首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Repetitive lifting in the workplace has been identified to be a cause of low back disorders. Epidemiologic data further supports an hypothesis that higher repetition rate (i.e. frequency) is an added risk factor. The objective of this study was to provide experimental data testing the above hypothesis. An in vivo feline model was subjected to 20-min of cyclic lumbar loading at frequencies of 0.1 Hz and 0.5 Hz while monitoring the EMG from the L-3/4-L-5/6 multifidus muscles and the creep at the L-4/5 level. Seven hours of rest were allowed after the cyclic flexion/extension was terminated. During this rest period, a single test cycle was performed every hour to assess recovery of EMG and lumbar creep. The results demonstrate that cyclic lumbar flexion elicits a transient neuromuscular disorder consisting of EMG spasms during the cyclic loading and initial and delayed muscular hyperexcitabilities during the rest period. Cyclic loading at 0.5 Hz resulted in significant (p<0.05) increase in the hyperexcitability magnitude and duration during the recovery period. It was concluded that repetitive lumbar loading at fast rates is indeed a risk factor as it induces larger creep in the lumbar viscoelastic tissues which in turn intensify the resulting neuromuscular disorder.  相似文献   

2.
The biomechanics, histology and electromyography of the lumbar viscoelastic tissues and multifidus muscles of the in vivo feline were investigated during 20 min of static as well as cyclic flexion under load control and during 7 h of rest following the flexion. It was shown that the creep developed in the viscoelastic tissues during the 20 min of static or cyclic flexion did not fully recover over the 7 h of following rest. It was further seen that a neuromuscular disorder with five distinct components developed during and after the static and cyclic flexion. The neuromuscular disorder consisted of a decreasing magnitude of reflexive EMG from the multifidus upon flexion as well as of superimposed spasms. The recovery period was characterized by an initial muscle hyperexcitability, a slowly increasing reflexive EMG and a delayed hyperexcitability. Histological data from the supraspinous ligament demonstrate significant increase (x 10) in neutrophil density in the ligament 2 h into the recovery and even larger increase (x 100) 6 h into the recovery from the 20 min flexion, indicating an acute soft tissue inflammation. It was concluded that sustained static or cyclic loading of lumbar viscoelastic tissues may cause micro-damage in the collagen structure, which in turn reflexively elicit spasms in the multifidus as well as hyperexcitability early in the recovery when the majority of the creep recovers. The micro-damage, however, results in the time dependent development of inflammation. In all cases, the spasms, initial and delayed hyperexcitabilities represent increased muscular forces applied across the intervertebral joints in an attempt to limit the range of motion and unload the viscoelastic tissues in order to prevent further damage and to promote healing. It is suggested that a significant insight is gained as to the development and implications of a common idiopathic low back disorder as well as to the development of cumulative trauma disorders.  相似文献   

3.
Low back disorders are prominent among the work force engaged in static anterior flexion during the workday. As a continuing part of a long-term research aimed to identify the biomechanical and physiological processes and corresponding risk factors leading to such cumulative trauma disorder (CTD), we ventured to assess the effect of rest and the work-to-rest duration ratios that may prevent CTD. Three groups of the feline model were subjected to three load/rest paradigms: two 30 min loading periods spaced by 10 min rest in Group I, two 30 min loading period spaced by 30 min rest in Group II and one 60 min loading period for Group III. The cumulative loading duration in the three groups was 60 min. Each of the groups were allowed 7h of rest while monitoring EMG and lumbar viscoelastic tissue creep each hour. The results demonstrate that for two 30 min load periods with a 30 min in between rest, an acute neuromuscular disorder was not present whereas for two 30 min loading with a 10 min rest it was. Similarly, for a 60 min loading with long-term rest, the disorder was present. Post hoc Fisher analysis demonstrated significant differences in the delayed hyperexcitability between the first and second group (P<0.0001) and the third and second (P<0.0001) group. Statistical difference in the displacement data of the three groups was not present. ANOVA showed a significant effect of time post-loading (P<0.0001 and different rest durations (P<0.0001) on the EMG data during the 7h recovery. The new data allow us to conclude that a work-to-rest duration ratio of 1:1 can prevent the development of CTD as long as the work periods are not too long (<60 min). Longer static flexion durations do not respond favorably to rest even if it is of equal or longer duration. It is suggested that appropriate durations of rest may be a viable tool to avert CTD in a certain range whereas long static flexion durations should be avoided at all cost.  相似文献   

4.
The objective of this work was to study the effect of rest periods of various durations applied between six 10-min sessions of static flexion on the development of cumulative low back disorder (CLBD). Three experimental groups of a feline model were used, and the rest duration between sequential static load periods was set to 5, 10, and 20 min, with a corresponding load-to-rest ratio of 2:1, 1:1 and 1:2, respectively. The reflex electromyographic (EMG) activity from the multifidus muscles and supraspinous ligament displacement (creep) were recorded during the flexion periods and over 7 h of rest following the load-rest cycles. It was found that a minor disorder developed in all the groups whereas a severe neuromuscular disorder including a delayed hyperexcitability was observed only in the group subjected to 5 min rest. The two-way ANOVA showed a significant effect of time post loading (p<0.001) and rest duration (p<0.001) on the Normalized Integrated EMG (NIEMG) recovery data; a significant effect of time post loading on the Displacement data (p<0.001) was observed as well. The post hoc Fisher test performed on the NIEMG data during the recovery phase showed a significant difference between the group subjected to 5 min rest and the other two groups (p<0.001). These results suggest that while a short rest period of 2:1 load-to-rest ratio leads to CLBD, longer rest at 1:1 and 1:2 load-to-rest ratio are more favorable for preventing or attenuating the development of CLBD. Short rest periods between sessions of static lumbar flexion, therefore, are a risk factor for the development of CLBD.  相似文献   

5.
Repetitive trunk flexion can damage spinal tissues, however its association with low back pain in the workplace may be confounded by factors related to pain sensitivity. Muscle fatigue, exercise-induced hypoalgesia, and creep-induced neuromuscular changes following repetitive trunk flexion may all affect this assumed exposure-pain relationship. This study’s purpose was to determine how mechanical pain sensitivity in the low back is affected by a repetitive trunk flexion exposure and identify factors associated with changes in low back pain sensitivity. Pressure pain thresholds, perceptions of sub-threshold stimuli, and muscle fatigue in the trunk and tibia, as well as lumbar spine creep were tracked in 37 young healthy adults before and up to 40 min after a 10-min repetitive trunk flexion exposure. Pressure pain thresholds (p = 0.033), but not perceptions of sub-threshold stimuli (p > 0.102) were associated with approximately a 12.5% reduction in pain sensitivity 10 min after completing the exposure, while creep and local muscle fatigue effects were only observed immediately following the exposure. Creep and fatigue interactions and the corresponding tibial measure co-varied with individual low back pressure pain thresholds. The net hypoalgesic effects of repetitive trunk flexion have the potential to partially mask possibly injurious loads, which could contribute to the severity or incidence of lower back injuries related to these exposures.  相似文献   

6.
Cumulative lumbar disorder is common in individuals engaged in long term performance of repetitive and static occupational/sports activities with the spine. The triggering source and of the disorder, the tissues involved in the failure and the biomechanical, neuromuscular, and biological processes active in the initiation and development of the disorder are not known. The hypothesis is forwarded that static and repetitive (cyclic) lumbar flexion-extension and the associated repeated stretch of the various viscoelastic tissues (ligaments, fascia, facet capsule, discs, etc.) causes micro-damage in their collagen fibers followed by an acute inflammation, triggering pain and reflexive muscle spasms/hyper-excitability. Continued exposure to activities, over time, converts the acute inflammation into a chronic one, viscoelastic tissues remodeling/degeneration, modified motor control strategy and permanent disability. Changes in lumbar stability are expected during the development of the disorder. A series of experimental data from in-vivo feline is reviewed and integrated with supporting evidence from the literature to gain a valuable insight into the multi-factorial development of the disorder. Prolonged cyclic lumbar flexion-extension at high loads, high velocities, many repetitions and short in between rest periods induced transient creep/laxity in the spine, muscle spasms and reduced stability followed, several hours later, by an acute inflammation/tissue degradation, muscular hyper-excitability and increased stability. The major findings assert that viscoelastic tissues sub-failure damage is the source and inflammation is the process which governs the mechanical and neuromuscular characteristic symptoms of the disorder. A comprehensive model of the disorder is presented. The experimental data validates the hypothesis as well as provide insights into the development of potential treatment and prevention of the disorder.  相似文献   

7.
Occupations that involve sustained or repetitive neck flexion are associated with a higher incidence of neck pain. Little in vivo information is available on the impact of static neck flexion on cervical spinal tissue. The aim of this study was to assess changes in mechanical and neuromuscular behaviors to sustained neck flexion in healthy adults. Sixty healthy subjects aged 20–35 years participated in this study. The participants were exposed to static neck flexion at a fixed angle of full flexion for 10 min. Mechanical and neuromuscular responses of the cervical spine to sudden perturbations were measured pre- and post-exposure. Magnitude of load-relaxation during flexion exposure, stiffness, peak head angular velocity, and reflexive activities of cervical muscles were recorded. Effective neck stiffness decreased significantly, especially in female participants (P = 0.0001). The reflexive response of the cervical erector spinae muscles to head perturbation delayed significantly (P = 0.0001). Peak head angular velocity was significantly increased after exposure to neck flexion for 10 min, especially in female participants (P = 0.001). In the present study, static flexion resulted in changes in mechanical and neuromuscular behavior of the cervical spine, potentially leading to decreased stiffness of the cervical spine. The results confirm the importance of maintaining a correct head and neck position during work and improving the work environment to reduce the cervical spinal load and work-related neck pain.  相似文献   

8.
Static flexion of the lumbar spine with constant load applied to the viscoelastic structures for 20 minutes and for 50 minutes resulted in development of spasms and inhibition in the multifidus muscles (e.g., deep erector spinae) and in creep of the supraspinous ligament in the feline model. The development of spasms and inhibition was not dependent on load magnitude. It is suggested that occupational and sports activities which require prolonged static lumbar flexion within the physiological range can cause a "sprain"-like injury to the ligaments, which in turn reflexively induce spasms and inhibition in some erector spinae muscles. Such disorder may take a long time to recover, in the order of days to weeks, depending on the level of creep developed in the tissues.  相似文献   

9.
The ligaments were considered, over several centuries, as the major restraints of the joints, keeping the associated bones in position and preventing instability, e.g. their separation from each other and/or mal-alignment. This project, conducted over 25 years, presents the following hypothesis:

1. Ligaments are also major sensory organs, capable of monitoring relevant kinesthetic and proprioceptive data.

2. Excitatory and inhibitory reflex arcs from sensory organs within the ligaments recruit/de-recruit the musculature to participate in maintaining joint stability as needed by the movement type performed.

3. The synergy of the ligament and associated musculature allocates prominent role for muscles in maintaining joint stability.

4. The viscoelastic properties of ligaments and their classical responses to static and cyclic loads or movements such as creep, tension–relaxation, hysteresis and strain rate dependence decreases their effectiveness as joint restraint and stabilizers and as sensory organs and exposes the joint to injury.

5. Long-term exposure of ligaments to static or cyclic loads/movements in a certain dose-duration paradigms consisting of high loads, long loading duration, high number of load repetitions, high frequency or rate of loading and short rest periods develops acute inflammatory responses which require long rest periods to resolve. These inflammatory responses are associated with a temporary (acute) neuromuscular disorder and during such period high exposure to injury is present.

6. Continued exposure of an inflamed ligament to static or cyclic load may result in a chronic inflammation and the associated chronic neuromuscular disorder known as cumulative trauma disorder (CTD).

7. The knowledge gained from basic and applied research on the sensory – motor function of ligaments can be used as infrastructure for translational research; mostly for the development of “smart orthotic” systems for ligament deficient patients. Three such “smart orthosis”, for the knee and lumbar spine are described.

8. The knowledge gained from the basic and applied research manifests in new physiotherapy modalities for ligament deficient patients.

Ligaments, therefore, are important structures with significant impact on motor control and a strong influence on the quality of movement, safety/stability of the joint and potential disorders that impact the safety and health of workers and athletes.  相似文献   


10.
Stability of the lumbar spine is an important factor in determining spinal response to sudden loading. Using two different methods, this study evaluated how various trunk load magnitudes and directions affect lumbar spine stability. The first method was a quick release procedure in which effective trunk stiffness and stability were calculated from trunk kinematic response to a resisted-force release. The second method combined trunk muscle EMG data with a biomechanical model to calculate lumbar spine stability. Twelve subjects were tested in trunk flexion, extension, and lateral bending under nine permutations of vertical and horizontal trunk loading. The vertical load values were set at 0, 20, and 40% of the subject's body weight (BW). The horizontal loads were 0, 10, and 20% of BW. Effective spine stability as obtained from quick release experimentation increased significantly (p<0.01) with increased vertical and horizontal loading. It ranged from 785 (S.D.=580) Nm/rad under no-load conditions to 2200 (S.D.=1015) Nm/rad when the maximum horizontal and vertical loads were applied to the trunk simultaneously. Stability of the lumbar spine achieved prior to force release and estimated from the biomechanical model explained approximately 50% of variance in the effective spine stability obtained from quick release trials in extension and lateral bending (0.53相似文献   

11.
Repetitive trunk flexion elicits passive tissue creep, which has been hypothesized to compromise spine stability. The current investigation determined if increased spine flexion angle at the onset of flexion relaxation (FR) in the lumbar extensor musculature was associated with altered dynamic stability of spine kinematics. Twelve male participants performed 125 consecutive cycles of full forward trunk flexion. Spine kinematics and lumbar erector spinae (LES) electromyographic (EMG) activity were obtained throughout the repetitive trunk flexion trial. Dynamic stability was evaluated with maximum finite-time Lyapunov exponents over five sequential blocks of 25 cycles. Spine flexion angle at FR onset, and peak LES EMG activity were determined at baseline and every 25th cycle. Spine flexion angle at FR increased on average by 1.7° after baseline with significant increases of 1.7° and 2.4° at the 50th and 100th cycles. Maximum finite-time Lyapunov exponents demonstrated a transient, non-statistically significant, increase between cycles 26 and 50 followed by a recovery to baseline over the remainder of the repetitive trunk flexion cycles. Recovery of dynamic stability may be the consequence of increased active spine stiffness demonstrated by the non-significant increase in peak LES EMG that occurred as the repetitive trunk flexion progressed.  相似文献   

12.
Biomechanical stability of the lumbar spine is an important factor in the etiology and control of low-back disorders. A principle component of biomechanical stability is the musculoskeletal stiffening generated by preparatory muscle coactivation. The goal of this investigation was to quantify preparatory behavior, evaluating trunk muscle activity immediately prior to sudden trunk flexion loading during static extension tasks compared to activity observed when subjects were informed no sudden load would occur. Coactive excitation was also examined as a function of fatigue and gender. Results demonstrated increased extensor muscle and flexor muscle coactivation following static fatiguing exertions, potentially compensating for reduced trunk stiffness. Female subjects produced greater flexor antagonism than in the males. No difference in the preparatory coactive muscle recruitment patterns were observed when subjects were expecting a sudden flexion load compared to recruitment patterns observed in similar static postures when subjects were informed no sudden load would be applied. This indicates the neuromuscular system relies greatly on response characteristics for the maintenance of stability in dynamic loading conditions.  相似文献   

13.
Mental stress was induced by the Stroop colour word task (CW task) and the effects on the micro-circulation and electromyography (EMG) in the upper portion of the trapezius muscle were studied during a series of fatiguing, standardized static contractions. A lowered blood flow of the skin recorded continuously by laser-Doppler flowmetry (LDF) was used as a stress indicator in addition to an elevated heart rate. Muscle blood flow was recorded continuously by LDF using a single optical fibre placed inside the muscle, and related to surface EMG. A group of 20 healthy women of different ages was examined. Recordings were made during a 50-min period in the following sequence: a 10-min series of alternating 1-min periods of rest and stepwise increased contraction induced by keeping the arms straight and elevated at 30, 60, 90 and 135° with a 1-kg load carried in each hand; a 10-min recovery period without load; a repeated contraction series with simultaneous performance of the CW task; a second 10-min recovery period, and a second contraction series without CW task. Signal processing was done on line by computer. The LDF and root mean square (rms)-EMG values were calculated, as well as the EMG mean power frequency (MPF) for fatigue. The CW-task added to the contraction series caused an increase in the heart rate accompanied by a decrease in the blood flow to the skin and a 30% increase in the blood flow in the exercising muscle. Both returned to normal during the subsequent recovery period and showed normal levels during the final contraction series without CW. The rms-EMG showed a 20% increase that persisted during the final contraction series performed without CW. There was no influence on MPF. This CW has previously been shown to evoke an increased secretion of adrenaline from the adrenal medullae to the blood. The increased blood flow in the exercising muscle would therefore appear to have been caused by -adrenoceptor vasodilatation, and the fall in the blood flow in the skin by -adrenoceptor vasoconstriction. The findings may have implications for work situations characterized by repetitive static loads to the shoulder muscles and psychological stress.  相似文献   

14.

Background

Non-specific low back pain (LBP) has been one of the most frequently occurring musculoskeletal problems. Impairment in the mechanical stability of the lumbar spine has been known to lower the safety margin of the spine musculature and can result in the occurrence of pain symptoms of the low back area. Previously, changes in spinal stability have been identified by investigating recruitment patterns of low back and abdominal muscles in laboratory experiments with controlled postures and physical activities that were hard to conduct in daily life. The main objective of this study was to explore the possibility of developing a reliable spine stability assessment method using surface electromyography (EMG) of the low back and abdominal muscles in common physical activities.

Methods

Twenty asymptomatic young participants conducted normal walking, plank, and isometric back extension activities prior to and immediately after maintaining a 10-min static upper body deep flexion on a flat bed. EMG data of the erector spinae, external oblique, and rectus abdominals were collected bilaterally, and their mean normalized amplitude values were compared between before and after the static deep flexion. Changes in the amplitude and co-contraction ratio values were evaluated to understand how muscle recruitment patterns have changed after the static deep flexion.

Results

Mean normalized amplitude of antagonist muscles (erector spinae muscles while conducting plank; external oblique and rectus abdominal muscles while conducting isometric back extension) decreased significantly (P < 0.05) after the 10-min static deep flexion. Normalized amplitude of agonist muscles did not vary significantly after deep flexion.

Conclusions

Results of this study suggest the possibility of using surface EMG in the evaluation of spinal stability and low back health status in simple exercise postures that can be done in non-laboratory settings. Specifically, amplitude of antagonist muscles was found to be more sensitive than agonist muscles in identifying changes in the spinal stability associated with the 10-min static deep flexion. Further research with various loading conditions and physical activities need to be performed to improve the reliability and utility of the findings of the current study.  相似文献   

15.
Repetitive exposures to altered gait and movement following lower-limb amputation (LLA) have been suggested to contribute to observed alterations in passive tissue properties and neuromuscular control in/surrounding the lumbar spine. These alterations, in turn, may affect the synergy between passive and active tissues during trunk movements. Eight males with unilateral LLA and eight non-amputation controls completed quasi-static trunk flexion–extension movements in seven distinct conditions of rotation in the transverse plane: 0° (sagittally-symmetric), ±15°, ±30°, and ±45° (sagittally-asymmetric). Electromyographic (EMG) activity of the bilateral lumbar erector spinae and lumbar kinematics were simultaneously recorded. Peak lumbar flexion and EMG-off angles were determined, along with the difference (“DIFF”) between these two angles and the magnitude of peak normalized EMG activities. Persons with unilateral LLA exhibited altered and asymmetric synergies between active and passive trunk tissues during both sagittally-symmetric and -asymmetric trunk flexion movements. Specifically, decreased and asymmetric passive contributions to trunk movements were compensated with increases in the magnitude and duration of active trunk muscle responses. Such alterations in trunk passive and active neuromuscular responses may result from repetitive exposures to abnormal gait and movement subsequent to LLA, and may increase the risk for LBP in this population.  相似文献   

16.
Muscle forces stabilize the spine and have a great influence on spinal loads. But little is known about their magnitude. In a former in vitro experiment, a good agreement with intradiscal pressure and fixator loads measured in vivo could be achieved for standing and extension of the lumbar spine. However, for flexion the agreement between in vitro and in vivo measurements was insufficient. In order to improve the determination of trunk muscle forces, a three-dimensional nonlinear finite element model of the lumbar spine with an internal fixation device was created and the same loads were applied as in a previous in vitro experiment. An extensive adaptation process of the model was performed for flexion and extension angles up to 20 degrees and -15 degrees, respectively. With this validated computer model intra-abdominal pressure, preload in the fixators, and a combination of hip- and lumbar flexion angle were varied until a good agreement between analytical and in vivo results was reached for both, intradiscal pressure and bending moments in the fixators. Finally, the fixators were removed and the muscle forces for the intact lumbar spine calculated. A good agreement with the in vivo results could only be achieved at a combination of hip- and lumbar flexion. For the intact spine, forces of 170, 100 and 600 N are predicted in the m. erector spinae for standing, 5 degrees extension and 30 degrees flexion, respectively. The force in the m. rectus abdominus for these body positions is less than 25 N. For more than 10 degrees extension the m. erector spinae is unloaded. The finite element method together with in vivo data allows the estimation of trunk muscle forces for different upper body positions in the sagittal plane. In our patients, flexion of the upper body was most likely a combination of hip- and lumbar spine bending.  相似文献   

17.
Ultimate strength of the lumbar spine in flexion--an in vitro study   总被引:2,自引:0,他引:2  
The ultimate strength in flexion of 16 lumbar functional spinal units (FSU) was determined. The specimens were exposed to a combined static load of bending and shearing in the sagittal plane until overt rupture occurred (simulated flexion-distraction injuries). The biomechanical response of the FSU was measured with a force and moment platform. Mechanical displacement gauges were used to measure vertical displacements (flexion angulation) of the specimens. Photographs were taken after each loading step for determination of horizontal displacements and the centre of rotation. The lumbar FSU could resist a combination of bending moment and shear force of 156 Nm and 620 N respectively, before complete disruption occurred. The tension force acting on the posterior structures was 2.8 kN. The flexion angulation just before failure was 20 degrees and the anterior horizontal displacement between the upper and lower vertebrae was 9 mm. The centre of rotation was located in the posterior part of the lower vertebral body. The bone mineral content in the vertebrae appeared to be a good predictor of ultimate strength of the lumbar FSU. Knowledge of the biomechanical response of the lumbar spine under different static traumatic loads is a first step to better understand the injury mechanisms of the spine in traffic accidents.  相似文献   

18.
The Static Optimization (SO) solver in OpenSim estimates muscle activations and forces that only equilibrate applied moments. In this study, SO was enhanced through an open-access MATLAB interface, where calculated muscle activations can additionally satisfy crucial mechanical stability requirements. This Stability-Constrained SO (SCSO) is applicable to many OpenSim models and can potentially produce more biofidelic results than SO alone, especially when antagonistic muscle co-contraction is required to stabilize body joints. This hypothesis was tested using existing models and experimental data in the literature. Muscle activations were calculated by SO and SCSO for a spine model during two series of static trials (i.e. simulation 1 and 2), and also for a lower limb model (supplementary material 2). In simulation 1, symmetric and asymmetric flexion postures were compared, while in simulation 2, various external load heights were compared, where increases in load height did not change the external lumbar flexion moment, but necessitated higher EMG activations. During the tasks in simulation 1, the predicted muscle activations by SCSO demonstrated less average deviation from the EMG data (6.8% −7.5%) compared to those from SO (10.2%). In simulation 2, SO predicts constant muscle activations and forces, while SCSO predicts increases in the average activations of back and abdominal muscles that better match experimental data. Although the SCSO results are sensitive to some parameters (e.g. musculotendon stiffness), when considering the strategy of the central nervous system in distributing muscle forces and in activating antagonistic muscles, the assigned activations by SCSO are more biofidelic than SO.  相似文献   

19.
A novel kinematics-based approach coupled with a non-linear finite element model was used to investigate the effect of changes in the load position and posture on muscle activity, internal loads and stability margin of the human spine in upright standing postures. In addition to 397 N gravity, external loads of 195 and 380 N were considered at different lever arms and heights. Muscle forces, internal loads and stability margin substantially increased as loads displaced anteriorly away from the body. Under same load magnitude and location, adopting a kyphotic posture as compared with a lordotic one increased muscle forces, internal loads and stability margin. An increase in the height of a load held at a fixed lever arm substantially diminished system stability thus requiring additional muscle activations to maintain the same margin of stability. Results suggest the importance of the load position and lumbar posture in spinal biomechanics during various manual material handling operations.  相似文献   

20.
The aim of this study was to compare the activity of the erector spinae (ES) and hamstring muscles and the amount and onset of lumbar motion during standing knee flexion between individuals with and without lumbar extension rotation syndrome. Sixteen subjects with lumbar extension rotation syndrome (10 males, 6 females) and 14 healthy subjects (8 males, 6 females) participated in this study. During the standing knee flexion, surface electromyography (EMG) was used to measure muscle activity, and surface EMG electrodes were attached to both the ES and hamstring (medial and lateral) muscles. A three-dimensional motion analysis system was used to measure kinematic data of the lumbar spine. An independent-t test was conducted for the statistical analysis. The group suffering from lumbar extension rotation syndrome exhibited asymmetric muscle activation of the ES and decreased hamstring activity. Additionally, the group with lumbar extension rotation syndrome showed greater and earlier lumbar extension and rotation during standing knee flexion compared to the control group. These data suggest that asymmetric ES muscle activation and a greater amount of and earlier lumbar motion in the sagittal and transverse plane during standing knee flexion may be an important factor contributing to low back pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号