首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas lemoignei is equipped with at least five polyhydroxyalkanoate (PHA) depolymerase structural genes (phaZ1 to phaZ5) which enable the bacterium to utilize extracellular poly(3-hydroxybutyrate) (PHB), poly(3-hydroxyvalerate) (PHV), and related polyesters consisting of short-chain-length hxdroxyalkanoates (PHA(SCL)) as the sole sources of carbon and energy. Four genes (phaZ1, phaZ2, phaZ3, and phaZ5) encode PHB depolymerases C, B, D, and A, respectively. It was speculated that the remaining gene, phaZ4, encodes the PHV depolymerase (D. Jendrossek, A. Frisse, A. Behrends, M. Andermann, H. D. Kratzin, T. Stanislawski, and H. G. Schlegel, J. Bacteriol. 177:596-607, 1995). However, in this study, we show that phaZ4 codes for another PHB depolymeraes (i) by disagreement of 5 out of 41 amino acids that had been determined by Edman degradation of the PHV depolymerase and of four endoproteinase GluC-generated internal peptides with the DNA-deduced sequence of phaZ4, (ii) by the lack of immunological reaction of purified recombinant PhaZ4 with PHV depolymerase-specific antibodies, and (iii) by the low activity of the PhaZ4 depolymerase with PHV as a substrate. The true PHV depolymerase-encoding structural gene, phaZ6, was identified by screening a genomic library of P. lemoignei in Escherichia coli for clearing zone formation on PHV agar. The DNA sequence of phaZ6 contained all 41 amino acids of the GluC-generated peptide fragments of the PHV depolymerase. PhaZ6 was expressed and purified from recombinant E. coli and showed immunological identity to the wild-type PHV depolymerase and had high specific activities with PHB and PHV as substrates. To our knowledge, this is the first report on a PHA(SCL) depolymerase gene that is expressed during growth on PHV or odd-numbered carbon sources and that encodes a protein with high PHV depolymerase activity. Amino acid analysis revealed that PhaZ6 (relative molecular mass [M(r)], 43,610 Da) resembles precursors of other extracellular PHA(SCL) depolymerases (28 to 50% identical amino acids). The mature protein (M(r), 41,048) is composed of (i) a large catalytic domain including a catalytic triad of S(136), D(211), and H(269) similar to serine hydrolases; (ii) a linker region highly enriched in threonine residues and other amino acids with hydroxylated or small side chains (Thr-rich region); and (iii) a C-terminal domain similar in sequence to the substrate-binding domain of PHA(SCL) depolymerases. Differences in the codon usage of phaZ6 for some codons from the average codon usage of P. lemoignei indicated that phaZ6 might be derived from other organisms by gene transfer. Multialignment of separate domains of bacterial PHA(SCL) depolymerases suggested that not only complete depolymerase genes but also individual domains might have been exchanged between bacteria during evolution of PHA(SCL) depolymerases.  相似文献   

2.
Cholesterol crystals are the building blocks of cholesterol gallstones. The exact structure of early-forming crystals is still controversial. We combined cryogenic-temperature transmission electron microscopy with cryogenic-temperature electron diffraction to sequentially study crystal development and structure in nucleating model and native gallbladder biles. The growth and long-term stability of classic cholesterol monohydrate (ChM) crystals in native and model biles was determined. In solutions of model bile with low phospholipid-to-cholesterol ratio, electron diffraction provided direct proof of a novel transient polymorph that had an elongated habit and unit cell parameters differing from those of classic triclinic ChM. This crystal is exactly the monoclinic ChM phase described by Solomonov and coworkers (Biophysical J., In press) in cholesterol monolayers compressed on the air-water interface. We observed no evidence of anhydrous cholesterol crystallization in any of the biles studied. In conclusion, classic ChM is the predominant and stable form in native and model biles. However, under certain (low phospholipid) conditions, transient intermediate polymorphs may form. These findings, documenting single-crystal analysis in bulk solution, provide an experimental approach to investigating factors influencing biliary cholesterol crystal nucleation and growth as well as other processes of nucleation and crystallization in liquid systems.  相似文献   

3.
While bulk crystallization from impure solutions is used industrially as a purification step for a wide variety of materials, it is a technique that has rarely been used for proteins. Proteins have a reputation for being difficult to crystallize and high purity of the initial crystallization solution is considered paramount for success in the crystallization. Although little is written on the purifying capability of protein crystallization or of the effect of impurities on the various aspects of the crystallization process, recent published reports show that crystallization shows promise and feasibility as a purification technique for proteins. To further examine the issue of purity in macromolecule crystallization, this study investigates the effect of the protein impurities, avidin, ovalbumin, and conalbumin at concentrations up to 50%, on the solubility, crystal face growth rates, and crystal purity of the protein lysozyme. Solubility was measured in batch experiments while a computer controlled video microscope system was used to measure the ?110? and ?101? lysozyme crystal face growth rates. While little effect was observed on solubility and high crystal purity was obtained (>99.99%), the effect of the impurities on the face growth rates varied from no effect to a significant face specific effect leading to growth cessation, a phenomenon that is frequently observed in protein crystal growth. The results shed interesting light on the effect of protein impurities on protein crystal growth and strengthen the feasibility of using crystallization as a unit operation for protein purification.  相似文献   

4.
To determine the cardiorespiratory response to maximal exercise before, during and after the pubescent growth spurt, thirty boys were tested at yearly intervals over a period of six consecutive years. For each individual, peak height velocity (PHV) was determined. The age at PHV (X = 13.6 years) was taken as a standard of maturation. The results from all subjects at 1.5 and 0.5 years before and 0.5 and 1.5 years after PHV are presented. The highest oxygen uptake (VO2) obtained during an incremental bicycle ergometer test to voluntary exhaustion was taken as peak oxygen uptake (VO2 peak). Across each of the four years studied, mean VO2 peak (min = 49.6; max = 52.5 ml.kg-1.min-1) and mean heart rate (HR) at VO2 peak (min = 190; max = 192) did not change significantly as a function of PHV. On the other hand, the respiratory quotient at VO2 peak increased considerably from mean minima and maxima of 0.99 and 1.01 before PHV to 1.07 and 1.10 after PHV. Ventilatory equivalent for VO2 (VE/VO2), taken as an indicator of ventilatory economy, seemed to be unaffected by the maturation process. The steepest increase in circumpubertal oxygen pulse was found one year after PHV. Average stability coefficients (r), calculated from the inter-years correlations were high for height (r = 0.95), weight (r = 0.92), HR at VO2 peak (r = 0.74), VO2 peak in 1/min (r = 0.71), oxygen pulse (r = 0.68) and tidal volume (r = 0.64).  相似文献   

5.
Protein purification by bulk crystallization: the recovery of ovalbumin   总被引:4,自引:0,他引:4  
Crystallization is used industrially for the recovery and purification of many inorganic and organic materials. However, very little is reported on the application of bulk crystallization for proteins. In this work, ovalbumin was selected as a model protein to investigate the feasibility of using bulk crystallization for the recovery and purification of proteins. A stirred 1-L seeded batch crystallizer was used to obtain the crystal growth kinetics of ovalbumin in ammonium sulfate solutions at 30 degrees C. The width of the metastable region, in which crystal growth can occur without any nucleation, is equivalent to a relative supersaturation of about 20. The bulk crystallizations were undertaken within this range (using initial relative supersaturations less than 10) and nucleation was not observed. The ovalbumin concentration in solution was measured by UV absorbance and checked by crystal content measurement. Crystal size distributions were measured both by using a Malvern Mastersizer and by counting crystals through a microscope. The crystal growth rate was found to have a second-order dependence upon the ovalbumin supersaturation. While there is no discernible effect of ammonium sulfate concentration at pH 4.90, there is a slight effect at higher pH values. Overall the effect of ammonium sulfate concentration is small compared to the effect of pH, for which there is a 10-fold increase in the growth rate constant, k(Gsigma) over the range pH 4.6-5.4. To demonstrate the degree of purification which can be achieved by bulk crystallization, ovalbumin was crystallized from a solution containing conalbumin (80,000 Da) and lysozyme (14, 600 Da). After one crystallization and a crystal wash, ovalbumin crystals were produced with a protein purity greater than 99%. No contamination by the other proteins was observed when using overloaded sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) stained with Coomassie blue stain and only trace amounts of lysozyme were observed using a silver stain. The presence of these other proteins in solution did not effect the crystal growth rate constant, k(Gsigma). The study demonstrates the feasibility of using bulk crystallization for the recovery and purification of ovalbumin. It should be readily applicable to other protein systems. (c) 1995 John Wiley & Sons, Inc.  相似文献   

6.
The crystallization behavior and crystalline morphologies of poly[(S)-lactide] (P[(S)-LA]) in thin films crystallized isothermally at over 160 degrees C were characterized by transmission electron microscopy and atomic force microscopy (AFM). The dendritic crystal and hexagonal crystal were formed in thin film with thicknesses below 30 nm or over 50 nm, respectively. The crystal structures of dendritic and hexagonal crystals were identical, suggesting that the crystalline morphology of P[(S)-LA] is strongly dependent upon the film thickness. In situ observation of the crystal growth in the P[(S)-LA] thin film at 165 degrees C from the melt was carried out by using temperature-controlled AFM equipped with a heating stage. The initial stage of crystallization and development of lamellae were successfully observed during isothermal crystallization at 165 degrees C. The first forming crystal showed the edge-on orientation, and grew to S-shaped edge-on lamellae. Dendritic flat-on crystals were developed from the S-shaped edge-on lamellae. The growth rates of flat-on and edge-on lamellae were almost identical.  相似文献   

7.
Adolescent growth in height, fatness, and fat patterning was investigated in a sample of 79 rural South African black children studied longitudinally from 6–18 years. Data were analyzed relative to peak height velocity (PHV) to identify the phenomenon of “compensatory” growth in height during adolescence and to describe changes in fatness and fat patterning. Compensatory growth following PHV was clearly observed relative to NHANES data for African-Americans in that Z-scores for height at the start of the adolescent growth spurt were greater than those at the end of the spurt. Statistically significant differences in fatness and centralization between males and females did not occur until about 2 years after PHV was attained. Centralization of fat occurred in both sexes but moreso in males. The lack of centralization in females was due to relatively greater triceps skinfold velocities. The rapid gain in post-PHV fatness in females may represent a physiological adaptation to an energetically sub-optimal environment, buffering the energetic costs of reproduction. © 1994 Wiley-Liss, Inc.  相似文献   

8.
OBJECTIVES: To determine the timing, magnitude and duration of the pubertal spurt for short normal and average height girls, to compare these with Tanner's standard and to investigate predictors of pubertal growth. METHODS: The growth of 46 short normal and 55 control girls, identified at school entry, was monitored throughout puberty. Height and weight were measured at 6-month intervals from which body mass index (BMI) was derived. Annual velocities were calculated and used to estimate the age and magnitude of peak height velocity (PHV). Age of menarche was recorded to the nearest month. Parents provided information on the child's medical and social history. RESULTS: The mean age at PHV, the magnitude of PHV and age at menarche were similar for both groups and close to Tanner's 50th centile values. Pre-pubertal BMI predicted age at menarche for short and control girls, accounting for 17% of the variance. There was a tendency for early maturing girls of average stature to have greater PHV. However, this relationship was not observed in short girls, nor did any other variable, genetic or environmental, predict the timing or magnitude of their pubertal spurt. CONCLUSIONS: Delayed puberty in short normal girls is unlikely and their growth during puberty is comparable to girls of average height. The pubertal variables measured remain close to Tanner's original standards for both groups, suggesting the lack of a secular trend towards earlier puberty in girls. The onset of menstruation is influenced by pre-pubertal BMI. However, the clinician should be aware that short normal girls have normal pubertal growth and that no genetic or environmental variable can predict the timing or magnitude of their growth spurt.  相似文献   

9.
Pseudomonas lemoignei is equipped with at least five polyhydroxyalkanoate (PHA) depolymerase structural genes (phaZ1 to phaZ5) which enable the bacterium to utilize extracellular poly(3-hydroxybutyrate) (PHB), poly(3-hydroxyvalerate) (PHV), and related polyesters consisting of short-chain-length hxdroxyalkanoates (PHASCL) as the sole sources of carbon and energy. Four genes (phaZ1, phaZ2, phaZ3, and phaZ5) encode PHB depolymerases C, B, D, and A, respectively. It was speculated that the remaining gene, phaZ4, encodes the PHV depolymerase (D. Jendrossek, A. Frisse, A. Behrends, M. Andermann, H. D. Kratzin, T. Stanislawski, and H. G. Schlegel, J. Bacteriol. 177:596–607, 1995). However, in this study, we show that phaZ4 codes for another PHB depolymeraes (i) by disagreement of 5 out of 41 amino acids that had been determined by Edman degradation of the PHV depolymerase and of four endoproteinase GluC-generated internal peptides with the DNA-deduced sequence of phaZ4, (ii) by the lack of immunological reaction of purified recombinant PhaZ4 with PHV depolymerase-specific antibodies, and (iii) by the low activity of the PhaZ4 depolymerase with PHV as a substrate. The true PHV depolymerase-encoding structural gene, phaZ6, was identified by screening a genomic library of P. lemoignei in Escherichia coli for clearing zone formation on PHV agar. The DNA sequence of phaZ6 contained all 41 amino acids of the GluC-generated peptide fragments of the PHV depolymerase. PhaZ6 was expressed and purified from recombinant E. coli and showed immunological identity to the wild-type PHV depolymerase and had high specific activities with PHB and PHV as substrates. To our knowledge, this is the first report on a PHASCL depolymerase gene that is expressed during growth on PHV or odd-numbered carbon sources and that encodes a protein with high PHV depolymerase activity. Amino acid analysis revealed that PhaZ6 (relative molecular mass [Mr], 43,610 Da) resembles precursors of other extracellular PHASCL depolymerases (28 to 50% identical amino acids). The mature protein (Mr, 41,048) is composed of (i) a large catalytic domain including a catalytic triad of S136, D211, and H269 similar to serine hydrolases; (ii) a linker region highly enriched in threonine residues and other amino acids with hydroxylated or small side chains (Thr-rich region); and (iii) a C-terminal domain similar in sequence to the substrate-binding domain of PHASCL depolymerases. Differences in the codon usage of phaZ6 for some codons from the average codon usage of P. lemoignei indicated that phaZ6 might be derived from other organisms by gene transfer. Multialignment of separate domains of bacterial PHASCL depolymerases suggested that not only complete depolymerase genes but also individual domains might have been exchanged between bacteria during evolution of PHASCL depolymerases.  相似文献   

10.

Background

Entering puberty is an important milestone in reproductive life and secular changes in the timing of puberty may be an important indicator of the general reproductive health in a population. Too early puberty is associated with several psychosocial and health problems. The aim of our study was to determine if the age at onset of pubertal growth spurt (OGS) and at peak height velocity (PHV) during puberty show secular trends during four decades in a large cohort of school children.

Methods and Findings

Annual measurements of height were available in all children born from 1930 to 1969 who attended primary school in the Copenhagen Municipality. 135,223 girls and 21,612 boys fulfilled the criteria for determining age at OGS and age at PHV. These physiological events were used as markers of pubertal development in our computerized method in order to evaluate any secular trends in pubertal maturation during the study period (year of birth 1930 to 1969). In this period, age at OGS declined statistically significantly by 0.2 and 0.4 years in girls and boys, respectively, whereas age at PHV declined statistically significantly by 0.5 and 0.3 years in girls and boys, respectively. The decline was non-linear with a levelling off in the children born between 1940 and 1955. The duration of puberty, as defined by the difference between age at OGS and age at PHV, increased slightly in boys, whereas it decreased in girls.

Conclusion

Our finding of declining age at OGS and at PHV indicates a secular trend towards earlier sexual maturation of Danish children born between 1930 and 1969. Only minor changes were observed in duration of puberty assessed by the difference in ages at OGS and PHV.  相似文献   

11.
Bulk crystallization is emerging as a new industrial operation for protein recovery. Characterization of bulk protein crystallization is more complex than protein crystallization for structural study where single crystals are grown in flow cells. This is because both nucleation and crystal growth processes are taking place while the supersaturation falls. An algorithm is presented to characterize crystallization using the rates of the two kinetic processes, nucleation and growth. The values of these rates allow ready comparison of the crystallization process under different operating conditions. The crystallization, via adjustment to the isoelectric pH of a fungal lipase from clarified fermentation broth, is described for a batch stirred reactor. A maximum nucleation rate of five to six crystals formed per microliter of suspension per second and a high power dependency ( approximately 11) on the degree of supersaturation were found. The suspended protein crystals were found to grow at a rate of up to 15-20 nm/s and also to exhibit a high power dependency ( approximately 6) of growth rate on the degree of supersaturation.  相似文献   

12.
The streptavidin two-dimensional (2D) crystallization model has served as a paradigm for molecular self-assembly at interfaces. We have developed quantitative Brewster angle microscopy for the in situ measurement of spatially resolved relative protein surface densities. This allows investigation of both the thermodynamics and morphologies of 2D crystal growth. For crystal structure analysis, we employ TEM on grown crystals transferred to solid substrates. Comparison of results between commercially available streptavidin, recombinant streptavidin, and site-directed streptavidin mutants has provided insight into the protein protein and protein-lipid interactions that underlie 2D crystallization.  相似文献   

13.
Aeromonas hydrophila 4AK4 normally produces copolyesters (PHBHHx) consisting of 3-hydroxybutyrate (C4) and 3-hydroxyhexanoate (C6). Wild type and recombinant A. hydrophila 4AK4 (pSXW02) expressing vgb and fadD genes encoding Vitreoscilla haemoglobin and Escherichia coli acyl-CoA synthase respectively, were found able to produce homopolyester poly(3-hydroxyvalerate) (PHV) (C5) on undecanoic acid as a single carbon source. The recombinant grew to 5.59 g/L cell dry weight (CDW) containing 47.74 wt% PHV in shake flasks when growth was conducted in LB medium and PHV production in undecanoic acid. The cells grew to 47.12 g/L CDW containing 60.08 wt% PHV in a 6 L fermentor study. Physical characterization of PHV produced by recombinant A. hydrophila 4AK4 (pSXW02) in fermentor showed a weight average molecular weight (Mw) of 230,000 Da, a polydispersity of 3.52, a melting temperature of 103 °C and a glass transition temperature of −15.8 °C. The degradation temperature at 5% weight loss of the PHV was around 258 °C.  相似文献   

14.
To investigate cardiorespiratory function during circumpubertal growth, 62 boys (aged 9-10 yr) were studied annually for 6 yr. Measurements of O2 uptake (VO2), cardiac output, and arteriovenous O2 difference were made during a submaximal bicycle test. Values were interpolated to a heart rate of 155 beats X min-1 (VO2 at a heart rate of 155) for comparisons across ages 10.8-14.8 yr. To account for growth differences among the boys, data were also aligned at yearly intervals relative to their individual age of peak height velocity (PHV; maturative age). The group was further divided into early, mid, and late maturers based on their year of PHV. VO2 and stroke volume (SV) of late maturers were larger at each maturative age. SV mirrored the increase in VO2 at all stages of development except during the period of most rapid growth. Arteriovenous O2 difference showed an increase in the year of peak growth with little change during any of the other maturative age intervals. Multiple regression analysis indicated that VO2 was determined primarily by the size of SV throughout this age range.  相似文献   

15.
The self-assembly of apoferritin molecules into crystals is a suitable model for protein crystallization and aggregation; these processes underlie several biological and biomedical phenomena, as well as for protein and virus self-assembly. We use the atomic force microscope in situ, during the crystallization of apoferritin to visualize and quantify at the molecular level the processes responsible for crystal growth. To evaluate the governing thermodynamic parameters, we image the configuration of the incorporation sites, "kinks", on the surface of a growing crystal. We show that the kinks are due to thermal fluctuations of the molecules at the crystal-solution interface. This allows evaluation of the free energy of the intermolecular bond phi=3.0 k(B)T=7.3 kJ/mol. The crystallization free energy, extracted from the protein solubility, is -42 kJ/mol. Published determinations of the second virial coefficient and the protein solubility between 0 and 40 degrees C revealed that the enthalpy of crystallization is close to zero. Analyses based on these three values suggest that the main component in the crystallization driving force is the entropy gain of the water molecules bound to the protein molecules in solution and released upon crystallization. Furthermore, monitoring the incorporation of individual molecules in to the kinks, we determine the characteristic frequency of attachment of individual molecules at one set of conditions. This allows a correlation between the mesoscopic kinetic coefficient for growth and the molecular-level thermodynamic and kinetic parameters determined here. We found that step growth velocity, scaled by the molecular size, equals the product of the kink density and attachment frequency, i.e. the latter pair are the molecular-level parameters for self-assembly of the molecules into crystals.  相似文献   

16.
During the growth of Patellina corrugata's test platelike structures are formed showing typical characters of Hopper-crystals. These features indicate conditions of test development comparable to inorganic skeletal crystal growth. The whole test therefore can be regarded as a skeletal crystal (Hopper-crystal). Skeletal crystal growth is considered to be the basis of morphogenesis in the single-crystal test of Patellina.  相似文献   

17.
Numerous studies have determined the effects of physical disturbance on periphyton, however, the substrata used have varied in size among studies. In this study we examined the influence of substratum size on the change in periphyton exposed to three levels of disturbance. Periphyton communities were established in a large greenhouse tank on square unglazed tiles that were either 2.5, 5, or 7.5 cm on a side. Following community development sets of tiles were randomly assigned to controlled disturbances removing 25%, 50%, or 75% of the community or an undisturbed control. Following disturbance, changes in periphyton density were associated with both disturbance treatment and tile size as was taxa richness. Experimental results and direct observation revealed that algal growth was most concentrated along the edge of the tile and progressively declined toward the center. Thus, substratum size influences colonization and pre-disturbance community structure, which then affects the extent of periphyton community change due to different levels of disturbance.  相似文献   

18.
Alcaligenes latus strains can accumulate poly-D(-)-3-hydroxybutyrate (PHB) up to about 85% of cell dry weight. The abilities to store poly-D(-)-3-hydroxyvalerate (PHV) of three strains ofA. latus were investigated. With Na-propionate as PHV precursor, strainA. latusDSM 1122 had better PHV accumulation ability than strainsA. latusDSM 1123 and 1124. StrainA. latus DSM 1123 could store PHV when Na-valerate but not Na-propionate served as the PHV precursor. PHB and PHV accumulation byA. latus DSM 1124 rapidly increased when propionic acid and acetic acid were together added to the fermentor. This increase was not obtained in the culture shaker flask and fermentor growing the same strain when Na-propionate alone served as a PHV precursor.  相似文献   

19.
Abstract

The bonds between lysozyme molecules and precipitant ions in single crystals grown with chlorides of several metals are analysed on the basis of crystal structure data. Crystals of tetragonal hen egg lysozyme (HEWL) were grown with chlorides of several alkali and transition metals (LiCl, NaCl, KCl, NiCl2 and CuCl2) as precipitants and the three-dimensional structures were determined at 1.35?Å resolution by X-ray diffraction method. The positions of metal and chloride ions attached to the protein were located, divided into three groups and analysed. Some of them, in accordance with the recently proposed and experimentally confirmed crystal growth model, provide connections in protein dimers and octamers that are precursor clusters in the crystallization lysozyme solution. The first group, including Cu+2, Ni+2 and Na+1 cations, binds specifically to the protein molecule. The second group consists of metal and chloride ions bound inside the dimers and octamers. The third group of ions can participate in connections between the octamers that are suggested as building units during the crystal growth. The arrangement of chloride and metal ions associated with lysozyme molecule at all stages of the crystallization solution formation and crystal growth is discussed.

Communicated by Ramaswamy H. Sarma  相似文献   

20.
In situ laser Michelson interferometry was utilized to investigate mechanisms of growth and surface morphology in protein and virus crystallization, These included plant proteins canavalin and thaumatin and turnip yellow mosaic virus. The experimental apparatus allowed us to obtain interferometric patterns and investigate growth kinetics from growing macromolecular crystals as small as 20 μm. For the crystallization of canavalin, dislocations are the sources of growth steps on the surfaces. Supersaturation and time dependencies of the normal growth rates, tangential growth step velocities, and the slopes of the dislocation hillocks were measured. The kinetic coefficient β (rate of incorporation of protein molecules into the growing crystal) was estimated for canavalin to be 9 × 10-4 cm/sec. This is among the first estimates of such fundamental kinetic parameters for macromolecular crystallization. The change in the activities of dislocation sources under different growth conditions was also analyzed. Michelson interferometry was clearly demonstrated to be a useful tool for quantitative studies of macromolecular crystal growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号