首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aims of the current study are to assess the influence of polyethylene glycol (PEG) concentration, molar mass, pH, and citrate concentrations on aqueous biphasic systems based on 24 factorial designs, as well as to check their capacity to purify tannase secreted by Aspergillus tamarii URM 7115. Tannase was produced through submerged fermentation at 26°C for 67?h in Czapeck-Dox modified broth and added with yeast extract and tannic acid. The factorial design was followed to assess the influence of PEG molar mass (MPEG 600; 4,000 and 8,000?g/?mol), and PEG (CPEG 20.0; 22.0 and 24.0% w/w) and citrate concentrations (CCIT 15.0, 17.5, and 20.0%, w/w), as well as of pH (6.0, 7.0, and 8.0) on the response variables; moreover, partition coefficient (K), yield (Y), and purification factor (PF) were analyzed. The most suitable parameters to purify tannase secreted by A. tamarii URM 7115 through a biphasic system were 600 (g/mol) MPEG, 24% (w/w) CPEG, 15% (w/w) CCIT at pH 6.0 and they resulted in 6.33 enzyme partition, 131.25% yield, 19.80 purification factor and 195.08 selectivity. Tannase secreted by A. tamarii URM 7115 purified through aqueous biphasic systems composed of PEG/citrate can be used for industrial purposes, since it presents suitable purification factor and yield.  相似文献   

2.
Abstract

The protease from Aspergillus tamarii Kita UCP1279 extraction by aqueous two-phase PEG-Citrate (ATPS) systems, using a factorial design 24, was investigated. Then, the variables studied were polyethylene glycol (PEG) molar mass (MPEG), concentrations of PEG (CPEG) and citrate (CCIT), and pH. The responses analyzed were the partition coefficient (K), activity yield (Y) and purification factor (PF). The thermodynamic parameters of the ATPS partition were estimated as a function of temperature. ATPS was able to pre-purify the protease (PF = 1.6) and obtained 84% activity yield. The thermodynamic parameters ΔG°m (?10.89?kJ mol?1), ΔHm (?5.0?kJ?mol?1) and partition ΔSm (19.74?J mol?1 K?1) showed that the preferential migration of almost all protein contaminants of the crude extract to the salt-rich phase, while the preferred protease was the PEG rich phase. The extracted enzyme presents optimum temperature and pH at range of 40–50?°C and 9.0–11.0, respectively. Moreover, the enzyme was identified as serine protease based on inhibition profile. ATPS showed the satisfactory performance as the first step for Aspergillus tamarii Kita UCP1279 protease pre-purification.  相似文献   

3.
The partitioning behaviour of endo-polygalacturonase (endo-PG) and total protein from a clarified Kluyveromyces marxianus fermentation broth in polyethylene glycol (PEG)-ammonium sulfate and PEG-potassium phosphate (pH=7) aqueous two-phase systems was experimentally investigated. Both the enzyme and total protein partitioned in the bottom phase for these two kinds of systems. The enzyme partitioning coefficient can be lower than 0.01 in PEG8000-(NH4)2SO4 ATPS with a large phase volume ratio and a moderate tie-line length, which implies the possibility of concentration operation using aqueous two phase partitioning. An ion-exchange separation of high purification efficiency was applied to analyze the clarified and dialyzed fermentation broth. A total purification factor of only 2.3 was obtained, which indicated the high enzyme protein content in the total protein of the fermentation broth. Consequently, the main purpose for separating endo-PG is concentration rather than purification. A separation scheme using an aqueous two-phase extraction process with polymer recycling and a dialysis was proposed to recover endo-PG from the fermentation supernatant of K. marxianus for commercial purpose. A high enzyme recovery up to 95% and a concentration factor of 5 to 8 with a purification factor of about 1.25 were obtained using the single aqueous two-phase extraction process. More than 95% polymer recycled will not affect the enzyme recovery and purification factor. Dialysis was used mainly to remove salts in the bottom phase. The dialysis step has no enzyme loss and can further remove small bulk proteins. The total purification factor for the scheme is about 1.7.  相似文献   

4.
This study reports on the biochemical characterization as well as the kinetic and thermodynamic study of Aspergillus tamarii URM4634 β-fructofuranosidase (FFase) with transfructosylating activity. Conditions for FFase activity were optimized by means of a central composite rotational design using pH and temperature as the independent variables, while residual activity tests carried out in the temperature range of 45–65°C enabled us to investigate FFase thermostability and estimate the kinetic and thermodynamic parameters of enzyme denaturation. Optimal conditions for sucrose hydrolysis and fructosyl transfer catalyzed by crude FFase were 50°C, and pH 6.0 and 7.4, respectively. The thermodynamic properties of irreversible enzyme inactivation were found to be activation energy of 293.1 kJ mol−1, and activation enthalpy, entropy, and Gibbs free energy in the ranges 290.3–290.4 kJ mol−1, 568.7–571.0 J mol−1 K−1, and 97.9–108.8 kJ mol−1, respectively. The results obtained in this study point out satisfactory enzyme activity and thermostability at temperatures commonly used for industrial fructo-oligosaccharide (FOS) synthesis; therefore, this novel FFase appears to be a promising biocatalyst with great potential for long-term FOS synthesis and invert sugar production. To the best of our knowledge, this is the first report on kinetic and thermodynamic parameters of an A. tamarii FFase.  相似文献   

5.
Summary The study of recovery of an extracellular alkaline protease from fermentation broth produced by Norcadiopsis sp, was carried out with liquid–liquid extraction through sodium di-(2-ethylhexyl) sulphosuccinate/isooctane reversed micelles systems and aqueous two-phase systems (polyethylene glycol/potassium phosphate). The best conditions for extraction and back-extraction with the reversed micelles system was obtained at pH 9.0 and pH 5.0, respectively, showing a yield of protein of 6.16%, a specific activity of 4.10 U/ml and a purification factor of 1.80. The studies using aqueous two-phase systems of polyethylene glycol/potassium phosphate at pH 10.0 showed purification factors of 2 and 5, and protein yield of 11 and 4%, respectively, for polyethylene glycol 550/potassium phosphate and polyethylene glycol 8000/potassium phosphate. The results indicate that the aqueous two-phase systems are more attractive as a first step in the isolation and purification processes.  相似文献   

6.
High concentrations of Escherichia coli disintegrate move the binodial of a poly(ethylene glycol) (PEG) 4000/potassium phosphate aqueous two-phase system towards lower concentrations. It has also been shown that the yield and purification factor of β-d-galactosidase (β-d-galactoside galactohydrolase, EC 3.2.1.23) in the PEG phase was gradually improved by moving the experimental system to a composition closer to the binodial. The mass transfer rates of cell debris, total protein, β-d-galactosidase and DNA have been studied and were found to be fast enough to reach equilibrium between the phases after 1.9 s of mixing in a static mixer with 24 mixing elements. A continuous extraction process for β-d-galactosidase from E. coli has been designed on the basis of these studies with a mean residence time of 6.3 min from the disintegrator inlet to the β-d-galactosidase containing PEG-phase outlet of the centrifuge. This PEG phase contained 83.5% of the total β-d-galactosidase with a purification factor of 13.6, and only 2.8% of the total protease activity of the disintegrate. All cell debris and almost all DNA were confined to the potassium phosphate phase.  相似文献   

7.
A method of enzyme release and aqueous two-phase extraction is described for the separation of penicillin acylase from Escherichia coli cells. Butyl acetate, 12% (v/v), treatment combined with freeze-thawing gives up to 70% enzyme release. For polyethylene glycol (PEG) + phosphate two-phase extraction systems the enzyme purity and yield were rather low. Modified PEG, including PEG-ampicillin, PEG-aniline, PEG-phosphate, and PEG-trimethylamine, were synthesized and used in aqueous two-phase systems; PEG-trimethylamine is the most satisfactory. A system containing 12% (w/w) PEG4000, 8% (w/w) of which is PEG-trimethylamine, with 0.7M potasium phosphate at pH 7.2, resulted in the enzyme selective partition being greatly enhanced by charge directed effects. Possible mechanisms for the separation process are discussed. (c) 1992 John Wiley & Sons, Inc.  相似文献   

8.
The extractive purification of peroxidase from Armoracia rusticana roots and Glycine max seed coats in temperature-induced and affinity microsphere-containing aqueous two-phase systems was stuied. The extractive purification of peroxidase from Glycine max seed coats was carried out in a temperature-induced aqueous two-phase system formed by Triton X-45, Triton X-100 and sodium acetate at pH 5.5 A 99% yield with a 6-fold purification factor was obtained. When the clear top phase was subjected to concanavalin-A affinity chromatography, the purification factor rose to 41 and the yield dropped to 28%. A two-step purification process for peroxidase from Armoracia rusticana roots was developed by adding concanavalin-A affinity microspheres to a PEG/phosphate aqueous two-phase system. The method allows a 60% recovery of high purity peroxidase (1,860 guaiacol units per mg). A lower recovery rate and degree of purification of this enzyme was achieved after temperature-induced aqueous two-phase partition or acetone precipitation and concanavalin-A affinity column chromatography.  相似文献   

9.
A novel fungal strain, Aspergillus ficuum Gim 3.6, was evaluated for its tannase-producing capability in a wheat bran-based solid-state fermentation. Thin-layer chromatography (TLC) analysis revealed that the strain was able to degrade tannic acid to gallic acid and pyrogallol during the fermentation process. Quantitation of enzyme activity demonstrated that this strain was capable of producing a relatively high yield of extracellular tannase. Single-factor optimization of process parameters resulted in high yield of tannase after 60 hr of incubation at a pH of 5.0 at 30°C, 1 mL of inoculum size, and 1:1 solid–liquid ratio in the presence of 2.0% (w/v) tannic acid as inducer. The potential of aqueous two-phase extraction (ATPE) for the purification of tannase was investigated. Influence of various parameters such as phase-forming salt, molecular weight of polyethylene glycol (PEG), pH, and stability ratio on tannase partition and purification was studied. In all the systems, the target enzyme was observed to preferentially partition to the PEG-rich top phase, and the best result of purification (2.74-fold) with an enzyme activity recovery of 77.17% was obtained in the system containing 17% (w/w) sodium citrate and 18.18% (w/w) PEG1000, at pH 7.0.  相似文献   

10.
The recovery and purification of a recombinant protein, cytochrome b5, from an impure extract of Escherichia coli disrupted cells was carried out in one step using a liquid–liquid extraction process of aqueous two-phase systems of polyethylene glycol (PEG) and potassium phosphate salts. With this separation process it was possible in one single step to remove the cell debris, that precipitate at interface of the system, and to obtain relatively high recovery yields, nearly 67%, of the target protein in the salt-rich phase, with purification factors up to 6.  相似文献   

11.
Extraction in a polyethylene glycol (PEG)–phosphate aqueous two-phase system was considered as a primary step in purification of the acetohydroxy acid synthase III large catalytic subunit from an E. coli extract. Extraction optimization was achieved by varying the system parameters. Two systems with the following weight compositions were chosen for purification: PEG-2000 (16%)–phosphate (6%) and PEG-4000 (14%)–phosphate (5.5%)–KCl (8%), both at pH 7.0 and 1 mg total protein per 1 g system. Significant purification was achieved by a single extraction step with 70% recovery of the enzyme. After an additional ion-exchange chromatography step, pure enzyme was obtained in a 50% overall yield.  相似文献   

12.
Potato peel from food industrial waste is a good source of polyphenol oxidase (PPO). This work illustrates the application of an aqueous two-phase system (ATPS) for the extraction and purification of PPO from potato peel. ATPS was composed of polyethylene glycol (PEG) and potassium phosphate buffer. Effect of different process parameters, namely, PEG, potassium phosphate buffer, NaCl concentration, and pH of the system, on partition coefficient, purification factor, and yield of PPO enzyme were evaluated. Response surface methodology (RSM) was utilized as a statistical tool for the optimization of ATPS. Optimized experimental conditions were found to be PEG1500 17.62% (w/w), potassium phosphate buffer 15.11% (w/w), and NaCl 2.08 mM at pH 7. At optimized condition, maximum partition coefficient, purification factor, and yield were found to be 3.7, 4.5, and 77.8%, respectively. After partial purification of PPO from ATPS, further purification was done by gel chromatography where its purity was increased up to 12.6-fold. The purified PPO enzyme was characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), followed by Km value 3.3 mM, and Vmax value 3333 U/mL, and enzyme stable ranges for temperature and pH of PPO were determined. These results revealed that ATPS would be an attractive option for obtaining purified PPO from waste potato peel.  相似文献   

13.
Two reversibly soluble-insoluble polymers (viz. Eudragit S-100 and alginate) were used as free macroaffinity bioligands in polyethylene glycol (PEG)/salt two-phase systems for separation of enzymes. Incorporation of Eudragit S-100 and alginate in the PEG phase led to considerable selectivity in separation of microbial xylanases and pullulanase, respectively. Xylanase from Aspergillus niger was recovered 93% with 56-fold purification, whereas the enzyme from Trichoderma reesei and Bacillus amyloliquefaciens was obtained with 93% activity recovery (31-fold purification) and 90% activity recovery (32-fold purification), respectively. From Bacillus acidopullulyticus pullulanase, 85% enzyme activity recovery with 44-fold purification was obtained. The approach described here shows the potential of developing into a general approach for use of reversibly soluble-insoluble macroaffinity ligand in two-phase affinity extraction.  相似文献   

14.
Partitioning of human granulocyte-macrophage colony stimulating factor (hGM-CSF) was achieved in the aqueous two-phase systems (ATPSs) using a crude extract of transgenic tobacco cell suspension culture. This study examined the effects of polyethylene glycol (PEG) molecular weight and concentration and the effects of sodium phosphate concentration in different PEG/sodium phosphate systems on the partition coefficient,K. The best ATPS system was 5% PEG 8,000/1.6 M sodium phosphate after 2 h of incubation at room temperature. In this system, hGM-CSF was partitioned in the PEG-rich phase with a yield of 57.99% andK hGM-CSF of 8.12. In another system, 3% PEG 10,000/1.6 M sodium phosphate, hGM-CSF was also partitioned primarily in the top phase with a yield of 45.66% andK hGM-CSF of 7.64 after 2 h of incubation at room temperature.  相似文献   

15.
An aqueous two-phase purification process was employed for the recovery of Burkholderia pseudomallei lipase from fermentation broth. The partition behavior of B. pseudomallei lipase was investigated with various parameters such as phase composition, tie-line length (TLL), volume ratio (VR), sample loading, system pH, and addition of neutral salts. Optimum conditions for the purification of lipase were obtained in polyethylene glycol (PEG) 6000-potassium phosphate system using TLL of 42.2% (w/w), with VR of 2.70, and 1% (w/w) NaCl addition at pH 7 for 20% (w/w) crude load. Based on this system, the purification factor of lipase was enhanced to 12.42 fold, with a high yield of 93%. Hence, the simplicity and effectiveness of aqueous two-phase systems (ATPS) in the purification of lipase were proven in this study.  相似文献   

16.
In order to reduce the toxicity of Clostridium perfringens fermentation broths used in vaccine preparation, we developed two-phase aqueous systems for removal of toxin-activating proteases. Removal of the proteases inhibits the conversion of protoxin to active toxin. In order to establish the conditions under which the phase separation occurs, binodal curves, formed by poly(ethylene glycol) (PEG) and sodium citrate, were investigated at different values of pH and PEG molar mass. A 24-experimental design was used to evaluate the influence of PEG molar mass and concentration, citrate concentration and pH on protease partition coefficient, removal factor and protease removal yield. It has been found that simultaneous increase in PEG molar mass and decrease in citrate concentration remarkably improved the removal factor, whereas the protease removal yield showed an opposite trend. The best conditions for the system under consideration (removal factor of 2.69 and yield of 116%) were obtained at pH 8.0 using PEG molar mass of 8000 g mol−1 and concentrations of PEG and citrate of 24 and 15%, respectively.  相似文献   

17.
《Process Biochemistry》2014,49(2):335-346
Selective purification still poses a challenge in the downstream processing of biomolecules such as proteins and especially enzymes. In this study a polyethylene glycol 3000 (PEG 3000)–phosphate aqueous two-phase system at 25 °C and pH 7 was successfully used for laccase purification and separation. Initially, the effect of phase forming components on enzyme activities in homogenous systems was studied. In the course of the extraction experiments tie lines, enzyme source, initial enzyme activities, phase ratio and sodium chloride concentrations were varied and their influence on the activity partitioning was determined. Partitioning results were validated using clear-native-PAGE and isoelectric focusing. Based on these results, the separation of laccases from Trametes versicolor and Pleurotus sapidus was investigated using the principle of superposition. Sodium chloride was used to adjust laccase partitioning in the applied aqueous two-phase system (ATPS). Finally, two modes of operation are proposed depending on the aim of the purification task. One mode with 0.133 g g−1 of PEG3000, 0.063 g g−1 of phosphate and without sodium chloride separates P. sapidus laccases from T. versicolor laccases with clearance factors of 5.23 and 6.45, respectively. The other mode of operation with 0.124 g g−1 of PEG3000, 0.063 g g−1 of phosphate and 0.013 g g−1 of sodium chloride enables a partitioning of both laccases into the bottom phase of the ATPS resulting in a purification factor of 2.74 and 96% activity recovery.  相似文献   

18.
Abstract

Aqueous two-phase extraction of wedelolactone from Eclipta alba was studied using the polymer-salt system. The system consisted of polyethylene glycol (PEG) as a top phase (polymer) and sodium citrate as a bottom phase (salt). Process parameters such as PEG concentration, PEG molecular weight, salt concentration, and pH have been optimized using response surface methodology (RSM) with the help of central composite design (CCD). The optimized conditions for aqueous two-phase system (ATPS), in the case of one factor at a time approach, were found as PEG 6000, PEG concentration 18% (w/v), salt concentration 16% (w/v), and pH 7; with maximum extraction yield of 6.52?mg/g. While, RSM studies showed maximum extraction yield of 6.73?mg/g with the optimized parameters as PEG 6000, PEG concentration 18% (w/v), salt concentration 17.96% (w/v), and pH 7. ATPS was found to give a 1.3 fold increase in the extraction yield of wedelolactone as compared to other conventional extraction methods.  相似文献   

19.
Optimisation of aqueous two-phase extraction of human antibodies   总被引:1,自引:0,他引:1  
The purification of human antibodies in an aqueous two-phase system (ATPS) composed of polyethylene glycol (PEG) 6000 and phosphate was optimised by surface response methodology. A central composite design was used to evaluate the influence of phosphate, PEG and NaCl concentration and of the pH on the purity and extraction yield of IgG from a simulated serum medium. The conditions that maximise the partition of IgG into the upper phase were determined to be high concentrations of NaCl and PEG, low concentrations of phosphate and low pH values. An ATPS composed of 12% PEG, 10% phosphate, 15% NaCl at pH 6 was further used to purify human monoclonal antibodies from a Chinese Hamster Ovary (CHO) concentrated cell culture supernatant with a recovery yield of 88% in the upper PEG-rich phase and a purification factor of 4.3. This ATPS was also successfully used to purify antibodies from a hybridoma cell culture supernatant with a recovery yield of 90% and a purification factor of 4.1.  相似文献   

20.
This work discusses the application of an aqueous two-phase system for the purification of lipases produced by Bacillus sp. ITP-001 using polyethylene glycol (PEG) and potassium phosphate. In the first step, the protein content was precipitated with ammonium sulphate (80% saturation). The enzyme remained in the aqueous solution and was dialyzed against ultra-pure water for 18 h and used to prepare an aqueous two-phase system (PEG/potassium phosphate). The use of different molecular weights of PEG to purify the lipase was investigated; the best purification factor (PF) was obtained using PEG 20,000g/mol, however PEG 8000 was used in the next tests due to lower viscosity. The influence of PEG and potassium phosphate concentrations on the enzyme purification was then studied: the highest FP was obtained with 20% of PEG and 18% of potassium phosphate. NaCl was added to increase the hydrophobicity between the phases, and also increased the purification factor. The pH value and temperature affected the enzyme partitioning, with the best purifying conditions achieved at pH 6.0 and 4°C. The molecular mass of the purified enzyme was determined to be approximately 54 kDa by SDS-PAGE. According to the results the best combination for purifying the enzyme is PEG 8000g/mol and potassium phosphate (20/18%) with 6% of NaCl at pH 6.0 and 4°C (201.53 fold). The partitioning process of lipase is governed by the entropy contribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号