首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Design of humanized antibodies: from anti-Tac to Zenapax   总被引:3,自引:0,他引:3  
Since the introduction of hybridoma technology, monoclonal antibodies have become one of the most important tools in the biosciences, finding diverse applications including their use in the therapy of human disease. Initial attempts to use monoclonal antibodies as therapeutics were hampered, however, by the potent immunogenicity of mouse (and other rodent) antibodies in humans. Humanization technology has made it possible to remove the immunogenicity associated with the use of rodent antibodies, or at least to reduce it to an acceptable level for clinical use in humans, thus facilitating the application of monoclonal antibodies to the treatment of human disease. To date, nine humanized monoclonal antibodies have been approved for use as human therapeutics in the United States. In this paper, we describe procedures for antibody humanization with an emphasis on strategies for designing humanized antibodies with the aid of computer-guided modeling of antibody variable domains, using as an example the humanized anti-CD25 monoclonal antibody, Zenapax.  相似文献   

2.
The infusion of animal-derived antibodies has been known for some time to trigger the generation of antibodies directed at the foreign protein as well as adverse events including cytokine release syndrome. These immunological phenomena drove the development of humanized and fully human monoclonal antibodies. The ability to generate human(ized) antibodies has been both a blessing and a curse. While incremental gains in the clinical efficacy and safety for some agents have been realized, a positive effect has not been observed for all human(ized) antibodies. Many human(ized) antibodies trigger the development of anti-drug antibody responses and infusion reactions. The current belief that antibodies need to be human(ized) to have enhanced therapeutic utility may slow the development of novel animal-derived monoclonal antibody therapeutics for use in clinical indications. In the case of murine antibodies, greater than 20% induce tolerable/negligible immunogenicity, suggesting that in these cases humanization may not offer significant gains in therapeutic utility. Furthermore, humanization of some murine antibodies may reduce their clinical effectiveness. The available data suggest that the utility of human(ized) antibodies needs to be evaluated on a case-by-case basis, taking a cost-benefit approach, taking both biochemical characteristics and the targeted therapeutic indication into account.Key words: immunogenicity, human anti-mouse antibody, cytokine release syndrome  相似文献   

3.
《MABS-AUSTIN》2013,5(6):682-694
The infusion of animal-derived antibodies has been known for some time to trigger the generation of antibodies directed at the foreign protein as well as adverse events including cytokine release syndrome. These immunological phenomena drove the development of humanized and fully human monoclonal antibodies. The ability to generate human(ized) antibodies has been both a blessing and a curse. While incremental gains in the clinical efficacy and safety for some agents have been realized, a positive effect has not been observed for all human(ized) antibodies. Many human(ized) antibodies trigger the development of anti-drug antibody responses and infusion reactions. The current belief that antibodies need to be human(ized) to have enhanced therapeutic utility may slow the development of novel animal-derived monoclonal antibody therapeutics for use in clinical indications. In the case of murine antibodies, greater than 20% induce tolerable/negligible immunogenicity, suggesting that in these cases humanization may not offer significant gains in therapeutic utility. Furthermore, humanization of some murine antibodies may reduce their clinical effectiveness. The available data suggest that the utility of human(ized) antibodies needs to be evaluated on a case-by-case basis, taking a cost-benefit approach, taking both biochemical characteristics and the targeted therapeutic indication into account.  相似文献   

4.
Monoclonal antibodies represent an attractive therapeutic tool as they are highly specific for their targets, convey effector functions and enjoy robust manufacturing procedures. Humanization of murine monoclonal antibodies has vastly improved their in vivo tolerability. Humanization, the replacement of mouse constant regions and V framework regions for human sequences, results in a significantly less immunogenic product. However, some humanized and even fully human sequence-derived antibody molecules still carry immunological risk. to more fully understand the immunologic potential of humanized and human antibodies, we analyzed CD4+ helper T cell epitopes in a set of eight humanized antibodies. the antibodies studied represented a number of different VH and VL family members carrying unique CDR regions. In spite of these differences, CD4+ T cell epitopes were found only in CDR-sequence containing regions. We were able to incorporate up to two amino acid modifications in a single epitope that reduced the immunogenic potential while retaining full biologic function. We propose that immunogenicity will always be present in some antibody molecules due to the nature of the antigen-specific combining sites. A consequence of this result is modifications to reduce immunogenicity will be centered on the affinity-determining regions. Modifications to CDR regions can be designed that reduce the immunogenic potential while maintaining the bioactivity of the antibody molecule.Key words: therapeutic, antibody, immunogenicity, deimmunizing, epitope  相似文献   

5.
伴随着一系列重大生物技术(如PCR技术、抗体库技术、转基因动物技术等)的发展,抗体技术从最初的嵌合抗体、改型抗体逐渐发展为今天的人源化抗体。人源化抗体在治疗肿瘤、自身免疫性疾病和器官移植等方面已经显示出独特的优势和良好的应用前景。介绍了人源化抗体的构建及其表达系统,并对其临床应用进行了展望。  相似文献   

6.
Over the last 3 decades, monoclonal antibodies have become the most important class of therapeutic biologicals on the market. Development of therapeutic antibodies was accelerated by recombinant DNA technologies, which allowed the humanization of murine monoclonal antibodies to make them more similar to those of the human body and suitable for a broad range of chronic diseases like cancer and autoimmune diseases. In the early 1990s in vitro antibody selection technologies were developed that enabled the discovery of “fully” human antibodies with potentially superior clinical efficacy and lowest immunogenicity.

Antibody phage display is the first and most widely used of the in vitro selection technologies. It has proven to be a robust, versatile platform technology for the discovery of human antibodies and a powerful engineering tool to improve antibody properties. As of the beginning of 2016, 6 human antibodies discovered or further developed by phage display were approved for therapy. In 2002, adalimumab (Humira®) became the first phage display-derived antibody granted a marketing approval. Humira® was also the first approved human antibody, and it is currently the best-selling antibody drug on the market. Numerous phage display-derived antibodies are currently under advanced clinical investigation, and, despite the availability of other technologies such as human antibody-producing transgenic mice, phage display has not lost its importance for the discovery and engineering of therapeutic antibodies.

Here, we provide a comprehensive overview about phage display-derived antibodies that are approved for therapy or in clinical development. A selection of these antibodies is described in more detail to demonstrate different aspects of the phage display technology and its development over the last 25 years.  相似文献   


7.
Development of humanized antibodies as cancer therapeutics   总被引:1,自引:0,他引:1  
Recent success in the development of monoclonal antibody-based anti-cancer drugs has largely benefitted from the advancements made in recombinant technologies and cell culture production. These reagents, derived from the antibodies of mouse origin, while maintaining the exquisite specificity and affinity to the tumor antigens, have low immunogenicity and toxicity in human. High-level expressing cell clones are generated and used to produce large quantities of the recombinant antibodies in bioreactors in order to meet the clinical demand for therapeutic applications. In this report, the systems and general methodologies developed by us to construct and produce humanized antibodies from the parent mouse antibodies are described. Once the humanized antibodies are available, they can be applied in three principal forms for cancer therapy: (1) naked antibodies, (2) drug- or toxin conjugates, and (3) radioconjugates. Using the humanized anti-CD22 (epratuzumab) and anti-carcinoembryonic antigen (ant-CEA; labetuzumab) antibody prototypes, clinical applications of naked and radiolabeled humanized monoclonal antibodies are described.  相似文献   

8.
Immunogenicity of engineered antibodies   总被引:12,自引:0,他引:12  
Administration of a therapeutic antibody can lead to an anti-antibody response (AAR). Much effort has been applied to engineering antibodies with as little as possible non-human structure to minimize such responses. Here, we review reported AAR to murine, mouse-human chimeric, and humanized antibodies. Replacement of mouse immunoglobulin constant regions with human ones effects the largest immunogenicity reduction. Humanization of variable domains effects a further decrease.  相似文献   

9.
Naturally occurring B-cell responses to breast cancer   总被引:4,自引:0,他引:4  
As demonstrated by the effectiveness of trastuzumab, antibodies against breast cancer antigens are a potentially potent mechanism of tumor control. While trastuzumab is administered exogenously, its efficacy suggests that induction of very high titer antibody responses in vivo might also be therapeutic. Both naturally occurring and vaccine-induced antibody responses to some breast cancer antigens are associated with improved survival in some cases. However, the improvement in survival associated with antibody responses to breast cancer is modest, and tumor regression is not known to be associated with the natural antitumor antibody response, indicating a need for improved understanding of the natural antitumor antibody response. Naturally occurring B-cell responses in the form of serum antibody, tumor reactive lymph node B cells, and tumor-infiltrating B cells have been described, and a variety of breast tumor–associated antigens have been identified based on reactivity of patient antibodies. This review discusses current knowledge of humoral immunity to breast cancer with regard to specific antigens and the basis for their immunogenicity, and the contexts (tumor, lymph node, serum) in which responses are observed. With few exceptions, "tumor-associated antigens" identified with naturally occurring antibodies may be overexpressed on tumor but are in fact nonspecific autoantigens. This suggests that while overexpression or aberrant processing can increase immunogenicity in some cases, the immunogenicity of many or even most tumor-associated antigens is a function of expression in tumor or the result of ancillary tumor factors.  相似文献   

10.
Therapeutic monoclonal antibodies are the fastest growing class of biological therapeutics for the treatment of various cancers and inflammatory disorders. In cancer immunotherapy, some IgG1 antibodies rely on the Fc-mediated immune effector function, antibody-dependent cellular cytotoxicity (ADCC), as the major mode of action to deplete tumor cells. It is well-known that this effector function is modulated by the N-linked glycosylation in the Fc region of the antibody. In particular, absence of core fucose on the Fc N-glycan has been shown to increase IgG1 Fc binding affinity to the FcγRIIIa present on immune effector cells such as natural killer cells and lead to enhanced ADCC activity. As such, various strategies have focused on producing afucosylated antibodies to improve therapeutic efficacy. This review discusses the relevance of antibody core fucosylation to ADCC, different strategies to produce afucosylated antibodies, and an update of afucosylated antibody drugs currently undergoing clinical trials as well as those that have been approved.  相似文献   

11.
The role of therapeutic antibodies in drug discovery   总被引:10,自引:0,他引:10  
The last 5 years have seen a major upturn in the fortune of therapeutic monoclonal antibodies (mAbs), with nine mAbs approved for clinical use during this period and more than 70 now in clinical trials beyond phase II. Sales are expected to reach $4 billion per annum worldwide in 2002 and $15 billion by 2010. This success can be related to the engineering of mouse mAbs into mouse/human chimaeric antibodies or humanized antibodies, which have had a major effect on immunogenicity, effector function and half-life. The issue of repeated antibody dosing at high levels with limited toxicity was essential for successful clinical applications. Emerging technologies (phage display, human antibody-engineered mice) have created a vast range of novel, antibody-based therapeutics, which specifically target clinical biomarkers of disease. Modified recombinant antibodies have been designed to be more cytotoxic (toxin delivery), to enhance effector functions (bivalent mAbs) and to be fused with enzymes for prodrug therapy and cancer treatment. Antibody fragments have also been engineered to retain specificity and have increased the penetrability of solid tumours (single-chain variable fragments). Radiolabelling of antibodies has now been shown to be effective for cancer imaging and targeting. This article focuses on developments in the design and clinical use of recombinant antibodies for cancer therapy.  相似文献   

12.
Target-mediated clearance and high antigen load can hamper the efficacy and dosage of many antibodies. We show for the first time that the mouse, cynomolgus, and human cross-reactive, antagonistic anti-proprotein convertase substilisin kexin type 9 (PCSK9) antibodies J10 and the affinity-matured and humanized J16 exhibit target-mediated clearance, resulting in dose-dependent pharmacokinetic profiles. These antibodies prevent the degradation of low density lipoprotein receptor, thus lowering serum levels of LDL-cholesterol and potently reducing serum cholesterol in mice, and selectively reduce LDL-cholesterol in cynomolgus monkeys. In order to increase the pharmacokinetic and efficacy of this promising therapeutic for hypercholesterolemia, we engineered pH-sensitive binding to mouse, cynomolgus, and human PCSK9 into J16, resulting in J17. This antibody shows prolonged half-life and increased duration of cholesterol lowering in two species in vivo by binding to endogenous PCSK9 in mice and cynomolgus monkeys, respectively. The proposed mechanism of this pH-sensitive antibody is that it binds with high affinity to PCSK9 in the plasma at pH 7.4, whereas the antibody-antigen complex dissociates at the endosomal pH of 5.5-6.0 in order to escape from target-mediated degradation. Additionally, this enables the antibody to bind to another PCSK9 and therefore increase the antigen-binding cycles. Furthermore, we show that this effect is dependent on the neonatal Fc receptor, which rescues the dissociated antibody in the endosome from degradation. Engineered pH-sensitive antibodies may enable less frequent or lower dosing of antibodies hampered by target-mediated clearance and high antigen load.  相似文献   

13.
Murine monoclonal antibodies to tumor-associated glycoprotein 72 (anti-TAG-72 mAb B72.3 and CC49) are among the most extensively studied mAb for immunotherapy of adenocarcinomas. They have been used clinically to localize primary and metastatic tumor sites; however, murine mAb generally induce potent human anti-(mouse antibody) responses. The immunogenicity of murine mAb can be minimized by genetic humanization of these antibodies, where non-human regions are replaced by the corresponding human sequences or complementary determining regions are grafted into the human framework regions. We have developed a humanized CC49 single-chain antibody construct (hu/muCC49 scFv) by replacing the murine CC49 variable light chain with the human subgroup IV germline variable light chain (Hum4 VL). The major advantages of scFv molecules are their excellent penetration into the tumor tissue, rapid clearance rate, and much lower exposure to normal organs, especially bone marrow, than occur with intact antibody. The biochemical properties of hu/muCC49 scFv were compared to those of the murine CC49 scFv (muCC49 scFv). The association constants (K a) for hu/muCC49 and muCC49 constructs were 1.1 × 106 M−1 and 1.4 × 106 M−1 respectively. Pharmacokinetic studies in mice showed similar rapid blood and whole-body clearance with a half-life of 6 min for both scFv. The biodistribution studies demonstrated equivalent tumor targeting to human colon carcinoma xenografts for muCC49 and hu/muCC49 scFv. These results indicate that the human variable light-chain subgroup IV can be used for the development of humanized or human immunoglobulin molecules potentially useful in both diagnostic and therapeutic applications with TAG-72-positive tumors. Received: 29 December 1999 / Accepted: 4 February 2000  相似文献   

14.
梁琍 《生物技术通讯》2006,17(5):799-802
作为一种具有靶向性的生物大分子,单克隆抗体始终是人们关注的热点之一,被广泛用于治疗肿瘤、病毒感染和抗移植排斥等。但鼠源单克隆抗体的临床应用受限于诱导产生人抗鼠抗体、肿瘤渗入量低、亲和力低和半衰期短等。随着分子生物学技术的发展及其向各学科的渗透,通过基因操作技术对抗体进行改造,可使其适用于多种疾病的治疗。抗体人源化已经成为治疗性抗体的发展趋势,同时各种抗体衍生物也不断涌现,它们从不同角度克服了抗体本身的应用局限,也为治疗人类疾病提供了利器。本文简要介绍上述技术的基本原理、特点和治疗性抗体的研究进展。  相似文献   

15.
《MABS-AUSTIN》2013,5(3):256-265
Monoclonal antibodies represent an attractive therapeutic tool as they are highly specific for their targets, convey effector functions and enjoy robust manufacturing procedures. Humanization of murine monoclonal antibodies has vastly improved their in vivo tolerability. Humanization, the replacement of mouse constant regions and V framework regions for human sequences, results in a significantly less immunogenic product. However, some humanized and even fully human sequence-derived antibody molecules still carry immunological risk. To more fully understand the immunologic potential of humanized and human antibodies, we analyzed CD4+ helper T cell epitopes in a set of eight humanized antibodies. The antibodies studied represented a number of different VH and VL family members carrying unique CDR regions. In spite of these differences, CD4+ T cell epitopes were found only in CDR-sequence containing regions. We were able to incorporate up to two amino acid modifications in a single epitope that reduced the immunogenic potential while retaining full biologic function. We propose that immunogenicity will always be present in some antibody molecules due to the nature of the antigen-specific combining sites. A consequence of this result is modifications to reduce immunogenicity will be centered on the affinity-determining regions. Modifications to CDR regions can be designed that reduce the immunogenic potential while maintaining the bioactivity of the antibody molecule.  相似文献   

16.
Through the discovery of monoclonal antibody (mAb) technology, profound successes in medical treatment against a wide range of diseases have been achieved. This has led antibodies to emerge as a new class of biodrugs. As the “rising star” in the pharmaceutical market, extensive research and development in antibody production has been carried out in various expression systems including bacteria, insects, plants, yeasts, and mammalian cell lines. The major benefit of eukaryotic expression systems is the ability to carry out posttranslational modifications of the antibody. Glycosylation of therapeutic antibodies is one of these important modifications, due to its influence on antibody structure, stability, serum half-life, and complement recruitment. In recent years, the protozoan parasite Leishmania tarentolae has been introduced as a new eukaryotic expression system. L. tarentolae is rich in glycoproteins with oligosaccharide structures that are very similar to humans. Therefore, it is touted as a potential alternative to mammalian expression systems for therapeutic antibody production. Here, we present a comparative review on the features of the L. tarentolae expression system with other expression platforms such as bacteria, insect cells, yeasts, transgenic plants, and mammalian cells with a focus on mAb production.  相似文献   

17.
Antibodies and antibody-based drugs are currently the fastest-growing class of therapeutics. Over the last three decades, more than 30 therapeutic monoclonal antibodies and derivatives thereof have been approved for and successfully applied in diverse indication areas including cancer, organ transplants, autoimmune/inflammatory disorders, and cardiovascular disease. The isotype of choice for antibody therapeutics is human IgG, whose Fc region contains a ubiquitous asparagine residue (N297) that acts as an acceptor site for N-linked glycans. The nature of these glycans can decisively influence the therapeutic performance of a recombinant antibody, and their absence or modification can lead to the loss of Fc effector functions, greater immunogenicity, and unfavorable pharmacokinetic profiles. However, recent studies have shown that aglycosylated antibodies can be genetically engineered to display novel or enhanced effector functions and that favorable pharmacokinetic properties can be preserved. Furthermore, the ability to produce aglycosylated antibodies in lower eukaryotes and bacteria offers the potential to broaden and simplify the production platforms and avoid the problem of antibody heterogeneity, which occurs when mammalian cells are used for production. In this review, we discuss the importance of Fc glycosylation focusing on the use of aglycosylated and glyco-engineered antibodies as therapeutic proteins.  相似文献   

18.
We describe the isolation of a CCR5-specific antibody, ST6, from an antibody phage display library generated from an immune rabbit. ST6 was previously shown to efficiently prevent the surface expression of CCR5 when expressed intracellularly (Steinberger, P., Andris-Widhopf, J., Buhler, B., Torbett, B. E., and Barbas, C. F., III (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 805-810). Because ST6 has therapeutic potential in human immunodeficiency virus, type 1 disease, its humanization was desired to minimize the potential for immunogenicity. ST6 was humanized using a phage display-based approach. Like the parental rabbit clone, the humanized version ST6/34 efficiently prevented the surface expression of CCR5. The conserved linear peptide epitope bound by these antibodies was mapped using phage display. Both ST6 as well as the humanized anti-CCR5 antibody ST6/34 were produced as complete IgG antibodies and shown to bind to cell surface CCR5.  相似文献   

19.
A broad variety of foreign genes can be expressed in transgenic plants, which offer the opportunity for large‐scale production of pharmaceutical proteins, such as therapeutic antibodies. Nimotuzumab is a humanized anti–epidermal growth factor receptor (EGFR) recombinant IgG1 antibody approved in different countries for the treatment of head and neck squamous cell carcinoma, paediatric and adult glioma, and nasopharyngeal and oesophageal cancers. Because the antitumour mechanism of nimotuzumab is mainly attributed to its ability to interrupt the signal transduction cascade triggered by EGF/EGFR interaction, we have hypothesized that an aglycosylated form of this antibody, produced by mutating the N297 position in the IgG1 Fc region gene, would have similar biochemical and biological properties as the mammalian‐cell‐produced glycosylated counterpart. In this paper, we report the production and characterization of an aglycosylated form of nimotuzumab in transgenic tobacco plants. The comparison of the plantibody and nimotuzumab in terms of recognition of human EGFR, effect on tyrosine phosphorylation and proliferation in cells in response to EGF, competition with radiolabelled EGF for EGFR, affinity measurements of Fab fragments, pharmacokinetic and biodistribution behaviours in rats and antitumour effects in nude mice bearing human A431 tumours showed that both antibody forms have very similar in vitro and in vivo properties. Our results support the idea that the production of aglycosylated forms of some therapeutic antibodies in transgenic plants is a feasible approach when facing scaling strategies for anticancer immunoglobulins.  相似文献   

20.
人源化抗体研究历程及发展趋势   总被引:7,自引:0,他引:7  
单克隆抗体从问世到目前广泛应用于临床,经历了一段曲折的发展历程。其中人源化抗体是一个重要的里程碑,并伴随着一系列重大的技术革新,如PCR技术、抗体库技术、转基因动物等。人源化抗体的形式也从最初的嵌合抗体、改型抗体等逐步发展为今天的人抗体。抗体人源化已经成为治疗性抗体的发展趋势,同时各种抗体衍生物也不断涌现,它们从不同角度克服抗体本身的应用局限,也为治疗人类疾病提供了更多利器。对单克隆抗体进行改造使之应用于临床治疗,不仅需要对抗体效应机制进行更细致深入的研究,同时还有赖于对人类免疫系统调控机制的全面精确认识。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号