首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Self-incompatibility (SI) in Brassica is a sporophytic system, genetically determined by alleles at the S-locus, which prevents self-fertilization and encourages outbreeding. This system occurs naturally in diploid Brassica species but is introduced into amphidiploid Brassica species by interspecific breeding, so that in both cases there is a potential for yield increase due to heterosis and the combination of desirable characteristics from both parental lines. Using a polymerase chain reaction (PCR) based analysis specific for the alleles of the SLG (S-locus glycoprotein gene) located on the S-locus, we genetically mapped the S-locus of B. oleracea for SI using a F2 population from a cross between a rapid-cycling B. oleracea line (CrGC-85) and a cabbage line (86-16-5). The linkage map contained both RFLP (restriction fragment length polymorphism) and RAPD (random amplified polymorphic DNA) markers. Similarly, the S-loci were mapped in B. napus using two different crosses (91-SN-5263×87-DHS-002; 90-DHW-1855-4×87-DHS-002) where the common male parent was self-compatible, while the S-alleles introgressed in the two different SI female parents had not been characterized. The linkage group with the S-locus in B. oleracea showed remarkable homology to the corresponding linkage group in B. napus except that in the latter there was an additional locus present, which might have been introgressed from B. rapa. The S-allele in the rapid-cycling Brassica was identified as the S29 allele, the S-allele of the cabbage was the S 5 allele. These same alleles were present in our two B. napus SI lines, but there was evidence that it might not be the active or major SI allele that caused self-incompatibility in these two B. napus crosses. Received: 7 June 1996/Accepted: 6 September 1996  相似文献   

2.
 Three mutations determining self-fertility at the S, Z and S5 self-incompatibility loci on chromosomes 1R, 2R and 5R of rye, respectively, were mapped using three different F2 populations. There was a close linkage of one isozyme and four RFLP markers, and no recombinant plants were detected. These markers are Prx7, Xiag249 and Xpsr634 for the S locus (1R), Xbcd266 for the Z locus (2R) and Xpsr100 for the S5 locus (5R). Linkage data for markers associated to the self-fertility mutations at the S, Z and S5 loci were calculated and compared with genetic maps computed by MAPMAKER multipoint analysis. Received: 8 October 1997 / Acepted: 26 November 1997  相似文献   

3.
Self-incompatibility (SI) in Brassica is controlled by the S locus. The specificity of the SI response is controlled on the stigma side by the S receptor kinase (SRK) and on the pollen side by the SCR (S locus cysteine-rich) protein, but other proteins might be involved in the process of self-pollen rejection. In this study, we show that the AtPP gene linked to the S locus of Brassica napus is expressed in the stigmas of SI lines. AtPP has a developmental pattern of expression similar to the SRK gene. The AtPP protein has similarity with members of an Arabidopsis protein family and with an S-adenosyl-L-methionine:salicylic acid carboxyl methyltransferase, which is a plant defense-related protein of Clarkia breweri representing a new class of methyltransferases. A member of the AtPP gene family is present in the homeolog region of the S locus in Arabidopsis. Therefore, this gene might have co-evolved with S genes from an ancestral S locus of Brassicaceae. Possible functions of the AtPP protein in the self-recognition process are discussed. Received: 9 October 2000 / Revision accepted: 23 April 2001  相似文献   

4.
Field resistance to cyst nematode (SCN) race 3 (Heterodera glycines I.) in soybean [Glycine max (L.) Merr.] cv ’Forrest’ is conditioned by two QTLs: the underlying genes are presumed to include Rhg1 on linkage group G and Rhg4 on linkage group A2. A population of recombinant inbred lines (RILs) and two populations of near-isogenic lines (NILs) derived from a cross of Forrest×Essex were used to map the loci affecting resistance to SCN. Bulked segregant analysis, with 512 AFLP primer combinations and microsatellite markers, produced a high-density genetic map for the intervals carrying Rhg1 and Rhg4. The two QTLs involved in resistance to SCN were strongly associated with the AFLP marker EATGMCGA87 (P=0.0001, R2=24.5%) on linkage group G, and the AFLP marker ECCGMAAC405 (P=0.0001, R2 =26.2%) on linkage group A2. Two- way analysis of variance showed epistasic interaction (P=0.0001, R2 =16%) between the two loci controlling SCN resistance in Essex×Forrest recombinant inbred lines. Considering the two loci as qualitative genes and the resistance as female index FI <5%, jointly the two loci explained over 98% of the resistance. The locations of the two QTLs were confirmed in the NILs populations. Therefore SCN resistance in Forrest×Essex is bigenic. High-efficiency marker-assisted selection can be performed using the markers to develop cultivars with stable resistance to SCN. Received: 5 November 2000 / Accepted: 23 January 2001  相似文献   

5.
Amplified fragment length polymorphisms (AFLPs) were used to evaluate genetic relationships within cowpea [Vigna unguiculata (L.) Walp.] and to assess the organization of its genetic diversity. Nei’s genetic distances were estimated for a total of 117 accessions including 47 domesticated cowpea (ssp. unguiculata var. unguiculata), 52 wild and weedy annuals (ssp. unguiculata var. spontanea), as well as 18 perennial accessions of the wild subspecies pubescens, tenuis and alba. AFLP variation was also used to study genetic variation among and within domesticated and wild accessions based on their geographical origin (western, eastern and southern Africa). Wild annual cowpea (var. spontanea) (H T =0.175) was more diverse than domesticated cowpea (H T =0.108). Wild cowpea was more diverse in eastern (H S =0.168) than in western Africa (H S =0.129), suggesting an eastern African origin for the wild taxon. The AFLP data were consistent with earlier findings of a unique domestication event in cowpea in the northern part of the continent and suggested that domestication in eastern or southern Africa was unlikely. It did not allow a more precise localization of domestication due to extensive gene flow between wild and domesticated forms that has led to a large crop-weed complex distributed over the entire African continent. In addition, wild materials from northeastern Africa are still lacking. Overall, the superiority of the AFLP technique over isozymes resided in its ability to uncover variation both within domesticated and wild cowpea, and should be a powerful tool once additional wild material becomes available. Received: 11 September 2000 / Accepted: 14 June 2001  相似文献   

6.
 The root-knot nematode heat-stable resistance locus from L. peruvianum LA2157 was mapped on chromosome 6. All wild tomato LA2157 entries and the LA2157 S1 progeny tested were resistant to Mi-avirulent Meloidogyne spp. isolates at 32°C, indicating that the self-compatible accession is homozygous for heat-stable nematode resistance. The novel resistance locus was mapped on a RFLP linkage map; this map was based on a segregating F2 population obtained from the interspecific F1 between L. esculentum cv ‘Solentos’ and L. peruvianum LA2157. The inheritance of the heat-stable resistance was evaluated in 100 F3 lines derived from one F1 interspecific hybrid. The genotype of the resistance locus of the individual F2 plants was based on the phenotypic classification of their F3 lines, and the data were used to map the resistance locus on the arm of chromosome 6 with the closest linkage to TG178. The position of the novel heat-stable resistance of LA2157 was localized in the resistance genes’ cluster close to the location of gene Mi-1. Cuttings of the F3 lines expressed resistance to Mi-1-avirulent M. incognita and M. javanica biotypes at 25°C and at 32°C (a temperature at which Mi-1 resistance is not expressed). There was no difference in the segregating population for expression of heat-unstable resistance and heat-stable resistance to Mi-1-avirulent Meloidogyne spp. However, LA2157 and cuttings of the above F3 lines were susceptible to a Mi-1-virulent M. incognita isolate at 30°C and to a M. hapla isolate at 25°C. Received: 6 July 1998 / Accepted: 28 July 1998  相似文献   

7.
 When inbred, most outcrossing species show high mortality, manifested at several life stages. The occurrence of homozygotes for deleterious or lethal alleles is believed to be responsible. Here, we report the identification of an allele responsible for the death of selfed Pinus radiata D. Don seedlings in their first month after germination. Among 291 S1 seedlings of plus-tree 850.55, 76 died within 1 month of emergence. Their death appears to be caused by a single recessive lethal allele, SDPr (seedling death in Pinus radiata). SDPr is located in a linkage group with 28 RAPD markers, the closest of which is ai05800a. Of the 76 seedlings that died, megagametophytes of 73 could be genotyped. Of these, 71 had the null (no band) allele of ai05800a; only two had the band allele. Of the 190 surviving S1 diploids that were genotyped, only two individuals were homozygous for the null allele of ai05800a. By two different methods, the map distance between SDPr and ai05800a was estimated to be between 1.0 and 2.7 cM respectively. The frequency of band and null alleles in the combined population of dead and surviving seedlings and in un-sown seeds shows no evidence of selection at this locus prior to germination. Received: 30 September 1997 / Accepted: 29 October 1997  相似文献   

8.
Morphological characters, isoenzymes and recombinant inbred lines were employed to assign four loci for resistance to Pseudomonas syringae pv pisi to genetic linkage groups in Pisum sativum. A total of five morphological markers and 11 isoenzyme loci were screened in two independent F2 P. sativum populations: Vinco × Hurst’s Greenshaft (V×HGS) and Partridge × Early Onward (P×EO). Mapping was also carried out in two recombinant inbred populations, unrelated to the F2 populations. Previously reported linkage between resistance genes Ppi3 and Ppi4 was confirmed. Linkage was also detected between resistance gene Ppi2 and the isoenzyme locus Aldo (linkage group VII). The linked loci Ppi3 and Ppi4 were associated with a (linkage group II). A further resistance gene Ppi1 was associated with linkage group VI close to the hilum colour gene P1. RAPD markers tested in the cross P×EO were not well targeted; however, one marker, OPA-200.71, showed linkage to Ppi3. Received: 3 July 2000 / Accepted: 27 October 2000  相似文献   

9.
An RFLP genetic linkage joinmap was constructed from four different mapping populations of cotton (Gossypium hirsutum L.). Genetic maps from two of the four populations have been previously reported. The third genetic map was constructed from 199 bulk-sampled plots of an F2.3 (HQ95–6×’MD51ne’) population. The map comprises 83 loci mapped to 24 linkage groups with an average distance between markers of 10.0 centiMorgan (cM), covering 830.1 cM or approximately 18% of the genome. The fourth genetic map was developed from 155 bulk-sampled plots of an F2.3 (119– 5 sub-okra×’MD51ne’) population. This map comprises 56 loci mapped to 16 linkage groups with an average distance between markers of 9.3 cM, covering 520.4 cM or approximately 11% of the cotton genome. A core of 104 cDNA probes was shared between populations, yielding 111 RFLP loci. The constructed genetic linkage joinmap from the above four populations comprises 284 loci mapped to 47 linkage groups with the average distance between markers of 5.3 cM, covering 1,502.6 cM or approximately 31% of the total recombinational length of the cotton genome. The linkage groups contained from 2 to 54 loci each and ranged in distance from 1.0 to 142.6 cM. The joinmap provided further knowledge of competitive chromosome arrangement, parental relationships, gene order, and increased the potential to map genes for the improvement of the cotton crop. This is the first genetic linkage joinmap assembled in G. hirsutum with a core of RFLP markers assayed on different genetic backgrounds of cotton populations (Acala, Delta, and Texas plain). Research is ongoing for the identification of quantitative trait loci for agronomic, physiological and fiber quality traits on these maps, and the identification of RFLP loci lineage for G. hirsutum from its diploid progenitors (the A and D genomes). Received: 23 February 2001 / Accepted: 8 June 2001  相似文献   

10.
Analysis of two cherry progenies from semi-compatible crosses for the esterase enzyme system showed extremely distorted segregation ratios for Est-5. Analysis of two progenies from compatible crosses for esterase and for stylar ribonuclease proved that Est-5 is linked with the incompatibility locus S. The recombination fraction is 4%. About a fifth of some 50 cultivars or selections genotyped for Est-5 were heterozygous. The various heterozygotes could provide ’testers’ for the presence in cultivars of unknown genotype of 8 of the 11 known S alleles. A seedling suitable for testing S 9 has been identified and crosses have been made to raise testers for S 10 and S 11 . Isoenzyme analysis of the four progenies for glutamate oxaloacetate transaminase, and of one of them for isocitrate dehydrogenase, showed no evidence for the linkage of Got-1 or Idh-2 with S, contrary to a previous report. Estimation of linkage with S in semi-compatible crosses is discussed. Received: 16 April 1999 / Accepted: 22 June 1999  相似文献   

11.
An F1 hybrid (n=4x=28) between the tetraploid species Festuca arundinacea var. glaucescens (GGG′G′) and a synthetic tetraploid Lolium multiflorum (LmLmLmLm) was backcrossed to diploid L. multiflorum to produce triploid (2n=3x=21) BC1 hybrids (LmLmG). At metaphase I of meiosis the triploids had a preponderance of ring bivalents and univalents with some linear and frying-pan trivalents. Genomic in situ hybridisation (GISH) differentiated the Festuca chromosomes from Lolium and revealed that the bivalents were exclusively between Lolium homologues, while the univalents were Festuca. Despite the limited amount of homoeologous chiasmata pairing in the triploids, some recombinant chromosomes were recovered in the second backcross when the hybrids were further crossed to diploid L. multiflorum. The progeny from the second backcross was predominantly diploid. Genotypes with recombinant chromosomes and chromosome additions involving an extra Festuca chromosome were identified using GISH. Changes in plant phenotype were related to the presence of Festuca chromatin. Received: 20 September 2000 / Accepted: 05 January 2001  相似文献   

12.
Three major gene loci determining the anthocyanin pigmentation of coleoptiles were mapped on the short arms of chromosomes 7A, 7B and 7D, respectively. All three genes map about 15 to 20 cM distal from the centromere and, therefore, it may be concluded that they are members of a homoeologous series and should be designated Rc-A1, Rc-B1 and Rc-D1, respectively. Further homoeologous loci exist in Triticum durum, Triticum tauschii, and most probably in Secale cereale and Hordeum vulgare. By analyzing a synthetic×cultivated wheat cross (ITMI mapping population) under different environmental conditions it was shown that the expression of the genes determining anthocyanin pigmentation of the coleoptiles varies. One additional locus was detected on chromosome 4BL. Beside the mapping data, results of a screening for red coleoptile color genes in 468 mainly European wheat varieties are presented. Received: 2 July 2001 / Accepted: 6 August 2001  相似文献   

13.
Diploid Hordeum bulbosum (a wild relative of cultivated barley) exhibits a two-locus self-incompatibility (SI) system gametophytically controlled by the unlinked multiallelic loci S and Z. This unique SI system is observed in the grasses (Poaceae) including the tribe Triticeae. This paper describes the identification and characterization of two F-box genes cosegregating with the S locus in H. bulbosum, named Hordeum S locus-linked F-box 1 (HSLF1) and HSLF2, which were derived from an S 3 haplotype-specific clone (HAS175) obtained by previous AMF (AFLP-based mRNA fingerprinting) analysis. Sequence analysis showed that both genes encode similar F-box proteins with a C-terminal leucine-rich repeat (LRR) domain, which are distinct from S locus (or S haplotype-specific) F-box protein (SLF/SFB), a class of F-box proteins identified as the pollen S determinant in S-RNase-based gametophytic SI systems. A number of homologous F-box genes with an LRR domain were found in the rice genome, although the functions of the gene family are unknown. One allele of the HSLF1 gene (HSLF1-S 3) was expressed specifically in mature anthers, whereas no expression was detected from the other two alleles examined. Although the degree of sequence polymorphism among the three HSLF1 alleles was low, a frameshift mutation was found in one of the unexpressed alleles. The HSLF2 gene showed a low level of expression with no tissue specificity as well as little sequence polymorphism among the three alleles. The multiplicity of S locus-linked F-box genes is discussed in comparison with those found in the S-RNase-based SI system. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession numbers AB511822–AB511825 and AB511859–AB511862.  相似文献   

14.
The Chinese rice cultivar Duokang #1 carries a single dominant gene Gm-6(t) that confers resistance to the four biotypes of Asian rice gall midge (Orseolia oryzae Wood-Mason) known in China. Bulked segregant analysis was performed on progeny of a cross between Duokang #1 and the gall midge-susceptible cultivar Feng Yin Zhan using the RAPD method. The RAPD marker OPM06(1400) amplified a locus linked to Gm-6(t). The locus was subsequently mapped to rice chromosome 4 in a region flanked by cloned RFLP markers RG214 and RG163. Fine mapping of Gm-6(t) revealed that markers RG214 and RG476 flanked the gene at distances of 1.0 and 2.3 cM, respectively. Another gall midge resistance gene, Gm-2, mapped previously to chromosome 4, is located about 16 cM from Gm-6(t), to judge by data from a segregating population derived from a cross between Duokang #1 and the Indian cultivar Phalguna that carries Gm-2. We developed a PCR-based marker-assisted selection kit for transfer of the Gm-6(t) gene into Ming Hui 63 and IR50404, two parental lines commonly used in hybrid rice production in China. The kit contains PCR primer pairs based on the terminal sequences of the RG214 and RG476 clones. Polymorphism between Duokang #1 and the hybrid parental lines was found at these markers after digestion of the PCR products with specific restriction endonucleases. The kit will accelerate introduction of gall midge resistance into hybrid rice in China. Received: 18 May 2000 / Accepted: 9 March 2001  相似文献   

15.
To identify a molecular marker closely linked to Vrn-B1, the Vrn-1 ortholog on chromosome 5B, sequence polymorphism at four orthologous RFLP loci closely linked to the Vrn-1 gene family was analyzed by using near-isogenic lines of ”Triple Dirk.” At Xwg644, a RFLP locus, three types of nucleotide sequence differing by the number of (TG) repeats, two or three times, and base changes were detected. A (TG)3-type sequence proved to be specific to chromosome 5B by nulli-tetrasomic analysis, and substitution of single nucleotide (C/T) was detected between TD(B) carrying the former Vrn2 allele and TD(C) carrying the vrn2 allele. A mismatch primer was designed for dCAPS analysis of this single nucleotide polymorphism (SNP). Polymorphism was successfully detected between two NILs, through nested PCR by using a (TG)3-specific primer (1st) and a dCAPS primer (2nd) followed by a NsiI digest. The analysis of a BF2 population [(TD(B)//TD(C)] revealed the close linkage (1.7 cM) between WG644–5B and Vrn2. It was therefore concluded that the former Vrn2 locus is located on chromosome 5B and equivalent to Vrn-B1. Received: 3 May 2001 / Accepted: 19 July 2001  相似文献   

16.
The self-incompatibility (SI) character in Brassica is controlled by the S locus which contains several genes. One of them, the SLG (S Locus Glycoprotein) gene encodes a soluble glycoprotein expressed in the stigma. We used antibodies directed against SLGs and a combination of isoelectric focusing (IEF) and immunoblotting methods to identify S haplotypes, the allelic forms of the S locus, in commercial and open-pollinated varieties of broccoli and romanesco. We found 23 class-I and three class-II S haplotypes among the 199 plants analysed. Nevertheless, for a few plants, SLGs were not detected by the antibodies and these plants, designated Hw for “white pattern” haplotypes, were apparently homozygous at the S locus. Diallel crosses between Hw plants revealed the existence of four different Hw haplotypes. Several hypotheses are discussed to explain the non-recognition of the SLG products in these Hw haplotypes. The data of the present study were compared with those obtained in a previous investigation carried out on cauliflower. As in cauliflower, we observed a high frequency of the sx haplotype and a great variability in the strength of the SI phenotype for sx plants (in the homozygous or heterozygous state). For both broccoli and romanesco, about 50% of the plants presented a SI phenotype strong enough to be exploited for hybrid production. Received: 27 July 1998 / Accepted: 5 August 1998  相似文献   

17.
A selection of 36 wheat and 35 barley simple sequence repeat markers (SSRs) were studied for their utility in Hordeum chilense. Nineteen wheat and nineteen barley primer pairs amplified consistent H. chilense products. Nine wheat and two barley SSRs were polymorphic in a H. chilense mapping population, producing codominant markers that mapped to the expected homoeologous linkage groups in all but one case. Thirteen wheat and 10 barley primer pairs were suitable for studying the introgression of H. chilense into wheat because they amplified H. chilense products of distinct size. Analysis of wheat/H. chilense addition lines showed that the H. chilense products derived from the expected homoeologous linkage groups. The results showed that wheat and barley SSRs provide a valuable resource for the genetic characterization of H. chilense, tritordeums and derived introgression lines. Received: 20 November 2000 / Accepted: 12 April 2001  相似文献   

18.
Our previous studies have hypothesised that a complementary epistasis between a QTL located on chromosome 12 and a QTL located on chromosome 7 was one of the major genetic factors controlling partial resistance to Rice yellow mottle virus (RYMV). We report research undertaken to verify this hypothesis and to introgress the resistant allele of these two QTLs from an upland resistant japonica variety, Azucena, into a lowland susceptible indica variety IR64. Three cycles of molecular marker-assisted back cross breeding were performed using RFLP and microsatellite markers. Resistance to RYMV was evaluated in F2 and F3 offspring of the BC1 and BC2 generations. Marker-assisted introgression (MAI) was very efficient: in the selected BC3 progeny the proportion of the recipient genome was close to 95% for the ten non-carrier chromosomes, and the length of the donor chromosome segment surrounding the two QTLs was less than 20 cM. The relevancy of the complementary epistasis genetic model proposed previously was confirmed experimentally: in BC1 and BC2 generations only F3 lines having the allele of the resistant parent on QTL12 and QTL7 show partial resistance to RYMV. Comparison of our experimental process of MAI with the recommendations of analytic and simulation studies pointed out the methodological flexibility of MAI. Our results also confirmed the widely admitted, but rarely verified, assumption that QTL-alleles detected in segregating populations could be treated as units of Mendelian inheritance and that the incorporation of these alleles into elite lines would result in an enhanced performance. The next step will be the design of tools for the routine use of molecular markers in breeding for partial resistance to RYMV and the development of material for the analysis of resistance mechanisms and the structure of a virus resistance gene in rice. Received: 11 August 2000 / Accepted: 20 March 2001  相似文献   

19.
 Stylar proteins were surveyed by non-equilibrium pH gradient electrofocusing to identify S-RNases associated with gametophytic self-incompatibility in nine apricot cultivars. RNase activities associated with the alleles of incompatibility S 1 , S 2 , S 5 , and S 6 and with the allele of compatibility Sc were clearly identified. Two other bands that we considered related to the alleles S 3 and S 4 were unique to cultivars Sunglo and Harcot, respectively. Two generations of 17 seedlings from the cross Moniquí× Pepito and 38 from Gitano × Pepito were used to determine the inheritance of the S-RNases. Inheritance of these RNase bands followed the expected segregation ratios and the band combinations correlated perfectly with the known self-incompatibility status of the seedlings determined after self-pollination and observation of pollen tube growth. All evidence presented in this study strongly suggests that RNases are associated with gametophytic self-incompatibility of apricot and that RNases may be the S-gene products. This is the first report identifying S-RNases and describing the inheritance of these S-RNases in apricot. Received: 19 February 1998 / Revision accepted: 2 April 1998  相似文献   

20.
The DNA content and GC% of the four true cedar (Cedrus) species, C. atlantica, C. brevifolia, C. deodara and C. libani, were assessed. Genome size was homogeneous among representative populations of the four species with an average of 32.6±0.6 pg per 2 C or 15.7×109 base pairs per 1 C. The composition in GC was calculated to be 40.7%. A simple monosomatic haploid level was found in the megagametophyte, as compared to the diploid level of the corresponding embryo. Cytogenetic studies showed a diploid chromosome number of 2n=2x=24 in 11 populations sampled over the four species. The chromosome complements have similar morphology and symmetry. However, fluorochromes revealed specific banding patterns in each of the four cedar species. Eight GC-rich chromomycin A3 bands were observed in Cedrus deodara chromosomes, six in both Cedrus libani and Cedrus brevifolia, and four bands in Cedrus atlantica chromosomes. Moreover, Hoechst 33258 fluorochrome revealed AT-rich sequences specifically located in the centromeric regions while the GC-rich sequences appeared negatively stained. These investigations provide a systematic characterisation of the Cedrus genus and should contribute towards clarification of the phylogenetic relationships among the four species. Received: 10 October 2000 / Accepted: 20 March 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号