首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A synoptic review of the discoveries and studies of Chinese Mesozoic birds is provided in this paper. 40Ar/39Ar dating of several bird-bearing deposits in the Jehol Group has established a geochronological framework for the study of the early avian radiation. Chinese Mesozoic birds had lasted for at least 11 Ma during about 131 Ma and 120 Ma (Barremian to Aptian) of the middle and late Early Cretaceous, respectively. In order to further evaluate the change of the avian diversity in the Jehol Biota, six new orders and families are erected based on known genera and species, which brings the total number of orders of Chinese Mesozoic birds to 15 and highlights a remarkable radiation ever since the first appearance of birds in the Late Jurassic. Chinese Early Cretaceous birds had experienced a significant differentiation in morphology, flight, diet and habitat. Further examination of the foot of Jeholornis suggests this bird might not have possessed a fully reversed hallux. However, the attachment of metatarsal I to the medial side of metatarsal II does not preclude trunk climbing, a pre-adaptation for well developed perching life of early birds. Arboreality had proved to be a key adaptation in the origin and early evolution of bird flight, and the adaptation to lakeshore environment had played an equally important role in the origin of ornithurine birds and their near-modern flight skill. Many Chinese Early Cretaceous birds had preserved the direct evidence of their diet, showing that the most primitive birds were probably mainly insectivorous and that specialized herbivorous or carnivorous (e.g., piscivorous) dietary adaptation had appeared only in later advanced forms. The only known Early Cretaceous bird embryo fossil has shown that precocial birds had occurred prior to altricial birds in avian history, and the size of the embryo and other analysis indicate it probably had a short incubation period. Leg feathers probably have a wide range of distribution in early birds, further suggesting that leg feathers had played a key role in the beginning stage of the flight of birds. Finally, the Early Cretaceous avian radiation can be better understood against the background of their unique ecosystem. The advantage of birds in the competitions with other vertebrate groups such as pterosaurs had probably not only resulted in the rapid differentiation and radiation of birds but also the worldwide spreading of pterosaurs and other vertebrates from East Asia in the Early Cretaceous. Selected from Vertebrata PalAsiatica 2006, 44 (1): 74–98  相似文献   

2.
中国中生代鸟类概述   总被引:14,自引:5,他引:9  
对中国中生代鸟类的发现和研究进行了简要的介绍。近年来生物地层学和年代地层学的工作表明,这些鸟类主要属于早白垩世的中晚期(131~120Ma),延续了争少11Ma,但主要的辐射发生在125~120Ma 间。为便于分析早白垩世鸟类多样性的演变,本文依据已发表的化石,新建了6个目和科,从而将中国早白垩世鸟类目的总数提高到了15个,进一步揭示了鸟类出现以来第一次大规模的辐射事件。这一大的辐射还表现在鸟类在形态、飞行能力个体大小、食性和生态习性等均出现了显著的分异。早期鸟类进化过程中首先经历了个体减小过程,其后在今鸟类中率先开始了个体增大的趋势。早期鸟类个体大小的变化受其飞行能力的限制;同时还与食性、习性等的变化密切相关。对热河鸟的进一步分析表明,其脚趾可能不具备完全对握的功能,但这并不影响其攀援树干的能力。树栖的适应对鸟类飞行的起源及其早期演化具有重要的影响,同样,适应湖岸生活方式对今鸟类的起源演化具有重要的意义。中国早白垩世的鸟类保存了许多食性的直接证据。推测最早的鸟类以食昆虫为主,尔后才出现了特化的植食性和肉食性(如食鱼类)的种类。早白垩世发现的惟一一件鸟类的胚胎化石表明早成性鸟类在鸟类演化史上的出现先于晚成性的鸟类。此外,根据胚胎的大小等特征推测这一鸟类可能还具有较短的孵化周期。腿羽在早期鸟类中可能具有广泛的分布,这一观察进一步表明腿羽在鸟类祖先的飞行之初曾经发挥了重要的作用。最后,探讨鸟类的演化离不开它所生活的生态系统。鸟类与其他生物如翼龙竞争中的优势可能直接导致了鸟类的快速发展和分化;同时,这些类群相互间的竞争对翼龙等其他生物的地理扩散也具有重要的影响。  相似文献   

3.
中国中生代的鸟类:介绍及综述   总被引:4,自引:0,他引:4  
周忠和  张福成 《动物学报》2004,50(6):913-920
最近十来年 ,中国辽宁发现的早白垩世的鸟类化石超过了世界上其它任何一个地区。中国的中生代鸟类化石代表了始祖鸟化石之后鸟类历史上第一次显著的分异。它们不仅包括了带有明显恐龙祖先特征的长尾的鸟类 ,而且还包括了许多进步或特化的种类 ,如早白垩世最大的鸟类 ,最原始的反鸟类 ,以及保存最好的、飞行结构和现生鸟类几乎一样的今鸟类。这些早期鸟类在诸如飞行、大小和食性等所反映的演化、形态和生态学特征等方面出现了重大的分异。具有长尾骨骼的原始基干鸟类热河鸟和驰龙类具有的相似性 ,进一步支持了鸟类起源于恐龙的学说。中国发现的早白垩世的鸟类以及树栖的恐龙化石还为鸟类飞行的树栖起源假说提供了十分重要的证据。“恐龙下树”的假说结合了鸟类起源于恐龙的学说和鸟类飞行的树栖起源学说 ,因此也得到了化石证据的支持。由于多种恐龙带有羽毛 ,因此羽毛不一定代表了恒温。恒温的鸟类可能到了早白垩世的进步鸟类中才开始出现  相似文献   

4.
Abundant fossils of the terrestrial Jehol Biota, including plants, insects, dinosaurs, birds, mammals and freshwater invertebrates, were discovered from the Yixian Formation and the overlying Jiufotang Formation in Inner Mongolia, Hebei Province and Liaoning Province, northeastern China. Because of the exceptional preservation of fossils, the Jehol Biota is one of the most important Mesozoic lagerstätten and is referred to as a “Mesozoic Pompeii”. The Jehol Biota has provided a rare opportunity to address questions about the origin of birds, the evolution of feathers and flight, the early diversification of angiosperms and the timing of placental mammal radiation. Six tuff samples and two basalt samples collected from the Tuchengzi, the Yixian and the Jiufotang formations near the classic outcrops in western Liaoning, NE China yielded high-precision 40Ar/39Ar ages. We obtain an age of 129.7 ± 0.5 Ma for a basaltic lava from the bottom of the Yixian Formation and an age of 122.1 ± 0.3 Ma for a tuff from the lowermost part of the overlying Jiufotang Formation. Our age results provide an age calibration of the whole Yixian Formation and show that the whole formation was deposited entirely within Early Cretaceous time over an interval of ~ 7 Ma.  相似文献   

5.
A new avian genus and species, Zhongjianornis yangi gen. et sp. nov., is reported from the Lower Cretaceous lacustrine deposits of the Jiufotang Formation in Liaoning, northeast China. The new taxon is characterized by possessing the following combination of features: upper and lower jaws toothless, snout pointed, humerus with large and robust deltopectoral crest, second phalanx of the major manual digit longer than the first phalanx, unguals of the alular and major digits of similar length and significantly shorter than the corresponding penultimate phalanges, tibiotarsus slender and more than twice the length of the tarsometatarsus, and metatarsal IV longer than the other metatarsals. Phylogenetic analysis indicates that Zhongjianornis is phylogenetically basal to Confuciusornis and the dominant Mesozoic avian groups, Enantiornithes and Ornithurae, and therefore provides significant new information regarding the diversification of birds in the Early Cretaceous. It also represents the most basal bird that completely lacks teeth, suggesting that tooth loss was more common than expected in early avian evolution and that the avian beak appeared independently in several avian lineages, most probably as a response to selective pressure for weight reduction. Finally, the presence of a significantly enlarged humeral deltopectoral crest suggests that Zhongjianornis shares with other basal birds such as Jeholornis, Sapeornis and Confuciusornis a distinctive mode of adaptation for flight contrasting with that seen in more advanced birds, which instead possess an elongated sternum and a prominent keel.  相似文献   

6.
Ecological divergence is thought to be coupled with evolutionary radiations, yet the strength of this coupling is unclear. When birds diversified ecologically has received much less attention than their hotly debated crown divergence time. Here, we quantify how accurately skeletal morphology can predict ecology in living and extinct birds, and show that the earliest known assemblage of birds (= pygostylians) from the Jehol Biota (≈ 125 Ma) was substantially impoverished ecologically. The Jehol avifauna has few representatives of highly preservable ecomorphs (e.g. aquatic forms) and a notable lack of ecomorphological overlap with the pterosaur assemblage (e.g. no large or aerially foraging pygostylians). Comparisons of the Jehol functional diversity with modern and subfossil avian assemblages show that taphonomic bias alone cannot explain the ecomorphological impoverishment. However, evolutionary simulations suggest that the constrained ecological diversity of the Early Cretaceous pygostylians is consistent with what is expected from a relatively young radiation. Regardless of the proximate biological explanation, the anomalously low functional diversity of the Jehol birds is evidence both for ecological vacancies in Cretaceous ecosystems, which were subsequently filled by the radiation of crown Aves, and for discordance between taxonomic richness and ecological diversity in the best-known Mesozoic ecosystem.  相似文献   

7.
Birds are the most diverse living tetrapod group and are a model of large-scale adaptive radiation. Neontological studies suggest a radiation within the avian crown group, long after the origin of flight. However, deep time patterns of bird evolution remain obscure because only limited fossil data have been considered. We analyse cladogenesis and limb evolution on the entire tree of Mesozoic theropods, documenting the dinosaur–bird transition and immediate origins of powered flight. Mesozoic birds inherited constraints on forelimb evolution from non-flying ancestors, and species diversification rates did not accelerate in the earliest flying taxa. However, Early Cretaceous short-tailed birds exhibit both phenotypic release of the hindlimb and increased diversification rates, unparalleled in magnitude at any other time in the first 155 Myr of theropod evolution. Thus, a Cretaceous adaptive radiation of stem-group birds was enabled by restructuring of the terrestrial locomotor module, which represents a key innovation. Our results suggest two phases of radiation in Avialae: with the Cretaceous diversification overwritten by extinctions of stem-group birds at the Cretaceous–Palaeogene boundary, and subsequent diversification of the crown group. Our findings illustrate the importance of fossil data for understanding the macroevolutionary processes generating modern biodiversity.  相似文献   

8.
We examine the relationships between primary feather length (f(prim)) and total arm length (ta) (sum of humerus, ulna and manus lengths) in Mesozoic fossil birds to address one aspect of avian wing shape evolution. Analyses show that there are significant differences in the composition of the wing between the known lineages of basal birds and that mean f(prim) (relative to ta length) is significantly shorter in Archaeopteryx and enantiornithines than it is in Confuciusornithidae and in living birds. Based on outgroup comparisons with nonavian theropods that preserve forelimb primary feathers, we show that the possession of a relatively shorter f(prim) (relative to ta length) must be the primitive condition for Aves. There is also a clear phylogenetic trend in relative primary feather length throughout bird evolution: our analyses demonstrate that the f(prim)/ta ratio increases among successive lineages of Mesozoic birds towards the crown of the tree ('modern birds'; Neornithes). Variance in this ratio also coincides with the enormous evolutionary radiation at the base of Neornithes. Because the f(prim)/ta ratio is linked to flight mode and performance in living birds, further comparisons of wing proportions among Mesozoic avians will prove informative and certainly imply that the aerial locomotion of the Early Cretaceous Confuciusornis was very different to other extinct and living birds.  相似文献   

9.
Pterosaurs, enigmatic extinct Mesozoic reptiles, were the first vertebrates to achieve true flapping flight. Various lines of evidence provide strong support for highly efficient wing design, control, and flight capabilities. However, little is known of the pulmonary system that powered flight in pterosaurs. We investigated the structure and function of the pterosaurian breathing apparatus through a broad scale comparative study of respiratory structure and function in living and extinct archosaurs, using computer-assisted tomographic (CT) scanning of pterosaur and bird skeletal remains, cineradiographic (X-ray film) studies of the skeletal breathing pump in extant birds and alligators, and study of skeletal structure in historic fossil specimens. In this report we present various lines of skeletal evidence that indicate that pterosaurs had a highly effective flow-through respiratory system, capable of sustaining powered flight, predating the appearance of an analogous breathing system in birds by approximately seventy million years. Convergent evolution of gigantism in several Cretaceous pterosaur lineages was made possible through body density reduction by expansion of the pulmonary air sac system throughout the trunk and the distal limb girdle skeleton, highlighting the importance of respiratory adaptations in pterosaur evolution, and the dramatic effect of the release of physical constraints on morphological diversification and evolutionary radiation.  相似文献   

10.
The origin and early evolution of birds   总被引:9,自引:0,他引:9  
Birds evolved from and are phylogenetically recognized as members of the theropod dinosaurs; their first known member is the Late Jurassic Archaeopteryx, now represented by seven skeletons and a feather, and their closest known non-avian relatives are the dromaeosaurid theropods such as Deinonychus. Bird flight is widely thought to have evolved from the trees down, but Archaeopteryx and its outgroups show no obvious arboreal or tree-climbing characters, and its wing planform and wing loading do not resemble those of gliders. The ancestors of birds were bipedal, terrestrial, agile, cursorial and carnivorous or omnivorous. Apart from a perching foot and some skeletal fusions, a great many characters that are usually considered ‘avian’ (e.g. the furcula, the elongated forearm, the laterally flexing wrist and apparently feathers) evolved in non-avian theropods for reasons unrelated to birds or to flight. Soon after Archaeopteryx, avian features such as the pygostyle, fusion of the carpometacarpus, and elongated curved pedal claws with a reversed, fully descended and opposable hallux, indicate improved flying ability and arboreal habits. In the further evolution of birds, characters related to the flight apparatus phylogenetically preceded those related to the rest of the skeleton and skull. Mesozoic birds are more diverse and numerous than thought previously and the most diverse known group of Cretaceous birds, the Enantiornithes, was not even recognized until 1981. The vast majority of Mesozoic bird groups have no Tertiary records: Enantiornithes, Hesperornithiformes, Ichthyornithiformes and several other lineages disappeared by the end of the Cretaceous. By that time, a few Linnean ‘Orders’ of extant birds had appeared, but none of these taxa belongs to extant ‘families’, and it is not until the Paleocene or (in most cases) the Eocene that the majority of extant bird ‘Orders’ are known in the fossil record. There is no evidence for a major or mass extinction of birds at the end of the Cretaceous, nor for a sudden ‘bottleneck’ in diversity that fostered the early Tertiary origination of living bird ‘Orders’.  相似文献   

11.
The origin of birds and avian flight from within the archosaurian radiation has been among the most contentious issues in paleobiology. Although there is general agreement that birds are related to theropod dinosaurs at some level, debate centers on whether birds are derived directly from highly derived theropods, the current dogma, or from an earlier common ancestor lacking suites of derived anatomical characters. Recent discoveries from the Early Cretaceous of China have highlighted the debate, with claims of the discovery of all stages of feather evolution and ancestral birds (theropod dinosaurs), although the deposits are at least 25 million years younger than those containing the earliest known bird Archaeopteryx. In the first part of the study we examine the fossil evidence relating to alleged feather progenitors, commonly referred to as protofeathers, in these putative ancestors of birds. Our findings show no evidence for the existence of protofeathers and consequently no evidence in support of the follicular theory of the morphogenesis of the feather. Rather, based on histological studies of the integument of modern reptiles, which show complex patterns of the collagen fibers of the dermis, we conclude that "protofeathers" are probably the remains of collagenous fiber "meshworks" that reinforced the dinosaur integument. These "meshworks" of the skin frequently formed aberrant patterns resembling feathers as a consequence of decomposition. Our findings also draw support from new paleontological evidence. We describe integumental structures, very similar to "protofeathers," preserved within the rib area of a Psittacosaurus specimen from Nanjing, China, an ornithopod dinosaur unconnected with the ancestry of birds. These integumental structures show a strong resemblance to the collagenous fiber systems in the dermis of many animals. We also report the presence of scales in the forearm of the theropod ornithomimid (bird mimic) dinosaur, Pelecanimimus, from Spain. In the second part of the study we examine evidence relating to the most critical character thought to link birds to derived theropods, a tridactyl hand composed of digits 1-2-3. We maintain the evidence supports interpretation of bird wing digit identity as 2,3,4, which appears different from that in theropod dinosaurs. The phylogenetic significance of Chinese microraptors is also discussed, with respect to bird origins and flight origins. We suggest that a possible solution to the disparate data is that Aves plus bird-like maniraptoran theropods (e.g., microraptors and others) may be a separate clade, distinctive from the main lineage of Theropoda, a remnant of the early avian radiation, exhibiting all stages of flight and flightlessness.  相似文献   

12.
通过对18目59科137例现生不同栖息习性鸟类的后肢3块骨骼(股骨、胫跗骨和跗跖骨)长度比例的观察和特征分析,推断出鸟类的栖息习性与后肢3块骨骼中各骨骼长度所占总长度的比例存在密切的关系。即在所有鸟类的后肢骨骼中,胫跗骨的长度占3块骨骼的比例为最大;地栖鸟类后肢骨骼中股骨的长度要短于跗跖骨;树栖鸟类后肢骨骼中股骨的长度要长于跗跖骨。鸟类后肢3块骨骼的长度比例特征是鸟类长期对栖息等行为适应的结果。在此基础上,对中国中生代14例鸟类的栖息习性进行了分析,利用三元投影的统计方法,并以国内外新生代(古近纪和新近纪)21例鸟类标本作为对比参考,得出辽西中生代不同类型鸟类的栖息行为特征:基干鸟类以树栖为主要习性,其中个别鸟类还具有攀援的习性,而反鸟类则是典型的树栖鸟类,今鸟类兼有树、地栖的习性。研究表明,在现行的鸟类系统发育框架下,树栖适应(及攀援)代表了鸟类演化历史中最原始的生活方式。这一结论也支持鸟类飞行的树栖起源假说。中生代鸟类栖息习性分异的多样性反映了早期鸟类演化过程中自身以及与其他同期生物在生态空间和食物资源的竞争的加剧和对环境的不断适应。  相似文献   

13.
14.
INTRODUCTION TO MESOZOIC BIRDS FROM LIAONING,CHINA   总被引:4,自引:0,他引:4  
l.IntroductionThestudyofMesozoicbirdsinChinadatedbacktotheearlyeightiesofthiscentury,whenGansuswasdiscoveredanddescribed(HouetLiu,l984).Sincethelateeighties,anumberofEarlyCretaceousbirdshavebeenfound,firstlyinWesternLiaoning(Zhou,l995),andshortlylaterinInnerMongolia(Dong,l993;Hou,l994)andHebeiProvince.Atthesametime,featherimpressionswerealsorecoveredinShandongProvince(Zhang,l992)andNingxiaAutonomousRegion.Particularlyimpor-tantisthatsincel994someLateJurassicbirdshavebeenfoundfromtheY…  相似文献   

15.
The Mesozoic fossil record has proved critical for understanding the early evolution and subsequent radiation of birds. Little is known, however, about its relative completeness: just how 'good' is the fossil record of birds from the Mesozoic? This question has come to prominence recently in the debate over differences in estimated dates of origin of major clades of birds from molecular and palaeontological data. Using a dataset comprising all known fossil taxa, we present analyses that go some way towards answering this question. Whereas avian diversity remains poorly represented in the Mesozoic, many relatively complete bird specimens have been discovered. New taxa have been added to the phylogenetic tree of basal birds, but its overall shape remains constant, suggesting that the broad outlines of early avian evolution are consistently represented: no stage in the Mesozoic is characterized by an overabundance of scrappy fossils compared with more complete specimens. Examples of Neornithes (modern orders) are known from later stages in the Cretaceous, but their fossils are rarer and scrappier than those of basal bird groups, which we suggest is a biological, rather than a geological, signal.  相似文献   

16.
Ornithuromorpha is the most derived avian group in the Early Cretaceous, advanced members of which encompass all living birds (Neornithes). Here we report on a new basal ornithuromorph bird, Bellulia rectusunguis gen. et sp. nov., represented by a nearly complete skeleton from the Early Cretaceous Jehol Biota in northeastern China. A comprehensive phylogenetic analysis resolved the new taxon in a basal position that is only more derived than Archaeorhynchus and Jianchangornis among ornithuromorphs, increasing the morphological diversity of basal ornithuromorphs. The new specimen has a V‐shaped furcula with a short hypocleidium, a feature otherwise known only in Schizooura among Cretaceous ornithuromorphs. We discuss the implications of the new taxon on the evolution of morphology of primitive ornithuromorphs, particularly of pectoral girdle, sternum and limb proportion pertaining to powered flight. The preserved gastroliths and pedal morphology indicate herbivory and lakeshore adaption for this new species. © 2015 The Linnean Society of London  相似文献   

17.
The developmental stages of feathers are of major importance in the evolution of body covering and the origin of avian flight. Until now, there were significant gaps in knowledge of early morphologies in theoretical stages of feathers as well as in palaeontological material. Here we report fossil evidence of an intermediate and critical stage in the incremental evolution of feathers which has been predicted by developmental theories but hitherto undocumented by evidence from both the recent and the fossil records. Seven feathers have been found in an Early Cretaceous (Late Albian, ca 100 Myr) amber of western France, which display a flattened shaft composed by the still distinct and incompletely fused bases of the barbs forming two irregular vanes. Considering their remarkably primitive features, and since recent discoveries have yielded feathers of modern type in some derived theropod dinosaurs, the Albian feathers from France might have been derived either from an early bird or from a non-avian dinosaur.  相似文献   

18.
The geometry of feather barbs (barb length and barb angle) determines feather vane asymmetry and vane rigidity, which are both critical to a feather''s aerodynamic performance. Here, we describe the relationship between barb geometry and aerodynamic function across the evolutionary history of asymmetrical flight feathers, from Mesozoic taxa outside of modern avian diversity (Microraptor, Archaeopteryx, Sapeornis, Confuciusornis and the enantiornithine Eopengornis) to an extensive sample of modern birds. Contrary to previous assumptions, we find that barb angle is not related to vane-width asymmetry; instead barb angle varies with vane function, whereas barb length variation determines vane asymmetry. We demonstrate that barb geometry significantly differs among functionally distinct portions of flight feather vanes, and that cutting-edge leading vanes occupy a distinct region of morphospace characterized by small barb angles. This cutting-edge vane morphology is ubiquitous across a phylogenetically and functionally diverse sample of modern birds and Mesozoic stem birds, revealing a fundamental aerodynamic adaptation that has persisted from the Late Jurassic. However, in Mesozoic taxa stemward of Ornithurae and Enantiornithes, trailing vane barb geometry is distinctly different from that of modern birds. In both modern birds and enantiornithines, trailing vanes have larger barb angles than in comparatively stemward taxa like Archaeopteryx, which exhibit small trailing vane barb angles. This discovery reveals a previously unrecognized evolutionary transition in flight feather morphology, which has important implications for the flight capacity of early feathered theropods such as Archaeopteryx and Microraptor. Our findings suggest that the fully modern avian flight feather, and possibly a modern capacity for powered flight, evolved crownward of Confuciusornis, long after the origin of asymmetrical flight feathers, and much later than previously recognized.  相似文献   

19.
Testing models of macroevolution, and especially the sufficiency of microevolutionary processes, requires good collaboration between molecular biologists and paleontologists. We report such a test for events around the Late Cretaceous by describing the earliest penguin fossils, analyzing complete mitochondrial genomes from an albatross, a petrel, and a loon, and describe the gradual decline of pterosaurs at the same time modern birds radiate. The penguin fossils comprise four naturally associated skeletons from the New Zealand Waipara Greensand, a Paleocene (early Tertiary) formation just above a well-known Cretaceous/Tertiary boundary site. The fossils, in a new genus (Waimanu), provide a lower estimate of 61-62 Ma for the divergence between penguins and other birds and thus establish a reliable calibration point for avian evolution. Combining fossil calibration points, DNA sequences, maximum likelihood, and Bayesian analysis, the penguin calibrations imply a radiation of modern (crown group) birds in the Late Cretaceous. This includes a conservative estimate that modern sea and shorebird lineages diverged at least by the Late Cretaceous about 74 +/- 3 Ma (Campanian). It is clear that modern birds from at least the latest Cretaceous lived at the same time as archaic birds including Hesperornis, Ichthyornis, and the diverse Enantiornithiformes. Pterosaurs, which also coexisted with early crown birds, show notable changes through the Late Cretaceous. There was a decrease in taxonomic diversity, and small- to medium-sized species disappeared well before the end of the Cretaceous. A simple reading of the fossil record might suggest competitive interactions with birds, but much more needs to be understood about pterosaur life histories. Additional fossils and molecular data are still required to help understand the role of biotic interactions in the evolution of Late Cretaceous birds and thus to test that the mechanisms of microevolution are sufficient to explain macroevolution.  相似文献   

20.
依据一近完整的相关节的骨骼化石,记述了辽宁建昌早白垩世九佛堂组原始今鸟类一新属种:小齿建昌鸟(Jianchangornis microdonta gen.et sp.nov.)。新鸟个体较大,但从骨化程度分析,正型标本可能属于一亚成年个体。具有一些进步特征,如胸骨及龙骨突加长,乌喙骨具有发育的前乌喙突以及和肩胛骨关联的关节窝,叉骨"U"字型,愈合荐椎包括9-10枚荐椎,尾综骨短小,第二、三掌骨远端愈合,跗跖骨完全愈合等,表明新属无疑属于今鸟类。在以下特征组合上很容易和已知的早白垩世今鸟类化石相区别:齿骨上至少有16枚细小牙齿,从齿骨前端向后沿齿骨大部密集排列;肩胛骨强烈弯曲;第一掌骨粗壮,较其他掌骨宽;第一指长并且远端延伸明显超过第二掌骨;肱骨+尺骨+第二掌骨与股骨+胫跗骨+跗跖骨的长度比例约为1.1。系统发育分析表明新属属于基干的今鸟类。新发现的材料第二、三掌骨远端愈合很好,但近端却未完全愈合,这一特征尚未见于其他已知鸟类,或许表明今鸟类腕掌骨的愈合和现生鸟类的跗跖骨一样是从远端开始的,不同于反鸟类和其他基干鸟类。建昌鸟的下颌还保存了一个前齿骨,这是继早白垩世红山鸟之后的另一例报道,可能进一步表明这一结构在今鸟类中曾普遍出现。新鸟肩带、胸骨和前肢的特征显示了和现代鸟类相近的飞行能力,其后肢、脚趾的比例以及趾爪的形态等显示和燕鸟、义县鸟等相似的地栖特征。保存于标本上的鱼类残骸可能显示了建昌鸟食鱼类的习性。今鸟类新属种的发现进一步表明,早白垩世这一进步鸟类类群的分化已不亚于反鸟类,湖滨环境在今鸟类的早期演化中确实扮演了重要的角色。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号