首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of the mitosis-promoting kinase CDC2-cyclin B is normally suppressed in S phase and G2 by inhibitory phosphorylation at Thr14 and Tyr15. This work explores the possibility that these phosphorylations are responsible for the G2 arrest that occurs in human cells after DNA damage. HeLa cell lines were established in which CDC2AF, a mutant that cannot be phosphorylated at Thr14 and Tyr15, was expressed from a tetracycline-repressible promoter. Expression of CDC2AF did not induce mitotic events in cells arrested at the beginning of S phase with DNA synthesis inhibitors, but induced low levels of premature chromatin condensation in cells progressing through S phase and G2. Expression of CDC2AF greatly reduced the G2 delay that resulted when cells were X- irradiated in S phase. However, a significant G2 delay was still observed and was accompanied by high CDC2-associated kinase activity. Expression of wild-type CDC2, or the related kinase CDK2AF, had no effect on the radiation-induced delay. Thus, inhibitory phosphorylation of CDC2, as well as additional undefined mechanisms, delay mitosis after DNA damage.  相似文献   

2.
The effects of steel mutation on testicular germ cell differentiation   总被引:3,自引:0,他引:3  
The effects of artificial cryptorchidism and its surgical reversal on spermatogenesis were examined in germ cell mutant, S1/+ and wild type, +/+, mice. In cryptorchid testes no difference was found between S1/+ and +/+ mice in the number of undifferentiated type A spermatogonia. The activity of type A spermatogonia in mutant mice appeared normal as judged by its mitotic cell number and DNA synthesis. The surgical reversal of cryptorchidism resulted in regenerative differentiation of mature germ cells in both types of mice, but the pattern of cellular differentiation in the mutant testes was completely different from that of the wild type testes. At two steps of cellular differentiation, intermediate or type B spermatogonia and spermatid, the numbers of cells were much smaller in the S1/+ testes than those in the +/+ testes. The steel gene was therefore suggested to exert its effects on the differentiation of type A spermatogonia to intermediate or type B spermatogonia, on meiotic division and/or the survival rate of these cells, but not on the undifferentiated type A spermatogonia or stem cells.  相似文献   

3.
In mammals, germ cells within the developing gonad follow a sexually dimorphic pathway. Germ cells in the murine ovary enter meiotic prophase during embryogenesis, whereas germ cells in the embryonic testis arrest in G0 of mitotic cell cycle and do not enter meiosis until after birth. In mice, retinoic acid (RA) signaling has been implicated in controlling entry into meiosis in germ cells, as meiosis in male embryonic germ cells is blocked by the activity of a RA-catabolizing enzyme, CYP26B1. However, the mechanisms regulating mitotic arrest in male germ cells are not well understood. Cyp26b1 expression in the testes begins in somatic cells at embryonic day (E) 11.5, prior to mitotic arrest, and persists throughout fetal development. Here, we show that Sertoli cell-specific loss of CYP26B1 activity between E15.5 and E16.5, several days after germ cell sex determination, causes male germ cells to exit from G0, re-enter the mitotic cell cycle and initiate meiotic prophase. These results suggest that male germ cells retain the developmental potential to differentiate in meiosis until at least at E15.5. CYP26B1 in Sertoli cells acts as a masculinizing factor to arrest male germ cells in the G0 phase of the cell cycle and prevents them from entering meiosis, and thus is essential for the maintenance of the undifferentiated state of male germ cells during embryonic development.  相似文献   

4.
Eukaryotic cells respond to DNA damage and S phase replication blocks by arresting cell-cycle progression through the DNA structure checkpoint pathways. In Schizosaccharomyces pombe, the Chk1 kinase is essential for mitotic arrest and is phosphorylated after DNA damage. During S phase, the Cds1 kinase is activated in response to DNA damage and DNA replication blocks. The response of both Chk1 and Cds1 requires the six 'checkpoint Rad' proteins (Rad1, Rad3, Rad9, Rad17, Rad26 and Hus1). We demonstrate that DNA damage-dependent phosphorylation of Chk1 is also cell-cycle specific, occurring primarily in late S phase and G2, but not during M/G1 or early S phase. We have also isolated and characterized a temperature-sensitive allele of rad3. Rad3 functions differently depending on which checkpoint pathway is activated. Following DNA damage, rad3 is required to initiate but not maintain the Chk1 response. When DNA replication is inhibited, rad3 is required for both initiation and maintenance of the Cds1 response. We have identified a strong genetic interaction between rad3 and cds1, and biochemical evidence shows a physical interaction is possible between Rad3 and Cds1, and between Rad3 and Chk1 in vitro. Together, our results highlight the cell-cycle specificity of the DNA structure-dependent checkpoint response and identify distinct roles for Rad3 in the different checkpoint responses. Keywords: ATM/ATR/cell-cycle checkpoints/Chk1/Rad3  相似文献   

5.
6.
Hajnal A  Berset T 《The EMBO journal》2002,21(16):4317-4326
In the Caenorhabditis elegans hermaphrodite germline, spatially restricted mitogen-activated protein kinase (MAPK) signalling controls the meiotic cell cycle. First, the MAPK signal is necessary for the germ cells to progress through pachytene of meiotic prophase I. As the germ cells exit pachytene and enter diplotene/diakinesis, MAPK is inactivated and the developing oocytes arrest in diakinesis (G(2)/M arrest). During oocyte maturation, a signal from the sperm reactivates MAPK to promote M phase entry. Here, we show that the MAPK phosphatase LIP-1 dephosphorylates MAPK as germ cells exit pachytene in order to maintain MAPK in an inactive state during oocyte development. Germ cells lacking LIP-1 fail to arrest the cell cycle at the G(2)/M boundary, and they enter a mitotic cell cycle without fertilization. LIP-1 thus coordinates oocyte cell cycle progression and maturation with ovulation and fertilization.  相似文献   

7.
Several regulatory proteins control cell cycle progression. These include Emi1, an anaphase-promoting complex (APC) inhibitor whose destruction controls progression through mitosis to G1, and p21WAF1, a cyclin-dependent kinase (CDK) inhibitor activated by DNA damage. We have analyzed the role of p21WAF1 in G2-M phase checkpoint control and in prevention of polyploidy after DNA damage. After DNA damage, p21+/+ cells stably arrest in G2, whereas p21−/− cells ultimately progress into mitosis. We report that p21 down-regulates Emi1 in cells arrested in G2 by DNA damage. This down-regulation contributes to APC activation and results in the degradation of key mitotic proteins including cyclins A2 and B1 in p21+/+ cells. Inactivation of APC in irradiated p21+/+ cells can overcome the G2 arrest. siRNA-mediated Emi1 down-regulation prevents irradiated p21−/− cells from entering mitosis, whereas concomitant down-regulation of APC activity counteracts this effect. Our results demonstrate that Emi1 down-regulation and APC activation leads to stable p21-dependent G2 arrest after DNA damage. This is the first demonstration that Emi1 regulation plays a role in the G2 DNA damage checkpoint. Further, our work identifies a new p21-dependent mechanism to maintain G2 arrest after DNA damage.  相似文献   

8.
9.
Seminiferous tubules in mammals have histological arrangements defined by the associations between somatic cells and germ cells. The processes of DNA synthesis in meiotic and mitotic cells have different features that are not easily distinguishable through morphological means. In order to characterize the pre-meiotic S phase, 5-bromo-2’-deoxyuridine (BrdU) was injected intraperitoneally into Wistar rats, which were sacrificed 30 min, 2 hr, and 24 hr after injection. We found three different labeling patterns. One of these patterns was characterized by a distribution of the label in the form of speckles, most of which were associated with the nuclear envelope (labeling type I). We suggest that this pattern is due to mitotic DNA synthesis of type B spermatogonia. Labeling type II consisted of labeled foci scattered throughout the nuclear volume, which can be correlated with preleptotenic cells in pre-meiotic DNA synthesis. After 24 hr of incorporation, a third type of labeling, characterized by large speckles, was found to be related to cells in the “bouquet” stage; that is, cells in transition between the leptotene and zygotene phases. Our results indicate that BrdU incorporation induces different labeling patterns in the mitotic and pre-meiotic S phases and thus makes it possible to identify somatic and germinal cells.  相似文献   

10.
Testicular teratomas result from anomalies in embryonic germ cell development. In the 129 family of inbred mouse strains, teratomas arise during the same developmental period that male germ cells normally enter G1/G0 mitotic arrest and female germ cells initiate meiosis (the mitotic:meiotic switch). Dysregulation of this switch associates with teratoma susceptibility and involves three germ cell developmental abnormalities seemingly critical for tumor initiation: delayed G1/G0 mitotic arrest, retention of pluripotency, and misexpression of genes normally restricted to embryonic female and adult male germ cells. One misexpressed gene, cyclin D1 (Ccnd1), is a known regulator of cell cycle progression and an oncogene in many tissues. Here, we investigated whether Ccnd1 misexpression in embryonic germ cells is a determinant of teratoma susceptibility in mice. We found that CCND1 localizes to teratoma-susceptible germ cells that fail to enter G1/G0 arrest during the mitotic:meiotic switch and is the only D-type cyclin misexpressed during this critical developmental time frame. We discovered that Ccnd1 deficiency in teratoma-susceptible mice significantly reduced teratoma incidence and suppressed the germ cell proliferation and pluripotency abnormalities associated with tumor initiation. Importantly, Ccnd1 expression was dispensable for somatic cell development and male germ cell specification and maturation in tumor-susceptible mice, implying that the mechanisms by which Ccnd1 deficiency reduced teratoma incidence were germ cell autonomous and specific to tumorigenesis. We conclude that misexpression of Ccnd1 in male germ cells is a key component of a larger pro-proliferative program that disrupts the mitotic:meiotic switch and predisposes 129 inbred mice to testicular teratocarcinogenesis.  相似文献   

11.
Summary The effect of taxol, an inhibitor of microtubule degradation, on the seminiferous epithelium was studied. Taxol arrested spermatogenesis at metaphase in both mitotic and meiotic germ cell division. Microtubules were seen to accumulate, especially in the cytoplasm of the spermatogonia, and also in the early spermatids and Sertoli cells. No microtubule accumulation was observed in germ cells during meiotic prophase. Formation of the flagellum was affected in developing spermatids. Peculiar lamellar structures, probably derived from degenerating mitochondria, were seen in the cytoplasm of late spermatids and Sertoli cells.The results are compared with the effects of other mitotic inhibitors such as colchicine and vinca alcaloids.  相似文献   

12.
13.
Apoptosis and cell cycle progression in HL60 cells irradiated in an acidic environment were investigated. Apoptosis was determined by TUNEL staining, PARP cleavage, DNA fragmentation, and flow cytometry. The majority of the apoptosis that occurred in HL60 cells after 4 Gy irradiation took place after G(2)/M-phase arrest. When irradiated with 12 Gy, a fraction of the cells underwent apoptosis in G(1) and S phases while the rest of the cells underwent apoptosis in G(2)/M phase. The apoptosis caused by 4 and 12 Gy irradiation was transiently suppressed in medium at pH 7.1 or lower. An acidic environment was found to perturb progression of irradiated cells through the cell cycle, including progression through G(2)/ M phase. Thus it was concluded that the suppression of apoptosis in the cells after 4-12 Gy irradiation in acidic medium was due at least in part to a delay in cell cycle progression, particularly the prolongation of G(2)/M-phase arrest. Irradiation with 20 Gy indiscriminately caused apoptosis in all cell cycle phases, i.e. G(1), S and G(2)/M phases, rapidly in neutral pH medium and relatively slowly in acidic pH medium. The delay in apoptosis in acidic medium after 20 Gy irradiation appeared to result from mechanisms other than prolonged G(2)/ M-phase arrest.  相似文献   

14.
Sensitivity to X-ray-induced G2 arrest was compared between ataxia telangiectasia (AT) lymphoblastoid cells and normal human cells. Flow cytometrical analysis of cells following X-ray irradiation revealed that the fraction of cells with 4n DNA content was greater in AT cells than in normal cells as previously reported by other investigators. However, the other parameters for cell-cycle progression kinetics including mitotic indices, cumulative mitotic indices and cumulative labelled mitotic indices indicated that X-ray-induced G2 arrest as a function of dose in AT cells was indistinguishable from that in normal cells. Moreover, no significant difference in cell viability was noted between AT and normal cells until 48 h following X-irradiation up to 2.6 Gy, although X-irradiated AT cells, compared to normal cells, showed a significantly decreased survival in terms of cell multiplication in growth medium and colony formation in soft agar. These data collectively suggest that the greater accumulation of AT cells with 4n DNA content in flow cytometry cannot be attributed to more stringent irreversible blockage of cell-cycle progression at the G2 phase and eventual cell death there. The possible reasons for this greater accumulation are discussed.  相似文献   

15.
During the mitotic cell cycle, microtubule depolymerization leads to a cell cycle arrest in metaphase, due to activation of the spindle checkpoint. Here, we show that under microtubule-destabilizing conditions, such as low temperature or the presence of the spindle-depolymerizing drug benomyl, meiotic budding yeast cells arrest in G(1) or G(2), instead of metaphase. Cells arrest in G(1) if microtubule perturbation occurs as they enter the meiotic cell cycle and in G(2) if cells are already undergoing premeiotic S phase. Concomitantly, cells down-regulate genes required for cell cycle progression, meiotic differentiation, and spore formation in a highly coordinated manner. Decreased expression of these genes is likely to be responsible for halting both cell cycle progression and meiotic development. Our results point towards the existence of a novel surveillance mechanism of microtubule integrity that may be particularly important during specialized cell cycles when coordination of cell cycle progression with a developmental program is necessary.  相似文献   

16.
The mitotic cell selection technique was used to monitor the effect of cordycepin and/or 100 rad of X-rays on the entry of asynchronous or synchronous Chinese hamster ovary cells into mitosis. Continuous exposure of asynchronous cells to 5–50 μg/ml of cordycepin caused a rapid increase in the relative numbers of cells entering mitosis. In irradiated cells, cordycepin also reduced a 120-min mitotic delay by about 80 min and shifted the X-ray transition point about 10 min farther away from mitosis. Further studies showed that synchronous cells, treated continuously with 15 μg/ml of cordycepin starting at mid-to-late S phase, proceeded into mitosis approx. 40 min ahead of controls. This acceleration was associated with a 30-min lengthening of S phase and a reduction in the length of G2 from 80 to about 10 min. Furthermore, cordycepin reduced the 70-min mitotic delay observed for cells irradiated in S phase by 20 min. In contrast to the results for treatment at mid-S phase, continuous treatment during G2 of unirradiated synchronous cells with 15 μg/ml of cordycepin had little effect on accelerating cells into mitosis, yet did reduce by about 60 min the 170-min mitotic delay observed for cells irradiated in G2. Unirradiated synchronous cells treated with cordycepin starting before mid-S did not reach mitosis. Thus, there are the following transition points or intervals for cordycepin: for treatment prior to mid-S phase, cell cycle progression through S is blocked; for treatment between mid-S and late S, progression through S continues but progression through G2 is accelerated; and for treatment during G2, the rate of progression in accelerated only if the cells have been irradiated. These results are discussed in relation to the synthesis during late S and G2 of critical protein molecules essential for mitosis.  相似文献   

17.
Aven-dependent activation of ATM following DNA damage   总被引:3,自引:0,他引:3  
BACKGROUND: In response to DNA damage, cells undergo either cell-cycle arrest or apoptosis, depending on the extent of damage and the cell's capacity for DNA repair. Cell-cycle arrest induced by double-stranded DNA breaks depends on activation of the ataxia-telangiectasia (ATM) protein kinase, which phosphorylates cell-cycle effectors such as Chk2 and p53 to inhibit cell-cycle progression. ATM is recruited to double-stranded DNA breaks by a complex of sensor proteins, including Mre11/Rad50/Nbs1, resulting in autophosphorylation, monomerization, and activation of ATM kinase. RESULTS: In characterizing Aven protein, a previously reported apoptotic inhibitor, we have found that Aven can function as an ATM activator to inhibit G2/M progression. Aven bound to ATM and Aven overexpressed in cycling Xenopus egg extracts prevented mitotic entry and induced phosphorylation of ATM and its substrates. Immunodepletion of endogenous Aven allowed mitotic entry even in the presence of damaged DNA, and RNAi-mediated knockdown of Aven in human cells prevented autophosphorylation of ATM at an activating site (S1981) in response to DNA damage. Interestingly, Aven is also a substrate of the ATM kinase. Mutation of ATM-mediated phosphorylation sites on Aven reduced its ability to activate ATM, suggesting that Aven activation of ATM after DNA damage is enhanced by ATM-mediated Aven phosphorylation. CONCLUSIONS: These results identify Aven as a new ATM activator and describe a positive feedback loop operating between Aven and ATM. In aggregate, these findings place Aven, a known apoptotic inhibitor, as a critical transducer of the DNA-damage signal.  相似文献   

18.
Flow cytometric analysis of X-ray sensitivity in ataxia telangiectasia   总被引:3,自引:0,他引:3  
Flow cytometric analysis of 5-bromodeoxyuridine (BrdU) incorporation during DNA synthesis was used to characterize the effects of X-rays on cell-cycle kinetics in the DNA-repair deficiency disease ataxia telangiectasia (AT). Cultured fibroblasts from homozygotes (at/at), heterozygotes (at/+) and normal controls (+/+) were either: (1) irradiated, cultured, then pulsed with BrdU and harvested, or (2) pulsed with BrdU, irradiated, cultured and then harvested. Cells were then fixed and stained with both a fluoresceinated monoclonal antibody against BrdU to identify S-phase cells and with propidium diiodide to measure total DNA content. Irradiation of +/+ and at/+ cells induced a similar, transient G2/M arrest detectable within 8 h, which subsequently delayed by 6-8 h the passage of cells into G1 and depleted early S phase. In contrast, at/at cells failed to arrest in G2/M phase and entered the next cell cycle without pausing to repair radiation-induced damage. X-Rays also blocked entry of +/+ G1 cells into S phase, subsequently reducing the total S-phase population. This effect was not observed in at/at cells. These cell-cycle responses to radiation may be of diagnostic use and ultimately may help explain the basic defect in AT.  相似文献   

19.
A mitotic cell subset has been identified with nuclear light scatter. Colcemid-treated T-47D human breast cancer cells were permeabilised, stained with ethidium bromide, and analysed by flow cytometry. Cells with G2M DNA content exhibited a unimodal distribution for DNA fluorescence and forward scatter, but two peaks were discernible with 90 degrees light scatter. A discrete low-scattering cell cluster could be distinguished from the G2 cell subset on two-dimensional contour plots of 90 degrees light scatter vs. DNA fluorescence; this cluster was reproduced by mitotic shake-off experiments and varied quantitatively with mitotic indices determined either by microscopy or by stathmokinetic cell-cycle analysis of DNA fluorescence. Cell sorting confirmed that the low-scattering cell cluster comprised predominantly metaphase and anaphase cells. Identification of mitotic cells with this one-step technique enables rapid analysis of drug-induced cell-cycle delay in cell populations with different rates of cell-cycle traverse. Hence, vincristine-induced cytostasis is shown to arise in part because of premitotic G2 arrest, whereas etoposide is shown to affect cycling cells with equal sensitivity in quiescent and activated cell populations. The use of light scatter to discriminate mitotic cells in this way facilitates analysis of drug-induced cell-cycle delay and supplements the information obtainable by conventional cell-cycle analysis.  相似文献   

20.
Cell progression after selective irradiation of DNA during the cell cycle   总被引:1,自引:0,他引:1  
Chinese hamster ovary cells were labeled with [125I]iododeoxyuridine (125IUdR, 0.1184 MBq/ml for 20 min) and the labeled mitotic cells were collected by selective detachment ("mitotic shake off"). The cells were pooled, plated into replicate flasks, and allowed to progress through the cell cycle. At several times after plating, corresponding to G1, S, late S, and G2 plus M, cells were cooled to stop cell cycle progression and to facilitate accumulation of 125I decays. Evaluation of cell progression into the subsequent mitosis indicated that accumulation of additional 125I decays during G1 or S phase was eight to nine times less effective in inducing progression delay than decays accumulated during G2. The results support our previous hypothesis that DNA damage per se is not responsible for radiation-induced progression delay. Instead, 125I-labeled DNA appears to act as a source of radiation that associates during the G2 phase of the cell cycle with another radiosensitive structure in the cell nucleus, and damage to the latter structure by overlap irradiation is responsible for progression delay (M. H. Schneiderman and K. G. Hofer, Radiat. Res. 84, 462-476 (1980].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号