomes. Collectively, this study suggests an unexpected role of PS as a regulator of the subcellular localization of Hsd17b4.  相似文献   

19.
BACKGROUND: Following a lethal injury, two modes of cell death can be distinguished, apoptosis and primary necrosis. Cells pass through a prelethal stage characterized by a preservation of membrane integrity, in which they shrink (apoptosis) or swell (oncosis, the early phase of primary necrosis). During apoptosis, a loss of phospholipid asymmetry leads to exposure of phosphatidylserine (PS) residues on the outer leaflet of the plasma membrane. We examined whether the external PS exposure, initially supposed to be specific for apoptosis, was also observed in oncotic cells. METHODS: Human peripheral lymphocytes, Jurkat T cells, U937 cells, or HeLa cells were submitted to either apoptotic or oncotic stimuli. PS external exposure was assessed after binding of FITC-conjugated annexin V as was the loss of membrane integrity after propidium iodide (PI) uptake. Morphological examination was performed by optical or electron microscopy. RESULTS: Similarly to apoptotic cells, oncotic cells expose external PS residues while preserving membrane integrity. Consequently, oncotic cells exhibit the annexin V+ PI- phenotype, previously considered to be specific for apoptotic cells. CONCLUSIONS: This study concludes that the annexin V/PI assay does not discriminate between apoptosis and oncosis and that it can be a useful tool to study oncosis by flow cytometry.  相似文献   

20.
One of the hallmarks of apoptosis is the redistribution of phosphatidylserine (PS) from the inner-to-outer plasma membrane (PM) leaflet, where it functions as a ligand for phagocyte recognition and the suppression of inflammatory responses. The mechanism by which apoptotic cells externalize PS has been assumed to involve “scramblases” that randomize phospholipids across the PM bilayer. These putative activities, however, have not been unequivocally proven to be responsible for the redistribution of lipids. Because elevated cytosolic Ca2+ is critical to this process and is also required for activation of lysosome-PM fusion during membrane repair, we hypothesized that apoptosis could activate a “pseudo”-membrane repair response that results in the fusion of lysosomes with the PM. Using a membrane-specific probe that labels endosomes and lysosomes and fluorescein-labeled annexin 5 that labels PS, we show that the appearance of PS at the cell surface during apoptosis is dependent on the fusion of lysosomes with the PM, a process that is inhibited with the lysosomotrophe, chloroquine. We demonstrate that apoptotic cells evoke a persistent pseudo-membrane repair response that likely redistributes lysosomal-derived PS to the PM outer leaflet that leads to membrane expansion and the formation of apoptotic blebs. Our data suggest that inhibition of lysosome-PM fusion-dependent redistribution of PS that occurs as a result of chemotherapy- and radiotherapy-induced apoptosis will prevent PS-dependent anti-inflammatory responses that preclude the development of tumor- and patient-specific immune responses.There is increasing evidence that damaged plasma membranes (PM)2 trigger an emergency Ca2+-dependent exocytotic repair response that patches the affected area by adding lysosome-derived membranes at the cell surface disruption site (15). Because high cytosolic Ca2+ concentrations trigger lysosome-PM fusion, the elevated cytosolic Ca2+ levels characteristic to apoptotic cells may also evoke a pseudo-repair mechanism that promotes lysosome-PM fusion. Indeed, similar to normal emergency repair responses, apoptosis is characterized by the appearance of organelle proteins and lipids at the PM surface (68). One critical distinction between the apoptotic and physiologic repair processes is the preservation of membrane lipid asymmetry. In normal cells, any perturbation in PS sidedness is corrected by restoration of basal cytosolic [Ca2+], reactivation of the Ca2+-inhibited aminophospholipid translocase (9, 10), and subsequent facilitated transport of PS back to the inner membrane leaflet of the cell. In apoptotic cells, however, persistent high cytosolic [Ca2+] precludes reactivation of the aminophospholipid translocase, and the redistributed PS remains in the outer membrane leaflet (11). The apparent similarities in these processes combined with observations that apoptotic cells express PS at the cell surface prompted us to investigate whether lysosome to PM fusion plays a role in the redistribution of PS during apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号