首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mitochondria and secretory granules were isolated from beta-cell-rich pancreatic islets of ob/ob mice. Crude fractions obtained by differential centrifugation were subjected to centrifugation on isotonic Percoll. The gradient medium was removed from the resulting fractions by gel filtration on Sephacryl S-1000 Superfine. When compared to the crude fractions, the purified mitochondrial fraction exhibited a 4.5-fold increase in citrate synthase activity, a 70% reduction of lysosomal arylsulfatase, and a 40% decrease of contamination with granular insulin. In the purified secretory granule fraction, the insulin content was as high as 60% of the total protein (albumin standard) with arylsulfatase unchanged and no detectable citrate synthase activity.  相似文献   

2.
Intracellular transport and processing of lysosomal cathepsin B   总被引:2,自引:0,他引:2  
Intracellular transport and processing of lysosomal cathepsin B was investigated in the subcellular fractions of rat liver by pulse-labeling experiments with [35S]methionine in vivo. A newly synthesized procathepsin B with a molecular weight of 39 kDa firstly appeared in the rough microsomal fraction at 10 min postinjection of label. This procathepsin B moved from the microsomal fractions to the Golgi subfractions at 30 min postinjection, and then a processed mature enzyme appeared in the lysosomal fraction at 60 min. These results suggest that the propeptide-processing of procathepsin B takes place in lysosomes in the course of intracellular transport from endoplasmic reticulum through Golgi complex to lysosomes.  相似文献   

3.
1. The response of renal beta-glucuronidase with time to the injection of gonadotrophin was investigated in each submicrosomal fraction of rough and smooth microsomal fractions of mouse kidney homogenate. 2. The increase in beta-glucuronidase activity appeared initially in membranes of the rough microsomal fraction, 24h after injection. 3. Afterwards the newly synthesized enzyme appeared in the contents of the rough microsomal fraction and was subsequently found in the smooth microsomal fraction, reaching a maximum concentration in this fraction at 72h. 4. At this juncture, a decrease in the enzyme activity was observed in rough microsomal contents whereas the lysosomal fraction had reached its maximum value. 5. The time-course of the appearance of beta-glucuronidase in the submicrosomal fractions after the gonadotrophin stimulation suggests that the newly synthesized enzyme at the site of membrane-bound ribosomes is transferred across the membrane into cisternae of the rough endoplasmic reticulum, and then is transported into lysosomes via the smooth endoplasmic reticulum. 6. The properties of microsomal and lysosomal beta-glucuronidases were compared.  相似文献   

4.
The mannose 6-phosphate (Man6P) residues that are necessary for the targeting of newly synthesized lysosomal proteins are dephosphorylated after delivery of lysosomal proteins to lysosomes. To examine the role of lysosomal acid phosphatase (LAP) for the dephosphorylation of Man6P residues in lysosomal proteins, the phosphorylation of endogenous lysosomal proteins and of internalized arylsulfatase A was analyzed in mouse L-cells that overexpress human LAP. Non-transfected L-cells dephosphorylate endogenous lysosomal proteins slowly (half time approximately 13 h) as well as internalized arylsulfatase A. A more than 100-fold overexpression of LAP in these cells did not affect the dephosphorylation rate. Control experiments showed that the internalized arylsulfatase A and overexpressed LAP partially colocalize and that under in vitro conditions purified LAP does not dephosphorylate arylsulfatase A. Taken together, these results indicate that LAP is not the mannose 6-phosphatase that dephosphorylates lysosomal proteins after their delivery to lysosomes.  相似文献   

5.
Although endosomes and lysosomes are associated with different subcellular functions, we present evidence that a lysosomal enzyme, arylsulfatase-A, is present in prelysosomal vesicles which constitute part of the endosomal compartment. When human cultured fibroblasts were subfractionated with Percoll gradients, arylsulfatase-A activity was enriched in three subcellular fractions: dense lysosomes, light lysosomes, and light membranous vesicles. Pulsing the cells for 1 to 10 min with the fluid-phase endocytic marker, horseradish peroxidase, showed that endosomes enriched with the marker were distributed partly in the light lysosome fraction but mainly in the light membranous fraction. By pulsing the fibroblasts for 10 min with horseradish peroxidase conjugated to colloidal gold and then staining the light membranous and light lysosomal fractions for arylsulfatase-A activity with a specific cytochemical technique, the endocytic marker was detected under the electron microscope in the same vesicles as the lysosomal enzyme. The origin of the lysosomal enzyme in this endosomal compartment was shown not to be acquired through mannose 6-phosphate receptor-mediated endocytosis of enzymes previously secreted from the cell. Together with our recent finding that the light membranous fraction contains prelysosomes distinct from bona fide lysosomes and was highly enriched with newly synthesized arylsulfatase-A molecules, these results demonstrate that prelysosomes also constitute part of the endosomal compartment to which intracellular lysosomal enzymes are targeted.  相似文献   

6.
Cultured mouse peritoneal macrophages were fractionated by two methods at various times after pulse labeling with [35S]methionine. The lysosomal enzymes beta-glucuronidase and beta-galactosidase were isolated from each fraction by immunoprecipitation and electrophoresis on sodium dodecyl sulfate-acrylamide gels. Two distinct peaks of label were obtained on Percoll density gradients. An early appearing peak of low density, containing the precursor forms of both enzymes, co-sedimented with markers for the endoplasmic reticulum, the Golgi apparatus, and the plasma membrane. With time, immunoprecipitable label cosedimented with the bulk of the lysosomal enzyme activity at high density and corresponded to the mature forms of the lysosomal enzymes. By differential centrifugation, newly synthesized enzymes were found predominantly in small particle fractions, unlike the bulk of the lysosomal enzymic activity which was found in larger particle fractions. With increasing time, newly synthesized enzymes were transferred to assume a distribution similar to that of lysosomal enzymic activity. The results suggest that transport of newly synthesized enzymes to lysosomes and conversion to mature forms are closely linked events. Conversion of lysosomal precursors to mature forms occurs either in a prelysosomal vesicle or shortly after reaching the lysosome. The two enzymes follow similar subcellular pathways at similar rates. Also, the macrophage system appears suitable for direct analysis of newly synthesized lysosomal enzymes during subcellular transport.  相似文献   

7.
Male BALB/C mice were injected intraperitoneally with 2.5 i.u. of gonadotrophin. After the injection, increase of β-glucuronidase activity was first observed in the microsomal fraction. By 36h 45–50% of the total homogenate activity was found in the microsomal fraction compared with 20–25% in the control microsomal fraction. From 36 to 80h not only microsomal β-glucuronidase but also lysosomal β-glucuronidase increased progressively. After 69h stimulation with 2.5 i.u. of gonadotrophin, d-[1-14C]glucosamine or l-[U-14C]leucine was injected intraperitoneally. After a further 3h the kidneys were homogenized and five particulate fractions were prepared by differential centrifugation. The β-glucuronidase in the microsomal and lysosomal fractions was released respectively by ultrasonication and by freezing and thawing treatment. The enzyme was purified by organic-solvent precipitation and by sucrose-density-gradient centrifugation. The results demonstrated the incorporation of these two labels into the mouse renal β-glucuronidase. The microsomal β-glucuronidase was much more radioactive than the lysosomal enzyme and approx. 80% of the newly synthesized enzyme appeared in microsomes and approx. 20% of that was found in lysosomes at this period. These results suggest that the mouse renal β-glucuronidase is a glycoprotein and that the newly synthesized enzyme is transported from endoplasmic reticulum to lysosomes.  相似文献   

8.
In addition to their general function in cellular homeostasis, thyroid lysosomes play an essential role in the biosynthesis of thyroid hormones by cleaving the macromolecular prohormone, thyroglobulin. In the present work, we have attempted to determine whether the enzyme composition of thyroid lysosomes differs from that of lysosomes from other tissues. Lysosomal enzymes, cathepsin D, beta-D-galactosidase, beta-D-glucosidase, alpha-D-mannosidase, alpha-L-fucosidase, hexosaminidase, and arylsulfatase A and B, were assayed in crude fractions from various pig tissues, heart, brain, liver, kidney, thyroid, adrenals, ovary, and spleen. It appeared that the specific activity of arylsulfatase A was at least 20 times higher in the thyroid than in most other tissues. Thyroid lysosomes purified by isopycnic centrifugation on Percoll gradients contained two major polypeptides with apparent molecular weights of 58,000 and 54,000 representing about 30% of the total protein. These polypeptides were glycosylated and were exclusively found in the intralysosomal soluble fraction obtained by osmotic pressure-dependent lysis. By fractionating intralysosomal soluble proteins by velocity sedimentation on sucrose gradients or gel permeation chromatography we identified a thyroid arylsulfatase A holoenzyme which corresponds to a 120,000 Mr species. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analyses of the gradient or column fractions showed that the 120-kDa protein peak with arylsulfatase A activity essentially contained the 58- and 54-kDa polypeptides in equivalent amounts. In conclusion, arylsulfatase A, a heterodimer of 120 kDa composed of two nonidentical subunits, is the major protein component of thyroid lysosomes. The superabundance of this protein in purified thyroid lysosomes is related to the very high specific activity of the enzyme in the thyroid as compared to other tissues.  相似文献   

9.
Using Percoll density gradient centrifugation after treatment of the postnuclear supernatant (PNS) with 1 mM Ca2+ to swell and lighten mitochondria, we isolated highly purified lysosomes (dextranosomes) in high yield (25%) from the livers of rats to which dextran had been administered. The lysosomal fraction obtained by this method was enriched more than 100-fold in N-acetyl-beta-glucosaminidase and arylsulfatase and 40-fold in acid phosphatase and beta-glucosidase. Electron microscopic examination and measurement of marker enzyme activity for various subcellular organella indicated that the lysosomal fraction was essentially free from contamination by other organella. Flavins, ubiquinones, and hemochromes were found on lysosomal membranes and investigated. The FAD and ubiquinone-9 contents of the purified lysosomal membranes were 0.118 and 6.93 nmol/mg of protein, respectively. Hemochromes in lysosomes showed spectra similar to that of a b-type cytochrome, with the alpha-peak at 562 nm and the gamma-peak at 436 nm.  相似文献   

10.
Primary microcultures of human amnion epithelial cells were established, starting from sterile term placentae. Over a period of 1 week in culture, the epithelial cells release into the extracellular medium substantial amounts of some lysosomal hydrolases, such as sphingomyelinase, N-acetyl-beta-glucosaminidase, alpha-fucosidase, beta-glucuronidase, alpha-mannosidase, and arylsulfatase. Judging from experiments conducted with the protein synthesis inhibitor, cycloheximide, the enzymes released are not newly synthesized forms, but very likely derive from lysosomes. The constitutive secretion of lysosomal enzymes, coupled with lack of immunogenicity, makes amnion epithelial cells a convenient source of enzymes for implantation in attempts of enzyme replacement therapies.  相似文献   

11.
In the beta-cells of pancreatic islets, insulin is stored as the predominant protein within storage granules that undergo regulated exocytosis in response to glucose. By pulse-chase analysis of radiolabeled protein condensation in beta-cells, the formation of insoluble aggregates of regulated secretory protein lags behind the conversion of proinsulin to insulin. Condensation occurs within immature granules (IGs), accounting for passive protein sorting as demonstrated by constitutive-like secretion of newly synthesized C- peptide in stoichiometric excess of insulin (Kuliawat, R., and P. Arvan. J. Cell Biol. 1992. 118:521-529). Experimental manipulation of condensation conditions in vivo reveals a direct relationship between sorting of regulated secretory protein and polymer assembly within IGs. By contrast, entry from the trans-Golgi network into IGs does not appear especially selective for regulated secretory proteins. Specifically, in normal islets, lysosomal enzyme precursors enter the stimulus-dependent secretory pathway with comparable efficiency to that of proinsulin. However, within 2 h after synthesis (the same period during which proinsulin processing occurs), newly synthesized hydrolases are fairly efficiently relocated out of the stimulus- dependent pathway. In tunicamycin-treated islets, while entry of new lysosomal enzymes into the regulated secretory pathway continues unperturbed, exit of nonglycosylated hydrolases from this pathway does not occur. Consequently, the ultimate targeting of nonglycosylated hydrolases in beta-cells is to storage granules rather than lysosomes. These results implicate a post-Golgi mechanism for the active removal of lysosomal hydrolases away from condensed granule contents during the storage process for regulated secretory proteins.  相似文献   

12.
Fibroblasts from I-cell disease, a genetically-determined lysosomal storage disease, are shown to contain large amounts of phase-dense lysosomes. These lysosomes accumulated acridine orange and were specifically labeled with antibodies to arylsulfatase A. In normal skin fibroblasts the number of arylsulfatase-containing lysosomes was considerably lower. By immunocytochemistry, metabolic labeling and enzyme assay, the arylsulfatase A in I-cell fibroblasts was shown to be synthesized, stored and secreted at a level that was several-fold higher than that present in heterozygous I-cell or normal fibroblasts. Arylsulfatase A in I-cell fibroblasts differed from arylsulfatase in normal fibroblasts by the absence of endoglycosidase H-sensitive phosphorylated oligosaccharides. These findings indicate that arylsulfatase A in I-cells is targeted to lysosomes by a mechanism that does not appear to involve the phosphorylated mannose marker.  相似文献   

13.
A sulfated alpha1-antitrypsin (AAT), thought to be a default secretory pathway marker, is not stored in secretory granules when expressed in neuroendocrine PC12 cells. In search of a constitutive secretory pathway marker for pancreatic beta cells, we produced INS-1 cells stably expressing wild-type AAT. Because newly synthesized AAT arrives very rapidly in the Golgi complex, kinetics alone cannot resolve AAT release via distinct secretory pathways, although most AAT is secreted within a few hours and virtually none is stored in mature granules. Nevertheless, from pulse-chase analyses, a major fraction of newly synthesized AAT transiently exhibits secretogogue-stimulated exocytosis and localizes within immature secretory granules (ISGs). This trafficking occurs without detectable AAT polymerization or binding to lipid rafts. Remarkably, in a manner not requiring its glycans, all of the newly synthesized AAT is then removed from granules during their maturation, leading mostly to constitutive-like AAT secretion, whereas a smaller fraction (approximately 10%) goes on to lysosomes. Secretogogue-stimulated ISG exocytosis reroutes newly synthesized AAT directly into the medium and prevents its arrival in lysosomes. These data are most consistent with the idea that soluble AAT abundantly enters ISGs and then is efficiently relocated to the endosomal system, from which many molecules undergo constitutive-like secretion while a smaller fraction advances to lysosomes.  相似文献   

14.
Isoelectric focusing was used to study the multiple forms of acid phosphatase, arylsulfatase, beta-glucuronidase and beta-N-acetylhexosaminidase in lysosomes isolated from rat kidney. The isoelectric points of the main protein and hydrolase peaks were 1-1.5 units lower when electrofocusing was done in a pH 3-10 gradient than in a pH 10-3 gradient, apparently because the lysosomal constituents aggregated strongly at their isoelectric points and tended to settle somewhat in the gradient due to gravity. In the extended pH gradient the acidic form of each hydrolase occurred as asingle, relatively discrete peak. However, when pooled acidic fractions were refocused in a restricted pH gradient (pH 6-3 or 3-5) multiple acidic enzyme and protein components were resolved with isoelectric points between 2.7 and 5.1. When autolysis was minimized by extracting lysosomal fractions at alkaline pH (0.2% Triton X-100, 0.1%p-nitrophenyloxamic acid, 0.1 M glycine buffer, pH9) and including 0.1%p-NITROPHENYLOXAMIC ACID, AN INHIBITOR OF LYSOSOMAL NEURAMINIDASE AND CATHEPSIN D, in the pH gradient, arylsulfatase, beta-glucuronidase and beta-N-acetylhexosaminidase occurred in two forms, an acidic form with an isoelectric point of about 4.4, and a basic form with an isoelectric point close to 6.2, 6.7 and 8.0, respectively. Acid phosphatase occurred in three forms with isoelectric points of 4.1, 5.6 and 7.4. When some autolytic digestion was permitted by extracting lysosomal fractions in an acidic medium (0.2% Triton X-100, 0.1 M sodium acetate buffer, pH 5.2) AT 0-4DEGREES C and omitting p-nitrophenyloxamic acid from the gradient, the acidic form of beta-glucuronidase and the intermediate form of acid phosphatase were lost, the isoelectric points of the acidic forms of acid phosphatase, arylsulfatase and beta-N-acetylhexosaminidase were increased 0.6-1.2 units, and the isoelectric point of the basic forms of acid phosphatase, arylsulfatase and beta-glucuronidase was increased 0.5 unit. When lysosomal extracts were incubated with bacterial neuraminidase before electrofocusing, the acidic forms of acid phosphatase, arylsulfatase and beta-glucuronidase were largely lost, the isoelectric point of the acidic form of beta-N-acetylhexosaminidase was increased from 4.5 to 6.4, and the isoelectric points of the basic forms of all four hydrolases were increased 0.5-1.5 units. Autoincubation of lysosomal extracts in vitro at pH 5.2 PRODUCED SIMILAR, THOUGH LESS MARKED, effects. cont'd  相似文献   

15.
Rats, treated for 12 days with chloroquine show a threefold increase of arylsulfatase activity in the mitochondrial-lysosomal mixed fraction, whereas the succinate: cytochrome c reductase activity is decreased to about 50% in this fraction. Purified lysosomes possess a 35 fold higher arylsulfatase activity, compared with homogenate, whereas neither NADPH: - nor succinate: cytochrome c reductase activity can be detected. In these lysosomes, one third of the phospholipids consists of bis (monoacylglycero) phosphate. The neutral phospholipids — mainly phosphatidylethanolamine — are drastically reduced in these cell organelles during the treatment. Our results indicate that chloroquine is nearly exclusively present in the lysosomal fraction. Furthermore we conclude from our data that bis (monoacylglycero) phosphate — isolated from lysosomal phospholipids — forms complexes with chloroquine.  相似文献   

16.
The sorting of newly synthesized mannose 6-phosphate (M6P)-containing proteins and of the major excreted protein (MEP), a lysosomal thiol proteinase, was studied in NIH-3T3 cells transfected with the cDNA of human insulin-like growth factor II (IGF II) or with the vector alone. Extracts from media and cells labelled with [35S] methionine were used for chromatography on a M6P/IGF II receptor affinity matrix or for immunoprecipitation to assess the distribution of newly synthesized M6P-containing proteins and MEP, respectively. The results indicate that the overexpression of IGF II did not affect the synthesis and the sorting of M6P-containing proteins and of MEP. The binding and uptake of the lysosomal enzyme arylsulfatase A were not affected in IGF II overexpressing cells.  相似文献   

17.
We have employed colloidal silica (Percoll) density-gradient subcellular fractionation technique to examine the distribution of lysosomal hydrolases between intermediate vesicles (primary lysosomes) and secondary lysosomes in contact-inhibited non-proliferating vs proliferating chicken embryo fibroblasts. We find that the activities of lysosomal specific enzymes from both phases of growth are distributed within two peaks; however, the relative amounts differ markedly. In normal, non-proliferating cells approx. 60% of the total activities of cathepsin B, beta-mannosidase, alpha-fucosidase, beta-galactosidase and hexosaminidase is recovered in the heavier density fraction corresponding to secondary lysosomes, while less than 9% of the enzyme activities are recovered in the light-density peak. With transformed cells, between 16 and 22% of activity for these enzymes are recovered in the lighter density intermediate vesicle fraction, when less than 40% of the enzyme activities recovered in the heavy density fraction. beta-Glucuronidase distribution was different from that of the above enzymes. First, a more even distribution between the two lysosomal fractions was found with non-proliferating normal cells (33% in heavy-density fraction and 21% in light-density fraction), whereas more than 40% of the total enzyme activity was recovered in the lighter density fraction from transformed cells. Also, the amount of cathepsin B contained in the vesicle fractions is increased severalfold relative to that of contact-inhibited normal cells. However, the apparent differences in enzyme distribution between confluent normal and transformed cells are not found when vesicles are prepared from subconfluent, actively proliferating cultures. We have also compared the Percoll density gradient patterns of membrane vesicles from proliferating and non-proliferating human fibroblasts, since most earlier studies utilized this system. Again, we find that the majority of beta-hexosaminidase activity (41%) of contact-inhibited, confluent cells is recovered in the heavier density fraction with less than 15% in the lighter density fraction. Also, the distribution of beta-hexosaminidase between the heavy density and light density vesicle fractions is altered in homogenates from exponentially growing cells, being 22% and 26% respectively. We conclude that the distribution of lysosomal hydrolases between the two vesicle populations is growth-phase dependent and is markedly heterogeneous in proliferating cells.  相似文献   

18.
Lysosomes from normal rat liver were isolated by affinity chromatography using Sepharose-bound Ricinus communis agglutinins I + II. Characterization of the lysosomal fraction by marker enzymes showed--compared with the homogenate--an enrichment in: acid phosphatase and arylsulfatase about 30- to 60-fold, the tartrate-sensitive acid phosphatase about 95-fold, whereas beta-D-glucosidase, beta-D-galactosidase and sphingomyelinase showed a much higher enrichment of 170- to 260-fold. Marker enzymes for other cell organelles were not detectable. The phospholipid pattern and optical control with electron microscopy gave further indications that the isolated fractions were very rich in lysosomes. A comparison of the phospholipid compositions of plasma membranes isolated from normal rat liver and membranes from the isolated fractions of lysosomes, showed that they were quite different; in particular bis(monoacylglycero)phosphate, which we found to be a typical lysosomal phospholipid, was absent in plasma membranes.  相似文献   

19.
beta-Hexosaminidase B purified from human fibroblast secretions was used as a ligand to study phosphomannosyl-enzyme receptors in membranes from rat tissues. Enzyme binding to rat liver membranes was saturable, competitively inhibited by mannose 6-phosphate, not dependent on calcium, and destroyed by prior treatment of the hexosaminidase with either alkaline phosphatase or endoglycosidase H. Most (90%) of the phosphomannosyl-enzyme receptors were found in endoplasmic reticulum, Golgi apparatus, and lysosomes; 9.5% in the plasma membrane, and less than 1% in nuclei and mitochondria. Receptors were vesicle-enclosed in all fractions except plasma membrane. Receptors in the endoplasmic reticulum apparently were occupied by endogenous ligands, but most receptors in lysosomes and plasma membrane were unoccupied. Most of the endogenous beta-hexosaminidase was in lysosomes and was released from vesicles by detergent treatment. Displacement of the residual receptor-bound endogenous beta-hexosaminidase (mostly in endoplasmic reticulum and Golgi apparatus) from detergent-treated membranes by mannose 6-phosphate released high uptake enzyme with properties expected for phosphomannosyl-enzymes. Mannose 6-phosphate-inhibitable enzyme receptor activity was found in nine rat organs and correlated roughly with their lysosomal enzyme content. These data support a general model for lysosomal enzyme transport in which the phosphomannosyl-enzyme receptor acts as a vehicle for delivery of newly synthesized acid hydrolases from the endoplasmic reticulum to lysosomes.  相似文献   

20.
Involvement of endosomes in transport of newly synthesized acid phosphatase to lysosomes was investigated using the Golgi fraction (GF1 + 2), enriched in endosomes. The Golgi fraction (GF1 + 2) was prepared from the livers of rats given [35S]methionine and asialofetuin conjugated-horseradish peroxidase (HRP). Newly synthesized acid phosphatase in the endosomes containing internalized asialofetuin-HRP was measured as a loss of the detectable labeled enzyme after 3,3'-diaminobenzidine (DAB) and H2O2 reaction, due to formation of insoluble polymers which reduce protein antigenicity. With this procedure, acid phosphatase was all but undetectable in the Golgi fraction. Thus, newly synthesized acid phosphatase is apparently transported to lysosomes by endosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号