首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The Ser/Thr protein kinase MTOR (mechanistic target of rapamycin kinase) regulates cellular metabolism and controls macroautophagy/autophagy. Autophagy has both metabolic and quality control functions, including recycling nutrients at times of starvation and removing dysfunctional intracellular organelles. Lysosomal damage is one of the strongest inducers of autophagy, and yet mechanisms of its activation in response to lysosomal membrane damage are not fully understood. Our recent study has uncovered a new signal transduction system based on cytosolic galectins that elicits autophagy by controlling master regulators of metabolism and autophagy, MTOR and AMPK, in response to lysosomal damage. Thus, intracellular galectins are not, as previously thought, passive tags recognizing damage to guide selective autophagy receptors, but control the activation state of AMPK and MTOR in response to endomembrane damage.

Abbreviations: MTOR: mechanistic target of rapamycin kinase; AMPK: AMP-activated protein kinase / Protein Kinase AMP-Activated; SLC38A9: Solute Carrier Family 38 Member 9; APEX2: engineered ascorbate peroxidase 2; RRAGA/B: Ras Related GTP Binding A or B; LAMTOR1: Late Endosomal/Lysosomal Adaptor, MAPK and MTOR Activator 1; LGALS8: Lectin, Galactoside-Binding, Soluble, 8 / Galectin 8; LGALS9: Lectin, Galactoside-Binding, Soluble, 9 / Galectin 9; TAK1: TGF-Beta Activated Kinase 1 / Mitogen-Activated Protein Kinase Kinase Kinase 7 (MAP3K7); STK11/LKB1: Serine/Threonine Kinase 11 / Liver Kinase B1; ULK1: Unc-51 Like Autophagy Activating Kinase 1.  相似文献   


2.
Noopur V. Khobrekar 《Autophagy》2020,16(8):1537-1538
ABSTRACT

Mammalian cells, including neurons, use macroautophagy (here ‘autophagy’) to degrade damaged proteins and organelles, and recycle nutrients in response to starvation and other forms of cell stress. The basic cellular machinery responsible for autophagy is highly conserved from yeast to mammals. However, evidence for specific adaptations to more complex organisms and in highly differentiated cells (e. g. neurons) remains limited. RILP (Rab interacting lysosomal protein) mediates retrograde transport of late endosomes (LEs) in nonneuronal mammalian cells. We have now found that RILP plays additional important, fundamental roles in neuronal autophagosome (AP) transport, and, more surprisingly, in AP biogenesis, and cargo turnover as well. RILP accomplishes these tasks via sequential interactions with key autophagosomal components — ATG5 and LC3 — as well as the microtubule motor protein cytoplasmic dynein (Figure 1A). We found further that RILP expression and behavior are controlled by MTOR kinase, linking RILP to a potentially wide range of physiological and pathophysiological functions.  相似文献   

3.
ABSTRACT

Primary cilium-dependent macroautophagy/autophagy is induced by the urinary flow in epithelial cells of the kidney proximal tubule. A major physiological outcome of this cascade is the control of cell size. Some components of the ATG machinery are recruited at the primary cilium to generate autophagic structures. Shear stress induced by the liquid flow promotes PtdIns3P synthesis at the primary cilium, and this lipid is required both for ciliogenesis and initiation of autophagy. We showed that PtdIns3P is generated by PIK3C2A, but not by PIK3C3/VPS34, during flow-associated primary cilium-dependent autophagy, in a ULK1-independent manner. Along the same line BECN1 (beclin 1), a partner of PIK3C3 in starvation-induced autophagy, is not recruited at the primary cilium under shear stress. Thus, kidney epithelial cells mobilize different PtdIns 3-kinases, i.e., PIK3C2A or PIK3C3, to produce PtdIns3P in order to initiate autophagy depending on the stimuli (shear stress or starvation).  相似文献   

4.
Idil Orhon  Nicolas Dupont 《Autophagy》2016,12(11):2258-2259
The maintenance of cellular homeostasis in response to extracellular stresses by autophagy is vital for the health of various tissues. Extracellular stimuli may include nutrient starvation, endoplasmic reticulum stress, hypoxia, cytotoxic agents, or mechanical stress. The primary cilium (PC) is a microtubule-based sensory organelle that regulates the integration of various extracellular stimuli. The interconnection between macroautophagy/autophagy and the PC is beginning to be illuminated. In this punctum, we discuss our recent study of PC-dependent autophagy in response to fluid flow in kidney epithelial cells. Urinary flow in kidney tubules creates a shear stress that regulates epithelial cell volume. PC-mediated autophagy is necessary for the regulation of cell size. The signal from the PC is transduced by the activation of STK11/LKB1 and by MTOR inhibition. Our results clarify the physiological role of PC-dependent autophagy in the kidney and suggest that autophagy manipulation may provide a route to the treatment of ciliopathies.  相似文献   

5.
Ethanol induces brain damage and neurodegeneration by triggering inflammatory processes in glial cells through activation of Toll-like receptor 4 (TLR4) signaling. Recent evidence indicates the role of protein degradation pathways in neurodegeneration and alcoholic liver disease, but how these processes affect the brain remains elusive. We have demonstrated that chronic ethanol consumption impairs proteolytic pathways in mouse brain, and the immune response mediated by TLR4 receptors participates in these dysfunctions. We evaluate the in vitro effects of an acute ethanol dose on the autophagy-lysosome pathway (ALP) on WT and TLR4-/- mouse astrocytes and neurons in primary culture, and how these changes affect cell survival. Our results show that ethanol induces overexpression of several autophagy markers (ATG12, LC3-II, CTSB), and increases the number of lysosomes in WT astrocytes, effects accompanied by a basification of lysosomal pH and by lowered phosphorylation levels of autophagy inhibitor mTOR, along with activation of complexes beclin-1 and ULK1. Notably, we found only minor changes between control and ethanol-treated TLR4-/- mouse astroglial cells. Ethanol also triggers the expression of the inflammatory mediators iNOS and COX-2, but induces astroglial death only slightly. Blocking autophagy by using specific inhibitors increases both inflammation and cell death. Conversely, in neurons, ethanol down-regulates the autophagy pathway and triggers cell death, which is partially recovered by using autophagy enhancers. These results support the protective role of the ALP against ethanol-induced astroglial cell damage in a TLR4-dependent manner, and provide new insight into the mechanisms that underlie ethanol-induced brain damage and are neuronal sensitive to the ethanol effects.  相似文献   

6.
Ethanol is a neuroteratogen and neurodegeneration is the most devastating consequence of developmental exposure to ethanol. The mechanisms underlying ethanol-induced neurodegeneration are complex. Ethanol exposure produces reactive oxygen species (ROS) which cause oxidative stress in the brain. We hypothesized that ethanol would activate autophagy to alleviate oxidative stress and neurotoxicity. Our results indicated that ethanol increased the level of the autophagic marker Map1lc3-II (LC3-II) and upregulated LC3 puncta in SH-SY5Y neuroblastoma cells. It also enhanced the levels of LC3-II and BECN1 in the developing brain; meanwhile, ethanol reduced SQSTM1 (p62) levels. Bafilomycin A1, an inhibitor of autophagosome and lysosome fusion, increased p62 levels in the presence of ethanol. Bafilomycin A1 and rapamycin potentiated ethanol-increased LC3 lipidation, whereas wortmannin and a BECN1-specific shRNA inhibited ethanol-promoted LC3 lipidation. Ethanol increased mitophagy, which was also modulated by BECN1 shRNA and rapamycin. The evidence suggested that ethanol promoted autophagic flux. Activation of autophagy by rapamycin reduced ethanol-induced ROS generation and ameliorated ethanol-induced neuronal death in vitro and in the developing brain, whereas inhibition of autophagy by wortmannin and BECN1-specific shRNA potentiated ethanol-induced ROS production and exacerbated ethanol neurotoxicity. Furthermore, ethanol inhibited the MTOR pathway and downregulation of MTOR offered neuroprotection. Taken together, the results suggest that autophagy activation is a neuroprotective response to alleviate ethanol toxicity. Ethanol modulation of autophagic activity may be mediated by the MTOR pathway.  相似文献   

7.
Autophagy is required for cellular homeostasis and can determine cell viability in response to stress. It is established that MTOR is a master regulator of starvation-induced macroautophagy/autophagy, but recent studies have also implicated an essential role for the MAPK8/cJun NH2-terminal kinase 1 signal transduction pathway. We found that MAPK8/JNK1 and MAPK9/JNK2 were not required for autophagy caused by starvation or MTOR inhibition in murine fibroblasts and epithelial cells. These data demonstrate that MAPK8/9 has no required role in starvation-induced autophagy. We conclude that the role of MAPK8/9 in autophagy may be context-dependent and more complex than previously considered.

Abbreviations: AKT: thymoma viral proto-oncogene;ALB: albumin; ATG4: autophagy related 4; BCL2: B cell leukemia/lymphoma 2; BECN1: beclin 1, autophagy related; BNIP3: BCL2/adenovirus E1B interacting protein 3; CQ: chloroquine diphosphate; DMEM: Dulbecco’s modified Eagle’s medium; EDTA: ethylenediaminetetraacetic acid; EBSS: Earle’s balanced salt solution; FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; HRAS: Harvey rat sarcoma virus oncogene; IgG: Immunoglobulin G; MAPK3/ERK1: mitogen-activated protein kinase 3; MAPK8/JNK1: mitogen-activated protein kinase 8; MAPK9/JNK2: mitogen-activated protein kinase 9; MAPK10/JNK3: mitogen-activated protein kinase 10; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MEFs: mouse embryonic fibroblasts; MTOR: mechanistic target of rapamycin kinase; RPS6KB1/p70: ribosomal protein S6 kinase, polypeptide 1; PPARA: peroxisome proliferator activated receptor alpha; SEM: standard error of the mean; SQSTM1/p62: sequestosome 1; TORC1: target of rapamycin complex 1; TORC2: target of rapamycin complex 2; TRP53: transforming related protein 53; TUBA: tubulin alpha; UV: ultraviolet; WT: wild-type  相似文献   

8.
As a central controller of cell growth, mechanistic target of rapamycin (MTOR) affects an array of biological processes, in particular protein synthesis, autophagy and cardiac homeostasis. Conflicting findings have been seen with regard to the role of MTOR signaling and autophagy in cardiac and adipocyte function under metabolic syndrome. AKT, an essential insulin-signaling molecule upstream of MTOR, participates in the regulation of glucose homeostasis and cardiac metabolism. Akt2 knockout may rescue against high-fat diet-disrupted autophagy flux, en route to cardioprotection. Thus, inhibition of MTOR may serve as a possible avenue to retard pathological cardiac hypertrophy via rescuing interrupted autophagic flux.  相似文献   

9.
Abstract: Increased production of amyloid β peptide (Aβ) is highly suspected to play a major role in Alzheimer's disease (AD) pathogenesis. Because Aβ deposits in AD senile plaques appear uniquely in the brain and are fairly restricted to humans, we assessed amyloid precursor protein (APP) metabolism in primary cultures of the cell types associated with AD senile plaques: neurons, astrocytes, and microglia. We find that neurons secrete 40% of newly synthesized APP, whereas glia secrete only 10%. Neuronal and astrocytic APP processing generates five C-terminal fragments similar to those observed in human adult brain, of which the most amyloidogenic higher-molecular-weight fragments are more abundant. The level of amyloidogenic 4-kDa Aβ exceeds that of nonamyloidogenic 3-kDa Aβ in both neurons and astrocytes. In contrast, microglia make more of the smallest C-terminal fragment and no detectable Aβ. We conclude that human neurons and astrocytes generate higher levels of amyloidogenic fragments than microglia and favor amyloidogenic processing compared with previously studied culture systems. Therefore, we propose that the higher amyloidogenic processing of APP in neurons and astrocytes, combined with the extended lifespan of individuals, likely promotes AD pathology in aging humans.  相似文献   

10.
ABSTRACT

The AMP-activated protein kinase (AMPK) regulates cellular energy homeostasis by sensing the metabolic status of the cell. AMPK is regulated by phosphorylation and dephosphorylation as a result of changing AMP/ATP levels and by removal of inhibitory ubiquitin residues by USP10. In this context, we identified the GID-complex, an evolutionarily conserved ubiquitin-ligase-complex (E3), as a negative regulator of AMPK activity. Our data show that the GID-complex targets AMPK for ubiquitination thereby altering its activity. Cells depleted of GID-subunits mimic a state of starvation as shown by increased AMPK activity and macroautophagic/autophagic flux as well as reduced MTOR activation. Consistently, gid-genes knockdown in C. elegans results in increased organismal lifespan. This study may contribute to understand metabolic disorders such as type 2 diabetes mellitus and morbid obesity and implements alternative therapeutic approaches to alter AMPK activity.  相似文献   

11.
12.
《Autophagy》2013,9(11):1577-1589
Ethanol is a neuroteratogen and neurodegeneration is the most devastating consequence of developmental exposure to ethanol. The mechanisms underlying ethanol-induced neurodegeneration are complex. Ethanol exposure produces reactive oxygen species (ROS) which cause oxidative stress in the brain. We hypothesized that ethanol would activate autophagy to alleviate oxidative stress and neurotoxicity. Our results indicated that ethanol increased the level of the autophagic marker Map1lc3-II (LC3-II) and upregulated LC3 puncta in SH-SY5Y neuroblastoma cells. It also enhanced the levels of LC3-II and BECN1 in the developing brain; meanwhile, ethanol reduced SQSTM1 (p62) levels. Bafilomycin A1, an inhibitor of autophagosome and lysosome fusion, increased p62 levels in the presence of ethanol. Bafilomycin A1 and rapamycin potentiated ethanol-increased LC3 lipidation, whereas wortmannin and a BECN1-specific shRNA inhibited ethanol-promoted LC3 lipidation. Ethanol increased mitophagy, which was also modulated by BECN1 shRNA and rapamycin. The evidence suggested that ethanol promoted autophagic flux. Activation of autophagy by rapamycin reduced ethanol-induced ROS generation and ameliorated ethanol-induced neuronal death in vitro and in the developing brain, whereas inhibition of autophagy by wortmannin and BECN1-specific shRNA potentiated ethanol-induced ROS production and exacerbated ethanol neurotoxicity. Furthermore, ethanol inhibited the MTOR pathway and downregulation of MTOR offered neuroprotection. Taken together, the results suggest that autophagy activation is a neuroprotective response to alleviate ethanol toxicity. Ethanol modulation of autophagic activity may be mediated by the MTOR pathway.  相似文献   

13.
Astrocytes are the first cells infected by murine cytomegalovirus (MCMV) in primary cultures of brain. These cells play key roles in intercellular signaling and neuronal development, and they modulate synaptic activity within the nervous system. Using ratiometric fura-2 digital calcium imaging of >8,000 neurons and glia, we found that MCMV-infected astrocytes showed an increase in intracellular basal calcium levels and an enhanced response to neuroactive substances, including glutamate and ATP, and to high potassium levels. Cultured neurons with no sign of MCMV infection showed attenuated synaptic signaling after infection of the underlying astrocyte substrate, and intercellular communication between astrocytes with no sign of infection was reduced by the presence of infected glia. These bystander effects would tend to cause further deterioration of cellular communication in the brain in addition to the problems caused by the loss of directly infected cells.  相似文献   

14.
Although autophagy maintains normal neural function by degrading misfolded proteins, little is known about how neurons activate this integral response. Furthermore, classical methods of autophagy induction used with nonneural cells, such as starvation, simply result in neuron death. To study neuronal autophagy, we cultured primary cortical neurons from transgenic mice that ubiquitously express green fluorescent protein-tagged LC3 and monitored LC3-I to LC3-II conversion by immunohistochemistry and immunoblotting. Evaluation of different culture media led us to discover that culturing primary neurons in Dulbecco''s modified Eagle''s medium without B27 supplementation robustly activates autophagy. We validated this nutrient-limited media approach for inducing autophagy by showing that 3-methyl-adenine treatment and Atg5 RNA interference knockdown each inhibits LC3-I to LC3-II conversion. Evaluation of B27 supplement components yielded insulin as the factor whose absence induced autophagy in primary neurons, and this activation was mammalian target of rapamycin-dependent. When we tested if nutrient-limited media could protect neurons expressing polyglutamine-expanded proteins against cell death, we observed a strong protective effect, probably due to autophagy activation. Our results indicate that nutrient deprivation can be used to understand the regulatory basis of neuronal autophagy and implicate diminished insulin signaling in the activation of neuronal autophagy.Most neurodegenerative disorders are characterized by the accumulation of misfolded proteins that coalesce into “inclusions” and become visible at the light microscope level in the brains and spinal cords of affected patients (1, 2). These inclusions manifest themselves pathologically in Alzheimer disease as extracellular plaques and neurofibrillary tangles, in Parkinson disease as Lewy bodies, and in poly(Q) repeat diseases as cytosolic and nuclear aggregates. A fundamental advance in our understanding of neurodegeneration has been the realization that protein misfolding is a common theme in many important neurological disorders, including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, prion diseases, and poly(Q) diseases. The mechanistic underpinning of this “proteinopathy” hypothesis stems from the exquisite susceptibility of postmitotic cells in the central nervous system to misfolded protein stress, since neural cells are not continually replenished by cell division, unlike most of their nonneural counterparts.The ubiquitin-proteasome system is the main intracellular degradation pathway to remove short lived proteins and to eliminate peptides that exit from the protein-folding machinery of the endoplasmic reticulum with an aberrant conformation. However, many aggregate-prone proteins, such as poly(Q) proteins, are inefficiently degraded by the proteasome (35). Failure of adequate degradation of aggregate-prone proteins activates alternative protein turnover pathways in the cell, including macroautophagy (hereafter referred to as autophagy). Autophagy is a degradative process that begins with engulfment of cytosolic materials and/or organelles and progresses through a series of steps involving production of a double membrane bound structure, culminating in the delivery of the engulfed material to lysosomes (6). In the central nervous system, basal levels of autophagy are required for the continued health and normal function of neurons, since conditional inactivation of the autophagy pathway in neural cells in mice yields neuronal dysfunction and neurodegeneration characterized by the accumulation of proteinaceous material (7, 8). Furthermore, the presence of aggregate-prone proteins, not degraded by the proteasome, induces autophagy above basal levels, and activation of autophagy appears capable of clearing misfolded proteins, decreasing cytotoxicity, and preventing neurodegeneration in Drosophila and mouse models of misfolded protein stress (911).Although numerous reports have documented the protective effects of inducing autophagy in different areas of the diseased brain in model organisms (reviewed in Ref. 12), little is known about how neurons activate this integral response. Indeed, classical methods of autophagy induction used with cultured nonneural cells, such as starvation, simply result in the death of cultured primary neurons. Furthermore, starvation elicits quite different effects in neurons and nonneural cells, both in vitro and in vivo (13, 14). To directly study neuronal autophagy, we devised a primary neuron culture system where we can induce autophagy activation by withdrawal of a key supplement from the culture media. After independently validating the activation of autophagy in our system through pharmacological and genetic inhibition, we identified insulin as the factor responsible for autophagy induction in primary cortical neurons grown in nutrient-limited media. Further characterization of autophagy induction in primary neurons subjected to nutrient deprivation indicated that such autophagy activation is mammalian target of rapamycin (mTOR)2-dependent. We then tested if the autophagy response induced by nutrient deprivation could counter misfolded protein stress by expressing a poly(Q)-expanded protein in primary neurons and found that nutrient limitation prevented neuron cell death caused by misfolded protein stress.  相似文献   

15.
《Autophagy》2013,9(4):565-566
When no supply of environmental nutrients is available, cells induce autophagy, thereby generating a source of emergency metabolic substrates and energy to maintain the basal cellular activity needed for survival. This autophagy response to starvation has been well characterized in various multicellular organisms, including worms, flies, and mice. Although prosurvival effects of autophagy in response to starvation are well known in animals, the mechanisms by which animals regulate and coordinate autophagy systemically remain elusive. Using C. elegans as a model system, we found that specific amino acids could regulate starvation-induced autophagy, and that MGL-1 and MGL-2, Caenorhabditis elegans homologs of metabotropic glutamate receptors, were involved. MGL-1 and MGL-2 specifically acted in AIY and AIB neurons, respectively, to modulate the autophagy response in other tissues such as pharyngeal muscle. Our recent study suggests that the autophagy response to starvation, previously thought to be cell-autonomous, can be systemically regulated, and that there is a specific sensor for monitoring systemic amino acids levels in Caenorhabditis elegans.  相似文献   

16.
MTOR (mechanistic target of rapamycin [serine/threonine kinase]) plays a crucial role in many major cellular processes including metabolism, proliferation and macroautophagy/autophagy induction, and is also implicated in a growing number of proliferative and metabolic diseases. Both MTOR and autophagy have been suggested to be involved in lung disorders, however, little is known about the role of MTOR and autophagy in pulmonary epithelium in the context of acute lung injury (ALI). In the present study, we observed that lipopolysaccharide (LPS) stimulation induced MTOR phosphorylation and decreased the expression of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β)-II, a hallmark of autophagy, in mouse lung epithelium and in human bronchial epithelial (HBE) cells. The activation of MTOR in HBE cells was mediated by TLR4 (toll-like receptor 4) signaling. Genetic knockdown of MTOR or overexpression of autophagy-related proteins significantly attenuated, whereas inhibition of autophagy further augmented, LPS-induced expression of IL6 (interleukin 6) and IL8, through NFKB signaling in HBE cells. Mice with specific knockdown of Mtor in bronchial or alveolar epithelial cells exhibited significantly attenuated airway inflammation, barrier disruption, and lung edema, and displayed prolonged survival in response to LPS exposure. Taken together, our results demonstrate that activation of MTOR in the epithelium promotes LPS-induced ALI, likely through downregulation of autophagy and the subsequent activation of NFKB. Thus, inhibition of MTOR in pulmonary epithelial cells may represent a novel therapeutic strategy for preventing ALI induced by certain bacteria.  相似文献   

17.
AimsTissue plasminogen activator (tPA) is an essential neuromodulator whose involvement in multiple functions such as synaptic plasticity, cytokine-like immune function and regulation of cell survival mandates rapid and tight tPA regulation in the brain. We investigated the possibility that a transient metabolic challenge induced by glucose deprivation may affect tPA activity in rat primary astrocytes, the main cell type responsible for metabolic regulation in the CNS.Main methodsRat primary astrocytes were incubated in serum-free DMEM without glucose. Casein zymography was used to determine tPA activity, and tPA mRNA was measured by RT-PCR. The signaling pathways regulating tPA activity were identified by Western blotting.Key findingsGlucose deprivation rapidly down-regulated the activity of tPA without affecting its mRNA level in rat primary astrocytes; this effect was mimicked by translational inhibitors. The down-regulation of tPA was accompanied by increased tPA degradation, which may be modulated by a proteasome-dependent degradation pathway. Glucose deprivation induced activation of PI3K-Akt-GSK3β, p38 and AMPK, and inhibition of these pathways using LY294002, SB203580 and compound C significantly inhibited glucose deprivation-induced tPA down-regulation, demonstrating the essential role of these pathways in tPA regulation in glucose-deprived astrocytes.SignificanceRapid and reversible regulation of tPA activity in rat primary astrocytes during metabolic crisis may minimize energy-requiring neurologic processes in stressed situations. This effect may thereby increase the opportunity to invest cellular resources in cell survival and may allow rapid re-establishment of normal cellular function after the crisis.  相似文献   

18.
The primary function of autophagy in most cell types is adaptation to starvation. Because neurons are protected from this type of stress, the physiological role of autophagy in normal functioning neurons was, until now, poorly understood. Using genetic manipulations to block autophagy in neurons selectively, Mizushima's and Tanaka's groups have recently presented conclusive evidence for an essential role of constitutive autophagy in neuronal survival. These studies provide new insights into the relationship between autophagy malfunctioning and neurodegenerative disorders.  相似文献   

19.
20.
Autophagy is an intracellular degradation mechanism in response to nutrient starvation. Via autophagy, some nonessential cellular constituents are degraded in a lysosome-dependent manner to generate biomolecules that can be utilized for maintaining the metabolic homeostasis. Although it is known that under starvation the global protein synthesis is significantly reduced mainly due to suppression of MTOR (mechanistic target of rapamycin serine/threonine kinase), emerging evidence demonstrates that de novo protein synthesis is involved in the autophagic process. However, characterizing these de novo proteins has been an issue with current techniques. Here, we developed a novel method to identify newly synthesized proteins during starvation-mediated autophagy by combining bio-orthogonal noncanonical amino acid tagging (BONCAT) and isobaric tags for relative and absolute quantitation (iTRAQTM). Using bio-orthogonal metabolic tagging, L-azidohomoalanine (AHA) was incorporated into newly synthesized proteins which were then enriched with avidin beads after a click reaction between alkyne-bearing biotin and AHA's bio-orthogonal azide moiety. The enriched proteins were subjected to iTRAQ labeling for protein identification and quantification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Via the above approach, we identified and quantified a total of 1176 proteins and among them 711 proteins were found to meet our defined criteria as de novo synthesized proteins during starvation-mediated autophagy. The characterized functional profiles of the 711 newly synthesized proteins by bioinformatics analysis suggest their roles in ensuring the prosurvival outcome of autophagy. Finally, we performed validation assays for some selected proteins and found that knockdown of some genes has a significant impact on starvation-induced autophagy. Thus, we think that the BONCAT-iTRAQ approach is effective in the identification of newly synthesized proteins and provides useful insights to the molecular mechanisms and biological functions of autophagy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号